CHAPTER 5

Error Analysis in the Design of Colour Scanning Filters

Chapter 4 demonstrates the use of the measure developed in Chapter 3 as an op-
timization criterion in the problem of the design of colour scanning filters. It also
demonstrates that it is often not possible to fabricate the designed ‘optimal’ filters
exactly. The fabricated filters will not have the specified transmissivities, and this
perturbation in filter transmissivities leads to a general degradation of filter per-
formance demonstrated by larger average AEp,, errors and smaller values of the
measure. This chapter addresses the effect of the perturbation on the average square
AELy, error of the scanner output and on the data-independent measure of Chapter
3. Quantitative estimates of the sensitivity of average square AEp4, errors and of
the data-independent measure to filter transmissivities as a function of wavelength
are presented. Such estimates are very useful for the manufacturer. Experimental
data demonstrates the accuracy of the sensitivity estimates. Error modelling pro-
vides a basis for calculating worst-case bounds on filter fabrication errors. Bounds on

maximum allowable filter fabrication errors as a function of wavelength are presented.

In section 3.5.4, it is explained why the AE error is not an appropriate error
measure for the definition of a measure of goodness of a set of scanning filters. The
case of the sensitivity of the average AFE error to small perturbations in filter char-
acteristics is different, however. ‘Optimal’ scanning filters can be designed using the

data-independent measure of Chapter 3. The filters may be ‘trimmed’ to obtain filter
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sets resulting in small mean square AEp,, errors. Thereafter, required accuracy in
filter fabrication at particular wavelengths may be determined by sensitivity curves

of the mean square AE',, error.

The chapter is organized as follows. Section 1 presents the Taylor series for scalar
functions of matrices. The Taylor series expansion is the basis for the expression de-
veloped for sensitivity of the average square AFEp,; error and of the data-independent
measure to filter fabrication errors. Section 2 develops a quantitative measure of the
effect of small perturbations in the colour scanning filters on the data-independent
measure and section 3 develops the same for the average square AFE,, error. Section
4 demonstrates how these quantitative estimates can be used to define bounds on the
allowable error in filter fabrication, given a particular tolerance for maximum average
square AFEp,;, error or a minimum allowable value for the data-independent measure.
Section 5 presents simulation results to support the claims in Sections 2, 3 and 4.

Conclusions are presented in Section 6.

5.1 Taylor Series Expansion for Scalar Functions of Matri-
ces

The Taylor series forms the basis of approximation techniques that use the derivatives
of a function. The definitions and approximations associated with the Taylor series
are presented in this section to provide the mathematical background for the approx-
imations and the sensitivity analysis of the following sections. To begin, consider the
Taylor formula for a scalar function of a single variable. For a scalar function y of a

single variable x, the first differential at z due to a change 6z in the argument, is
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the linear part of the increment in the function. It may be expressed as [21, pg. 81]

dy(xo; 6z) = % ox

=0

Notice that the first differential depends on both z and éx, but that the term g%

T=x0
depends only on zy. Hence the first differential is linear in éz. Similarly, the second

differential is a quadratic expression in 6z. It can be written as:

0%
d*y(zo; 6x) = ﬁ (6x)*

T=x0

and is a function of both xy and 6z. The second-order Taylor series approximation

for the value of y at a point z + 6z is:
L,
y(zo+ 0z) = y(xo) + dy(wo;bx) + §d Y(xo; )

The ideas of first and second differentials and their use in the approximation of the
increment in a function due to a change in the argument can be extended to scalar
functions of vector-valued arguments as follows.

The following second-order Taylor formula may be used to approximate scalar

function g in the neighbourhood of a vector-valued argument x, if g is twice-differentiable

at xo [21, pg. 108]:

1
g(xo + 6x) = g(xo) + dg(xo; 6x) + §d29(x0; 0x) + 7.(6x)

where

r.(6%)
ll6x||—0 ||6x||?

