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The second chance offer is a common seller practice on eBay. It consists of price 
discrimination against the losing bidder, who is offered an identical item at the 
value of his or her highest bid. This paper approaches this as a privacy problem, 
which is posed as one of information revelation in a multi-stage game. [7] has 
shown that, if bidders are rational, they change their bidding strategies to 
compensate for the price discrimination so that the seller is not motivated to 
violate privacy in this manner. [8] has shown this is true even if the seller price 
discriminates with a probability α, when there are as many items as there are 
bidders. In this paper, we examine the cases when the items are insufficient for all 
bidders – to determine whether privacy violation is more acceptable to the bidder, 
in the presence of scarcity. Using both Bayesian techniques and evolutionary 
programming simulations, we determine optimal strategies for bidders and sellers.  
We present the  Nash equilibria obtained, and determine that there is at least one 
case when sellers are motivated to perform randomized price discrimination 
because of the second mover advantage . Our use of evolutionary programming 
simulations is unique in the privacy literature.   

1.   Introduction 

We treat interactions among entities as stages in a multi-stage game. 
Information revealed in an earlier stage can reduce (or increase) a player’s utility 
in a later stage. An example is the case of differential pricing following an auction, 
when goods are priced higher for high bidders.  In this paper, we focus on 
differential pricing in general, and eBay’s second-chance offer in particular.  

Several papers have suggested that differential pricing is the goal of privacy 
invasion and usage tracking [1, 10,  12].  eBay.com’s second chance offer 
mechanism is an example of differential pricing. It allows sellers to offer non-
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winning bidders an identical item at the price of their highest failed bid.  While 
meant to be used when the winning bidder does not pay, or when the Reserve 
Price has not been met [5], this mechanism can be abused to provide a powerful 
tool for differential pricing: a bidder’s valuation of the item is learnt from her bid(s) 
in the auction itself, and used as a price if she loses the auction.   

We examine whether the seller can benefit by offering the second chance 
offer, not with certainty, but with a probability α. That is, after one object is sold 
in a first-price auction in Stage I, the seller offers, in Stage II, either (a) (with 
probability α) a privacy invasive second chance offer to all individual bidders, or 
(b) (with probability 1-α) a privacy-protecting uniform-price offer P. We assume 
that the items are scarce, that is, that the number of items is smaller than the 
number of bidders.  Our contributions are as follows:  

Case I: α and P form the reputation of the seller and are known to the bidder.  
The values of α and P may be seen as representing the probability distribution 
on the seller’s type – his offer in the second stage – which is unknown a priori  
to the bidder.  We examine the Bayesian Nash equilibrium and show that a 
monotonic increasing optimal strategy for the bidders does not always exist.  In 
these cases, we find that evolutionary programming experiments provide optimal 
strategies that may not be monotonic increasing.  

Case II: α and P form the seller’s second-mover strategy and are unknown 
to the bidder. There are n bidders participating and k  items available, where 1 < k 
≦n/2+1. We use evolutionary programming experiments  to derive equilibria for 
n=8.  We find that when the number of available items is less than or equal to 
four (half of the number of bidders ), it is the seller’s best response to always 
price discriminate in the second stage.  In these cases, the bidding strategy 
found in simulations is consistent with the Bayesian strategy derived in Case I, 
with α=1, and no second mover advantage for the seller is shown.  This 
important finding also demonstrates the ability of evolutionary programming 
simulations to obtain Nash equilibrium for this problem.  When the number of 
available items equals to five (n/2 +1), we find that the seller’s  value of α does 
not converge.  With further numerical analysis, we confirm that α does not 
converge because the seller’s total revenue is the same for any α.   

Thus we determine that, in the presence of sufficient scarcity (when the 
number of items is smaller than or equal to half the number of bidders) the seller 
is motivated to price discriminate. Because of the scarcity, bidders do not lower 
their bids sufficiently. The paper is organized as follows. Section 2 presents 
related work, section 3 preliminaries, and section 4 analytical results.  Section 5 
presents the results of an evolutionary programming simulation of the same game, 
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played with sequential moves and with the seller playing second. Section 6 
contains conclusions .   