=0
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and dg is the first differential of g, d®g the second differential, and both are functions
of xo and 6x. Hence the change in scalar function g when x changes by a ‘small’
amount éx may be approximated as

1
69 = g(x0 + 0x) — g(x0) = dg(x0;6x) + §d2g(xo;6x) (5.1)

Given a scalar function of a matrix X, the function may be written as a scalar
function g of the vector vec(X). In the particular application treated here, it is sought
to approximate the change in the average square AEy,, error over a data set (or the
change in the data-independent measure) if the designed filters M are perturbed to

give fabricated filters M + AM. Recall that the average square AFE,, error over a

2
data set is denoted zf—AfL—“"(f), where ) ¢ denotes the sum over all data points and n
is the number of data points. The differential of the mean square AE;,, was derived

in section 4.5.3, and can be written as (see equation 4.12):

2 2 2
dg:d;f.Afﬂ_(.f_) - Dz—féilb(fz(vec dM) =~ DE_fA_iLa_b(f)_(vecAM)

if AM is ‘small’. Similarly, from equation (4.17), section 4.5.2, the differential of the

data-independent measure can be written as:

(I — Pyy)PyMp(MEMp)™!
3

dg = dv(M) ~ {vec(ZE )7 (vecAM)

The above formulae provide an explicit means of quantifying the first differential of

the data-independent measure v or the mean square AEy,, error if the perturbation

AM is known.
When the designed filters are trimmed with respect to the mean square AFE;,,

error, the resulting trimmed filters will be close to optimal, and dz‘f%%“”(ﬁ will be
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close to zero. Similarly, when the designed filters are trimmed with respect to v,
d(v)(M) will be close to zero. This means that the second term in equation (5.1) will
be dominant in the expression for §¢ in either case. Hence, it is necessary to obtain
expressions for the second differential which are similar to the above expressions for
the first differential, so that the second differential may be calculated if the perturba-
tion AM is known. Experimental results confirm that the second term, %(dzg), is a
fairly good approximation to the change, and that it contributes a much larger part
of the change than does the first differential for the range of values of AM under con-
sideration. The next section deals with the problem of finding the second differential

of the data-independent measure v.

5.2 The Second Differential of the Data-Independent Mea-
sure v

The following notation simplifies the expression for the second differential. Given an
m X n matrix,

11 ... T1n
X =

Tml v Tmn

and any other matrix Y, the symbol & represents the Kronecker product

Y

LL'HY l’lnY
XoY = : :
Tm1Y o Tyn Y

Let K be such that [21]
vec dM = vec IMTK
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Equation (4.16) gives an expression for the first differential, dv. The second differen-
tial, d?v, is the first differential of the first differential, i.e., d>v = d(dv). The second

differential of the data-independent measure is (see Appendix, Theorem 9)
d*v = —(vecdM)THvecdM

where
1
H o= (A + AT)
and

A = %{H[——(M}}MH)‘I@(I - PM,,)Pv(I — Puy)

+ (MEMy) '"MEPyMy(MEM ) @ (I — Pyy,)
+ 2K(I — Py, )PPMy(MpMp)™' @ (MEMp) "M% H}

The matrix H is assumed positive semi-definite because it is the negative of the
Hessian matrix of a function near a local maximum. If it were not positive semi-
definite, there would be values of AM for which the change in the data-independent
measure v would be positive, i.e. the measure v would not be a local maximum. The
next section deals with the problem of finding the second differential for the average

square AFrq, error.

5.3 The Second Differential of the Mean-Square AE;,, Er-
ror

In this chapter, no explicit reference will be made to the dependence on the data
point f of the matrices 2 defined in equation (4.20) and E defined in equation (4.24).

Instead of Q(f) and =(f), the matrices will be denoted as 2 and E. The column
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vectors t(f) and c(f) are also denoted t and c. All other matrices that are defined in
this chapter will be denoted similarly. The following notation simplifies the expression

for the second differential. Let
© = (MLRMpy)™,

¥ =1 - My(MLRMp)"'MLR,

500(a—a£) 0 0
9(z5x,)1/3
116(L—L — 500(a—a 200(b—b
A = 2 0 ( f) 9(y5(yn)1/f3) + ( f) O )
—200(b—by)
0 0 9(252,)1/3

and
G = 2RA(QYTYQ — A)ATR

where T is defined in equation(1.5) and € in equation (4.20). The second differential

of the mean square AEy; error is (see Appendix, Theorem 10):
d*g = (vecdM)THvecdM
where
H = 2(A + AT)
and

A = (H[© \IIT(Z—;E:)\II) + %Z(K\IJTQMH@ & OMLAT D)

f
% > (OM},GMy0 @ v TH#TW) + % > (OMEfF "M y;0 & ¥TGW)
f f
_2 (KRMy;© @ @Mg(z—;?)\y) - (@Mﬁ(%)MH@ & RW)|H)

The matrix H is assumed positive semi-definite because it is the Hessian matrix of a

function near a local minimum.
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5.4 Worst Case Bounds on Fabrication Errors

The expressions for the second differentials of the data-independent measure and the
mean square AFEp,, error, derived in sections 5.2 and 5.3 respectively, may be used
to study the effect of a small change AM in the scanning filters. In both cases the
absolute value of the change in the scalar function due to a small change of AM in

close-to-optimal scanning filters M, may be expressed as
1 1
|6g| =~ |§d2g(vec M;vec AM)| = i(vecAM)THvechM (5.2)

for relevant matrices H which have been derived in the previous sections. Given the
matrix H it is possible to calculate the maximum allowable fabrication errors for the
scanning filters, given maximum allowable change in g. Three methods of perturbing
the trimmed filter designs will be investigated. The first one deals with perturbing
the filter design at a single wavelength. The second deals with perturbing the filter
design by the same amount at each wavelength. The third deals with perturbing the
filter design by an error vector of fixed euclidean-norm.

Suppose that an error of +w; is made at the k** wavelength and that all other

fabrication errors are zero. Then,
1
~ 2
l6g| =~ E’Hklcwk

As the matrix H is defined so as to be positive semi-definite, Hy;, is non-negative,

and
|6g] < €
is ensured by
okl < (/7 = wnlh) (5.3)
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Thus, inequality 5.3 provides a measure of the maximum allowable fabrication error
as a function of wavelength. The bound of inequality (5.3) will be referred to as
the single-wavelength bound. Note that isolated fabrication errors are not likely to
occur. Hence, the single-wavelength bound does not provide a bound that is likely to
represent a physical situation. Further, the second differential is not a linear expres-
sion in the fabrication errors at individual wavelengths, hence the single-wavelength
bound does not provide changes that can be added when fabrication errors occur at
more than one wavelength. The advantage of the single-wavelength bound is that
it provides a qualitative estimate of which wavelengths are most/least sensitive to

fabrication errors.

A bound on the maximum change if the error of +w occurs at each wavelength is

given by

1 rN rN
2
[69] < Sw*3_ 2 [Hsj]
=1 j5=1
Hence, using the maximum variation for each element in the perturbation vector,

AM, the change in the mean square AFEp, error or the data-independent measure

can be bounded by p:

logl < p
if
_ maz 2,0 def
w = ¢ (JlvecAM;|) <  ar— = Wy (5.4)
i=1 Luj=1 IHU|

It is not easy to find the error vector for which the bound of inequality 5.4 is achieved,
in fact it is not necessary for the bound to be achieved. Inequality 5.4 relates the

infinity norm of the error vector vec AM to the maximum acceptable change in the
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mean square AE},, error or the data-independent measure. This bound on the max-
imum change at all wavelengths will be referred to as the all-wavelength bound. This
bound presents a realistic bound for errors that are likely to occur in real situations.
On the other hand, it does not provide any information about wavelengths that are
more or less sensitive to fabrication errors.

In order to relate the change in g to the 2-norm or euclidean norm of the error

vector, observe the following [12]:
1 ’ 1 ,
§(vecAM) HvecdAM < §||vecAM|| Amaz

where Ao is the largest eigenvalue of H, and ||.|| denotes the 2-norm or the euclidean
norm. This implies that

6g <y

if the fabrication error AM is such that

2 e
mazfy (i:f w3 (5 . 5)

1 )

|lvecAM|| <

where w3 is defined as the euclidean-norm bound. The bound v is achieved when
vec AM is an eigenvector of H corresponding to the largest eigenvalue.

It is possible to relate the single-wavelength and the all-wavelength bounds as fol-
lows. Suppose g is the allowed change in the mean square AFE,, error or in the data-

independent measure v. Then, from equations (5.3) and (5.4), (using p = € = 6g)

rN rN
N N gy
wl(k) — \l =1 ,’_Zk_kll J| Wy

which implies that

wi(k) > wy
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as expected. The allowable error at a single wavelength (represented by the single-
wavelength bound, w;) should be larger than the allowable error at all wavelengths
(represented by the all-wavelength bound w,) for a fixed change in the measure or in
the mean square AFEp,, error.