2.   Related Work 

Knowledge of the valuations of several individuals for a particular item can 
enable a fairer distribution of the item and an efficient estimation of demand.  It  
also enables price discrimination – the practice of charging different amounts for 
identical items to different customers. Vendors are motivated to reduce consumer 
privacy in order to improve the accuracy of price discrimination [1, 10]. On the 
other hand, if customers are rational, they would anticipate the availability of 
information and adjust their strategies to obtain higher payoffs [1, 7], making 
price discrimination a suboptimal strategy for the seller.  Though experimental 
results indicate that customers are not rational or do not value their privacy 
enough [2], it is possible that consumers would behave differently if the costs of 
behaving rationally were smaller [7] (if, for example, automated rational agents 
were easily available and easy to use).   

Previous work [7] by the authors has shown that rationality does enable 
bidders to protect privacy when the seller’s strategy is deterministic, that is, 
when α =1 and the seller always price discriminates. They have also shown [8] 
that rationality protects bidders when the seller uses a randomized strategy and 
the number of items is identical to the number of bidders – that is, in the absence 
of scarcity.  To the authors’ knowledge, [8] was the first to use evolutionary 
programming to study privacy.   

The use of evolutionary programming was first devised by John Holland in 
1975 [6]. A large number of studies have applied genetic algorithms to well-
known economic problems. For example, [4] addresses the prisoner’s dilemma 
and shows that the tit -for-tat strategy evolves in a genetic algorithm simulation 
of the prisoner’s dilemma game, predicting cooperation among prisoners, and a 
simple cobweb model [3] is used to analyze supply and demand.  

3.   Preliminaries 

We model a two stage price discrimination game as follows:  
− Stage I: The seller has k  available identical items.  n bidders join a first-price 

sealed-bid auction. All bidders simultaneously and independently make bids. 
The bidder with the highest bid wins the auction. On the occurrence of a tie, 
the winner is chosen at random.  The remaining N-1 bidders enter Stage II.    

− Stage II: The seller offers k -1 identical items to the k-1 highest of the 
remaining N-1 bidders:  (1) The failed bid (privacy-infringing) option: With 
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probability α, the price is the bidder’s highest bid in Stage I. (2) The uniform 
price(privacy-protecting) option: With probability 1-α, the price is a 
uniform price for all bidders. The bidders can reject or accept either offer.   
Each bidder’s payoff is computed as the difference between the prices paid 

for the item and the bidder’s valuation.  The valuations of all the bidders are 
modeled as being uniformly and independently distributed between 0 and 1.   

We examine two cases. The number of available items, k, is known to the 
bidders in both cases. In Case I, α and P represent the seller’s reputation and are 
known to the bidder. The seller’s second move is not strategy, but determined by 
his type, which is characterized by probabili ty α and fixed price P. In Case II, α 
and P represent the seller’s second-mover strategy and are unknown to the 
bidder.  We denote the (private) valuation by x, the bid by b, the optimal bidding 
function by β, and the number of bidders by N. For the symmetric Nash 
equilibrium we assume, as is standard, that bidder strategies are identical, and all 
strategies are known to all players. G(x)  denotes the probability that a given 
valuation x is the highest among N bidders.  H(x) denotes the probability that a 
given valuation x is among the k highest, but not the highest.   

4.   Case I: α  and P Known to Bidders 

Consider a simplified version of the game, where the bidder knows the 
sellers ’ values of the probability α and the uniform price P prior to the start of the 
auction. This may be thought of as a steady state setting in a repeated game, 
where the seller has chosen optimal values of α and P, and the bidder has learnt 
them over repeated interactions. α and P represent the reputation of the seller, 
and we may consider them as representing the distribution on the type of the 
seller. Just as the distribution on the bidder’s valuation is known to the seller, so 
also the parameter α is known to the bidder, along with P. The bidders submit 
bids in the first stage; after the auction ends, the system flips a coin, biased 
according to the value of α, to choose between the uniform price option and the 
failed bid option. The result of the coin flip may be viewed as the type of the 
seller – much as the valuation x represents the type of the bidder – and is 
similarly unknown, a priori, to the other players.  Because of the insufficient 
number of items available for all bidders, only with probability H(x) will a bidder 
make a profit entering the second stage.  