To relate the single-wavelength and all-wavelength bounds with the euclidean-
norm bound, consider the following. Suppose dg is the allowed change in the mean
square AE'y error or in the data-independent measure v. Then, from equations (5.3)

and (5.5) (where ¢ = v = ég),

)‘mam
wi(k) = \/ Hox w3

It is not possible to assign an ordering to these bounds without knowing the values

of Anas and Hyg, unless the matrix H is diagonal. If H is diagonal, the values of Hy;
are the eigenvalues of ‘H, and w;(k) > ws. Further, from equations (5.4) and (5.5)

(where p = v = é4g),

w . )‘maz w
2 = rN <~rN 3
i=1 Laj=1 |Hij |

As Hiy is non-negative, and the trace of a matrix is the sum of its eigenvalues,
wz < ws. Thus, the all-wavelength bound is smaller than both the single-wavelength
bound and the euclidean-norm bound. Whether the single-wavelength bound is larger

than the euclidean-norm bound is case-specific and cannot be determined a priori.

5.5 Experimental Results

The bounds derived in the previous section are tested in this section. The tests are

first performed on the bounds for the data-independent measure v, and then on those
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for the mean square AE},;, error.

5.5.1 Data-Independent Measure v

The second-order approximation to the change in the measure v is tested on the
trimmed designed filters in Fig. 4.25 (referred to as Filter Set 1) and Fig 4.26 (referred
to as Filter Set 2). The single-wavelength bounds are tested for a change of 0.005

and the all-wavelength bound is tested for a change of 0.05 in the measure v.

Second Order Approximation

Consider the vector vec AM defined by the difference between the trimmed, specified
Filter Sets 1 and 2 and the manufactured filters indicated by dotted lines in Figs.
4.9 - 4.11 and Figs. 4.12 - 4.14 respectively. Using this vector AM, equation (5.2)
is used to predict the change in the measure v. This prediction is compared to the

actual change in Table 5.1.

Table 5.1: Predicted and Actual Values of Measure v-1

Set | Original |  Predicted Actual |[|lvec AM]||?
Measure Measure Measure
Equation (5.2)
1 | 0.9994 0.9849 0.9900 0.0777
2 | 0.9988 0.9593 0.9769 0.4623

The euclidean norm of vec AM can be used to compute a bound on the change in
the measure, calculated from inequality (5.5). The bound on the measure predicted

by this change is -0.2006 for Filter Set 1 and -35.43 for Filter Set 2. It is clear that
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the euclidean-norm bound of equation (5.5) provides too large an estimate for the

bound on the change in the measure, in general.

Table 5.2 provides a comparison similar to the one in Table 5.1 between predicted
and actual errors for some randomly generated actual filters sets while using the
trimmed filter sets 1 and 2. The observations indicate that equation (5.2) provides
a fair estimate of the change in the measure. The reason for the slight discrepancy
is that the second-order Taylor series approximation is not accurate. This is either
because the error is too large or the higher-order derivatives too high for the approx-

imation to be totally valid.

Table 5.2: Predicted and Actual Values of Measure v-2

Set | Original |  Predicted Actual ||Jvec AM|]?
Measure Measure Measure
Equation (5.2)
1 | 0.9994 0.9623 0.9774 0.1615
1 | 0.9994 0.9812 0.9887 0.0628
1 | 0.9994 0.9885 0.9926 0.0280
2 | 0.9988 0.9898 0.9928 0.1232
2 | 0.9988 0.9975 0.9977 0.0378
2 | 0.9988 0.9943 0.9937 1.3492

Single-Wavelength Bounds

Single-wavelength bounds calculated from equation (5.3) for ¢ = 0.005 are plotted
as a function of wavelength in Figs. 5.1-5.6 for Filter Sets 1 and 2. The dotted lines
indicate the bounds, and the solid line indicates the designed filter in all plots. It is

clear from the figures that the red filter is the most sensitive to fabrication errors,
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because the single-wavelength bounds for the red filter are the smallest among all
three filters for both sets 1 and 2. Further, the bounds appear smallest close to the
slope of the red filter, and it is this slope that needs to be fabricated with accuracy.

Table 5.3 lists the maximum and minimum allowable fabrication errors at a single-
wavelength for a change of 0.005 in the measure. The filters and the wavelengths at
which the respective errors may occur are also listed. This allows comparison of the
sensitivities of the two sets of filters. The values of the maximum and minimum
allowable perturbations are similar for the two sets of filters, which implies similar

sensitivities.

Filter Transmissivities

0 s S L L L
400 450 500 550 600 650 700

Wavelength in nm.

Figure 5.1: Single-Wavelength Bounds for Blue Filter of Filter Set 1 for a Predicted
Change of 0.005 in Measure v

The validity of the single-wavelength bounds was tested as follows. The trimmed

filter sets were perturbed at exactly one wavelength by an amount equal to the single-
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Figure 5.2: Single-Wavelength Bounds for Green Filter of Filter Set 1 for a Predicted
Change of 0.005 in Measure v
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Figure 5.3: Single-Wavelength Bounds for Red Filter of Filter Set 1 for a Predicted
Change of 0.005 in Measure v
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Filter Transmissivities
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Figure 5.4: Single-Wavelength Bounds for Blue Filter

Change of 0.005 in Measure v
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Figure 5.5: Single-Wavelength Bounds for Green Filter of Filter Set 2 for a Predicted
Change of 0.005 in Measure v
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Figure 5.6: Single-Wavelength Bounds for Red Filter of Filter Set 2 for a Predicted
Change of 0.005 in Measure v

Table 5.3: Maximum and Minimum Values of Single-Wavelength Bound for a Pre-
dicted Change of 0.005 in Measure v

Set Perturbation | Filter | Wavelength in nm.
1 | Minimum 0.0184 Red 500
Maximum 113.4 Blue 680
2 | Minimum 0.0195 Red 500
Maximum 146.1 Green 680

wavelength bound at that wavelength, corresponding to a change of 0.005 in the
measure. The measure of the perturbed filter set was calculated. This was done for
each wavelength and each filter set. The lowest value of the measure obtained thus
for Filter Set 1 was 0.9944 at the wavelength 670 nm for the red filter. The bound

on the measure for the filter set is also 0.9944. Similarly, the lowest value of the
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measure obtained thus for Filter Set 2 was 0.9942 at the wavelength 680 nm for the
red filter. The bound on the measure for this set is 0.9938. This implies that the
second differential provides a reasonable bound for single-wavelength perturbations

corresponding to a change of the order of 0.005 in the measure for the filter sets used.

All-Wavelength Bound

All-wavelength bounds corresponding to a change in measure p = 0.05 are 0.0203
and 0.0220 for Filter Sets 1 and 2 respectively. The bounds for the trimmed designs
of Figs. 4.25 and 4.26 are plotted in Figs. 5.7-5.9 and Figs. 5.10-5.12. Note that the
bounds plotted represent the same fabrication error at each wavelength, though at
some points it appears as though the bounds are unequal. This is because of different
slopes in the graphs, because of which the bounds appear differemt. Table 5.4 lists
the error measures for the original designs and the corresponding perturbed designs
indicated by the + symbol in the figures. In Table 5.4, the measure v(A, M) is
denoted v, the predicted value of the measure Py, the average AFEy,, error E, the
maximum AFEy error E,,,,, the root mean square AE},;, error RMS, and the mean
square AFEpq, error MS. The calculated all-wavelength bound is denoted ws;. The
actual values of the measures are within the predicted bounds. Recall that the all-

wavelength bound does not signify an error bound that is necessarily achievable.
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Figure 5.7: All-Wavelength Bound for Blue Filter of Filter Set 1 for a Predicted
Change of 0.05 in Measure v
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Figure 5.8: All-Wavelength Bound for Green Filter of Filter Set 1 for a Predicted
Change of 0.05 in Measure v
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Figure 5.9: All-Wavelength Bound for Red Filter of Filter Set 1 for a Predicted
Change of 0.05 in Measure v
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Figure 5.10: All-Wavelength Bound for Blue Filter of Filter Set 2 for a Predicted
Change of 0.05 in Measure v
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Figure 5.11: All-Wavelength Bound for Green Filter of Filter Set 2 for a Predicted
Change of 0.05 in Measure v
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Figure 5.12: All-Wavelength Bound for Red Filter of Filter Set 2 for a Predicted
Change of 0.05 in Measure v
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Table 5.4: Comparison Between Errors of Original Design and Perturbed Design for
a Predicted Change of 0.05 in Measure v