It can be shown that there is no dominant deterministic strategy for bidders.  
The symmetric Bayesian Nash equilibrium strategy is stated in equation (1) but 
not derived here due to space constraints.   We find that, for certain α and P, the 
bidding strategy ß(x)  is not monotonic increasing for x ≧ P and thus contradicts 
the assumption that bids are invertible. Thus, any attempts to obtain the strategy 
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in these cases would require the assumption that the strategy is not invertible; 
optimal strategies may be obtained using evolutionary programming experiments.   
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5.   Case II: α  and P Unknown to Bidders 

In a less constrained situation, the two -stage game would be played 
sequentially, with the seller moving later than the bidders. That is, the seller 
would determine the values of α and P after receiving all the submitted bids.  The 
sequential game may be approached as an asymmetric, incomplete information 
game; we approach it using evolutionary programming simulation.  Assuming the 
game is played repeatedly, we examine how the seller and different types of 
bidders evolve over generations.   

5.1.   Evolutionary Programming Simulation 

5.1.1.   Simulation Method 

We choose chromosomes consisting of bidder’s bids for the fitness 
function expected payoff, and the seller’s values of α and P for expected revenue. 
The bidder’s chromosome is coded as a lookup table of 20 entries  of real 
numbers; the bidder’s bidding function is a piecewise linear interpolation of this 
lookup table. We use the lookup table so that  the bidding function is not 
restricted to be in a particular parameterized form. The seller’s chromosome is 
coded as 2 real numbers α and P, representing the seller’s action after Stage I.  

5.1.2.   Simulation Steps 

The evolutionary programming simulation has the following basic steps: (1) 
create the initial population; (2) evaluate the current population; (3) reproduce: 
selection, crossover and mutation; (4) repeat steps 2-3 until the stop condition is 
reached.  We stop our simulation when the number of generations is 40,000. The 
initial population is set at 500 sellers, and 8 distinct bidders are used for each 
seller. We conduct simulations for available item numbers  K=2 to 5. Bidder 
chromosomes are randomly generated at the beginning of the simulation. Bidder 
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valuations are randomly generated each generation . The tournament selection is 
used for reproduction: two chromosomes will be randomly drawn from the 
population pool. The chromosome with the higher fitness score will be copied to 
the new population representing the next generation. It will stay in the pool for 
further tournaments, and the process continues until the new population has the 
same size as the previous one. The crossover process combines chromosomes 
from two parents, at random.  The optimal mutation rate is set to be equal to 1/ 22 
as suggested in [9] because of 22 different variables in the sellers and bidders 
chromosomes.  We also implement the mutation operator suggested in [9].  

After the population is initialized, each bidder submits a bid by substituting 
its valuation into its lookup table . For example, a bidder with valuation 0.80 will 
submit a bid of L(16)  where L is the lookup table and its 16th entry is the bid.  
Notice that, if the bidder’s bidding strategies are correct, this is indeed an optimal 
bid.  The seller’s fitness score is the total revenue over both stages; that of the 
bidder is the payoff – the difference  between its purchasing price and its 
valuation. If the seller offers a fixed price higher than the bidder’s valuation, the 
offer is rejected. The fitness functions  take inputs from the chromosomes of both 
sellers and bidders. Sellers and bidders can be viewed as two species that affect 
each other while evolving. 

5.2.   Simulation Results 

The simulation results for sellers’ chromosomes are summarized in table 1.  
Note that P does not converge because α converges  to 1; meaning sellers never 
choose a fixed price offer.  

Table 1. Sellers Chromosomes 
 
 Item Number α P 

Exp 1 2 1.0 

Exp 2 3 1.0 

Exp 3 4 1.0 

Not Converged 

Exp 4 5 Not Converged 0.5 

Results for experiments 1, 2 and 3 are consistent with the Bayesian bidding 
strategy. That is, in these cases, an invertible strategy happens to be optimal.  
We plot the Bayesian bidding function for α=1 and the function obtained from 
the bidders’ lookup table in figure  1. This optimal strategy is not invertible and is 
hence not obtainable through Bayesian analysis.  We further conduct a 
numerical analysis that confirms the simulation result is the optimal bidding 
strategy.   Bidders have to bid higher than Case I in response to the sellers’ 
second mover advantage. 



 7 

Figure 1. Experiment Four  

6.   Observation and Conclusion 

We have demonstrated that evolutionary programming is  a powerful 
approach to discover Nash equilibria in multi-stage games, particularly when 
non-invertible optimal strategies cannot be obtained through Bayesian analysis. 
At the same time, simulation results are consistent with the Bayesian strategy, 
when the optimal strategies are invertible. We have further shown that  
randomizing between fixed price offer and price discrimination is optimal for 
sellers.  However, due to the second mover advantage of the sellers; it results in 
bidders’ payoff loss, which is also viewed as the cost of privacy invasion.   
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