Set v Pv | E |Ene |RMS|MS | wy ||lvec AM|?
1 | Original |0.9994|0.9994 (0.28 | 1.23 | 0.38 |0.14 0 0
Perturbed | 0.9882|0.9494 | 0.39| 1.64 | 0.54 [ 0.29]0.0203 0.0383
2 | Original [0.9988(0.9988|0.51| 3.38 | 0.79 [0.62 0 0
Perturbed | 0.9878 | 0.9488|0.54 | 3.31 | 0.81 |0.65[0.0220 0.0450
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5.5.2 Mean Square AF,, Error

The second-order approximation to the average square AE,, error is tested on the
designed filters in Figs. 4.30 and 4.31. The single-wavelength bounds (inequality
(5.3)) are tested for a change in mean square AEf,, error of 0.005. The all-wavelength
bound (inequality (5.4)) is calculated for a change in value of 1 in mean square AE} 4
error. All results are compared to corresponding results due to similar perturbations
of the CIE matching functions under a uniform illuminant. As the CIE matching
functions are the defining standards for the purpose of colour scanning, it is of interest
to compare the sensitivity of the designed filters to that of the CIE matching functions.
The comparison indicates that the designed filters are not more sensitive than the
CIE functions themselves.

The trimmed single-gaussian model under Illuminant 2 of Fig. 4.30 is denoted
Filter Set 1. The trimmed sum-of-gaussian model under Illuminant 1 (Set 1) of Fig.
4.31 is denoted Filter Set 2. The CIE matching functions under uniform illumination,
normalized to a maximum value of unity to facilitate comparison with realizable filter

transmissivities, are denoted Filter Set 3.

The Second-Order Approximation

Consider the value of AM defined by the difference between the Filter Sets 1 and
2 and the manufactured filters indicated by dotted lines in Figs. 4.6-4.8 and 4.9-
4.11 respectively. As in the previous section, this value of AM is used to predict
the change in mean square AEp4 error. This prediction is compared to the actual

change in Table 5.5.

The bound on the mean square AE},;, error calculated from the euclidean norm
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Table 5.5: Predicted and Actual Values of Mean Square AE},, Error-1

Set | Original | Predicted | Actual [ |[Jvec AM]J?
Error Error Error
Equation (5.2)
1 | 0.1001 1.0486 1.2366 0.0440
0.0322 0.4063 0.4088 0.0324

of vec AM is 7.0 for Filter Set 1 and 28.28 for Filter Set 2. The error predicted using
the euclidean-norm bound of equation (5.5) is much larger than the actual error, and,
as in Table 5.1, this bound does not prove to be valuable is assessing changes in the
AFE}. error. Table 5.6 lists the predicted and actual errors for the trimmed filter sets
1 and 2, and randomly generated actual filter sets. The results tabulated in Tables
5.5 and 5.6 indicate that the second differential provides a fair estimate of the effect
of fabrication error on mean square AEp,; error. The estimate is slightly lower than
the actual values. The reason for the discrepancy is, as in the previous section, that
the higher-order derivatives contribute a non-negligible amount of the change, or that

the norm of the error vector is not small enough.

Single-Wavelength Bounds

Single-wavelength bounds calculated from equation (5.3) for ¢ = 0.005 are plotted
as a function of wavelength in Figs. 5.13-5.21 for Filter Sets 1-3.

Table 5.7 lists the maximum and minimum value of the perturbations plotted for
each of the designed filter sets, in the same manner as in the previous section. Notice
that the minimum allowable error at a single wavelength is higher for the single-

gaussian design than for the CIE matching functions. Further, the sum-of-gaussian
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Table 5.6: Predicted and Actual Values of Mean Square AE},, Error-2

Set | Original |  Predicted | Actual | |[vec AM|]?
Error Error Error
Equation (5.2)
1 | 0.1001 0.2072 0.2717 0.0146
1 | 0.1001 0.3012 0.3398 0.0208
1 | 0.1001 0.1631 0.1936 0.0097
2 | 0.0322 0.3970 0.4201 0.0818
2 | 0.0322 0.2130 0.2249 0.0106
2 | 0.0322 0.1912 0.2024 0.0170

FILTER TRANSMISSIVITIES
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Figure 5.13: Single-Wavelength Bounds for Blue Filter of Trimmed Single Gaussian
Model and Illuminant 2 for a Predicted Change of 0.005 in the Mean Square AFELq
Error

177



FILTER TRANSMISSIVITIES

12

0.8
0.6-
041

0.2f »

0 S
400 450

500 550

WAVELENGTH IN NM.

600 650 700

Figure 5.14: Single-Wavelength Bounds for Green Filter of Trimmed Single Gaussian
Model and Illuminant 2 for a Predicted Change of 0.005 in the Mean Square AEL,

Error

Table 5.7: Maximum and Minimum Values of the Single-Wavelength Bound for a
Predicted Change of 0.005 in the Mean Square AE},, Error

Set Perturbation | Filter | Wavelength in nm.
1 | Minimum 0.0174 Green 430
Maximum 0.3538 Blue 410
2 | Minimum 0.0045 Red 500
Maximum 7.4102 Green 680
3 | Minimum 0.0123 Blue 700
Maximum 0.2031 Blue 460
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Figure 5.15: Single-Wavelength Bounds for Red Filter of Trimmed Single Gaussian
Model and Illuminant 2 for a Predicted Change of 0.005 in the Mean Square AE}
Error

design allows a very large maximum value of fabrication error as compared to that
allowed by the CIE matching functions. This indicates that the single gaussian and

sum-of-gaussian designs are not unduly sensitive.

The single-wavelength bound was tested for each wavelength and each filter set,
as in the previous section. The largest value of the mean square AFEp,, error on
perturbation for Filter Set 1 was 0.1255, which is slightly larger than the bound for
this set, which is 0.1051. This error occured at wavelength 400 nm in the blue filter.
The largest value for Filter Set 2 was 0.0502 at 700 nm, for the red filter, for a bound
of 0.0372. For Filter Set 3, the largest value was 0.0054 for a bound of 0.005, at 440

nm for the red filter.

There were many wavelengths in each filter where the mean square AE,, error
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Figure 5.16: Single-Wavelength Bounds for Blue Filter of Trimmed Sum-of-Gaussian
Model and Illuminant 1 for a Predicted Change of 0.005 in the Mean Square AE
Error

was larger than the bound. In some of these cases the norm of the vector vec AM
was large enough to indicate that the Taylor series approximation of the second
order was insufficient. In cases where the norm is not particularly high, it is not
immediately clear what the reason for the inadequacy of the predicted bound is. A
distinct possibility is that the values of the higher derivatives are large enough at

these points to make a second-order Taylor approximation invalid.

180



12

08

Filter Transmissivities

400 450 500 550 600 650 700

Wavelength in nm.

Figure 5.17: Single-Wavelength Bounds for Green Filter of Trimmed Sum-of-Gaussian
Model and Illuminant 1 for a Predicted Change of 0.005 in the Mean Square AFEq

Error
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Figure 5.18: Single-Wavelength Bounds for Red Filter of Trimmed Sum-of-Gaussian
Model and Illuminant 1 for a Predicted Change of 0.005 in the Mean Square AF[ g
Error
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Figure 5.19: Single-Wavelength Bounds for Blue Filter of the CIE functions under a
Uniform Illuminant for a Predicted Change of 0.005 in the Mean Square AE},, Error
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Figure 5.20: Single-Wavelength Bounds for Green Filter of the CIE functions under a
Uniform Illuminant for a Predicted Change of 0.005 in the Mean Square AFEq, Error
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Figure 5.21: Single-Wavelength Bounds for Red Filter of CIE functions under a Uni-
form Illuminant for a Predicted Change of 0.005 in the Mean Square AFE},;, Error
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All-Wavelength Bounds

The all-wavelength bounds indicated by equation (5.4) are calculated for a maximum
allowable change of 1 in the average square AEy,, error, and plotted in Figs. 5.22-

5.30, the same manner as in the previous section.
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Figure 5.22: All-Wavelength Bound for Trimmed Blue Filter of Single Gaussian Model
and Illuminant 2 for a Predicted Change of 1 in the Mean Square AFE}.; Error

Table 5.8 lists the error measures for the original designs and the corresponding
perturbed designs indicated by the + symbol in the figures, as in the previous section.
The mean square AEp,;, error is denoted MS. The predicted mean square AE[,; error
(the bound corresponding to the perturbation) is denoted PMS.

The filters that Barr Associates can manufacture to match Filter Set 1 indicate
a largest manufacturing error of value 0.06 with respect to the trimmed filters. The

filters that can be used to match Filter Set 2 also indicate a largest manufacturing
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Figure 5.23: All-Wavelength Bound for Trimmed Green Filter of Single Gaussian
Model and Illuminant 2 for a Predicted Change of 1 in the Mean Square AE4, Error
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Figure 5.24: All-Wavelength Bound for Trimmed Red Filter of Single Gaussian Model
and Illuminant 2 for a Predicted Change of 1 in the Mean Square AE,, Error
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Figure 5.25: All-Wavelength Bound for Trimmed Blue Filter of Sum-of-Gaussian
Model and Tlluminant 1 for a Predicted Change of 1 in the Mean Square AE;,;, Error
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Figure 5.26: All-Wavelength Bound for 'Trimmed Green Filter of Sum-of-Gaussian
Model and Illuminant 1 for a Predicted Change of 1 in the Mean Square AE;,, Error
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Figure 5.27: All-Wavelength Bound for Trimmed Red Filter of Sum-of-Gaussian
Model and Illuminant 1 for a Predicted Change of 1 in the Mean Square AEpLq
Error

Table 5.8: Comparison Between Errors of Original Design and Perturbed Design for
a Predicted Change of 1 in Mean Square AFE ., Error

Set v E |Epe |RMS| MS [PMS| wy |[|lvec AM]?

1 | Original |0.9508|0.27| 0.67 | 0.32 |{0.10| 0.10 | 0 0
Perturbed | 0.9484 |0.71| 2.63 | 0.91 [0.83| 1.10 [0.010 0.0096

2 | Original [0.9918|0.12| 0.73 | 0.18 {0.03| 0.03 | © 0
Perturbed | 0.9589 [ 0.66 | 3.43 | 0.93 [0.86| 1.03 [0.007 0.0046

3 | Original 1.0 0 0 0 0 0 0 0
Perturbed | 0.9993 [ 0.57| 2.99 | 0.81 |0.65| 1.0 {0.008 0.0059
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Figure 5.28: All-Wavelength Bound for Blue Filter of the CIE functions under a
Uniform Illuminant for a Predicted Change of 1 in the Mean Square AE;,, Error
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Figure 5.29: All-Wavelength Bound for Green Filter of the CIE functions under a
Uniform Illuminant for a Predicted Change of 1 in the Mean Square AE},; Error
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Figure 5.30: All-Wavelength Bound for Red Filter of CIE functions under a Uniform
[Nluminant for a Predicted Change of 1 in the Mean Square AE},; Error

error of 0.06. This value is much higher than the all-wavelength bound for a change
of value 1 in the mean square AE},;, error. Thus all the experiments indicate that the
designed filters are highly sensitive given current industry capabilities with regard to
accuracy in the filter manufacturing process. The experiments also indicate that the
designed filters are not any more sensitive than the CIE matching functions. The fact
that the cone sensitivities vary considerably among individuals has been mentioned
in Chapter 1. Given this, small variations in scanning filters are not unacceptable if
visual output is the final criterion, because the human colour sensors (cones) that the
scanning filters are designed to imitate vary considerably themselves. On the other
hand, if quality control is the final criterion, the small variations do make considerable

difference.
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5.6 Conclusions

An expression for the second differential is obtained in the chapter. The expression
is used to approximate the change in mean square AE;; error over a particular data
set due to filter perturbations, using a second-order Taylor series approximation. It
is also used to approximate the change in the data-independent measure v. Simula-
tion results indicate that these approximations are valid. Further, the approximation
provides estimates of error sensitivity as a function of wavelength. The approxima-
tion is used to obtain bounds on allowable filter fabrication errors given maximum
acceptable changes in mean square AE},;, error. The experiments demonstrate that
the bounds thus obtained are valid. The experiments also indicate that the designed
filters are highly sensitive to fabrication errors. The fact that the CIE matching func-
tions display similar sensitivities to fabrication error implies that the sensitivity could

be characteristic of the scanning process.
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