CHAPTER 4

A Mathematical Method for Designing a Set of Colour

Scanning Filters

The goal of the colour scanning process has been defined in Chapter 3 as that of
obtaining the s-stimulus values VZf. In any multi-band image-recording problem of
this sort, physical filters need to be designed and manufactured. In many instances
the filters are to be chosen from a bank of existing filters. In other cases, the filters
are to be manufactured. In either situation, the design procedure should incorporate
the necessary constraints to obtain filters that are physically realizable, either from
a set of existing filters, or through a manufacturing process. The combined effect of
the optical path, the recording illuminant and the detector sensitivity, which must

also be taken into account, often complicates the design procedure.

This chapter formulates the design of a set of three or more colour scanning filters
as an optimization problem. The optimization criterion is the data-independent mea-
sure of goodness developed in Chapter 3. This criterion is different from those used
by other researchers (5, 6, 9, 41] in that it measures the joint performance of the set of
filters as a whole and not the performance of individual filters. Most of the literature
in the design of colour scanning filters reports optimization routines that minimize a
norm of the difference between each constructed filter and the corresponding vector
in {La;}3_, [5, 9, 41], or maximize the g-factor (defined by Neugebauer [22]) of the in-

dividual scanning filters [6]. The measure defined in [7] is the average of the g-factors
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of the individual filters and hence a measure of the individual filters. There has been
no reported research on the use of a measure of the entire set of colour scanning filters
as an optimization criterion.

In the case when the filters are to be chosen from a discrete set of filters, the
problem may be solved by an exhaustive search. When the filters are to be fabricated,
problems of physical realizability lead to a parametrized optimization problem which
may be solved using existing optimization algorithms. The method described in this
chapter has proved useful for colorimetric applications, as demonstrated in section
4.4. It can also be used for the design of filters for other multi-band image recording
problems, specifically for the design of filters with applications in satellite imagery.
The method proposed can be used for any scanning system for which the scanner
characteristic (defined in section 2.7.8 as the combined effect of the lamps, light path
and sensor characteristic) is known. Simulations and results from actual hardware

demonstrate the utility of the method.

This chapter is organized as follows. Section 1 presents a method of choosing the
‘best’ set of colour scanning filters from an existing set of colour filters like the Ko-
dak Wratten gelatin filters. Results from hardware implementations are presented.
Section 2 presents the motivation behind posing the filter design problem as one of
constrained optimization. Section 3 presents some ways of parametrizing the problem
of designing a ‘good’ set of colour scanning filters when the filters are to be fabri-
cated. Section 4 presents the implementation of the parametrizations of section 3
for particular scanner characteristics. The optimal values obtained, and the designed
and fabricated filters, are reported. Section 5 presents a method of trimming the
optimal filters of section 4 to get filters with optimal performance with respect to

the average square AEy,, error over a data set, and also with respect to the data-
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independent measure of Chapter 3. The average square AFE},, error over a data set
can be used as an optimization criterion only for trimming because the implemen-
tation is too computationally expensive without smooth, close-to-optimal filters to
start with, and because starting with smooth, close-to-optimal filters is one way of
ensuring smoothness. Section 6 presents the use of projection methods to solve the

optimization problem. Conclusions are presented in Section 7.

4.1 An Optimal Subset of a Discrete Set of Filters

The simplest formulation of the optimization problem occurs in the case when the
‘best’ set of 1 filters is to be chosen from a set of existing filters. Suppose the diagonal
matrix H (see section 2.7.8), representing the combined effect of the optical path,
the recording illuminant and the detector response, is known. Suppose the set S is
the set of existing filters from which the best subset M, of r filters is to be chosen.
Suppose M represents a subset of S, consisting of r filters. The matrix HM represents
the effective set of scanning filters. The data-independent measure of this system,
explicitly in terms of M, is, from equation (3.22):
Trace (V(VI'V)"'VTHM(MTHTHM)'MTHT)

V(V,MH) = o (41)

if the matrices HM and V are assumed full-rank. The above expression for the
measure may be optimized with respect to subsets of S, of size f, by an exhaustive
search taking the filters r at a time, each filter representing a separate scanning filter.
If n is the size of set S, such a search will involve "C, = ﬁlr—), evaluations of the
measure, where "C, represents the number of subsets of size r of a universal set of

size n.
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For example, given the set of Kodak Wratten filters, which are gelatin filters whose
transmissivities are known, one can evaluate the measure for all possible combinations
of r Wratten filters, given the matrices H and V. The set with the highest value of
the measure is the ‘best’ possible set of size r from the Wrattens for this particular
application. The size of the Wratten filter set is approximately 100. This implies that
the number of possible sets is 5%0;—! or approximately 1.6 x 10° to find the best set of

three filters. It is much more computationally expensive to find the best set of 4 filters

from the Wrattens, as this would involve computing the measure for approximately

4 x 10° filter sets.

Simulation results for an exhaustive search of the Wrattens to obtain the ‘best’
set of 3 filters for V. = A, ie. to determine the CIE tristimulus values under a
uniform illuminant, are tabulated below. An actual scanner characteristic, [lluminant
1, shown in Fig. 4.1, was used. The Wratten filter numbers for the optimal set and
a couple of other ‘good’ sets, the value of the measure, v(A, Mpy), and the average
AEL, error of the corrected measurements (see section 2.2 and equation 3.8) over a

set of Munsell chips, E, are tabulated in Table 4.1. Filter Set 1 was installed in the

Table 4.1: Optimal Subsets of the Wratten Filter Set

Filter Set | Wratten Filter Nos. | Measure v(A,Mpg)| E
1 23A, 48A, 52 0.9122 2.04
2 9, 23A, 48A 0.9114 1.91
3 9, 48A, 52 0.9028 2.11

scanner at the Imaging Concepts Laboratory, Eastman Kodak, Rochester, NY. The

scanning system was then used to scan the Munsell Chip Set. The resulting average
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SCANNER CHARACTERISTIC

400 450 500 550 600 650 700
WAVELENGTH IN NM.

Figure 4.1: Illuminant 1

AEp. error of the corrected data was 3.02. The discrepancy may be attributed to
several sources which are presently under investigation. The results obtained by the
optimization should be compared to an average AE; error of 4.5 obtained with the
previously installed set designed by using the standard g-factor [15].

In particular cases the search can be simplified and some options discarded at the
very beginning. In the above example, the Wrattens may be divided into three sets,
and the filters chosen one from each set. This ensures that, for example, a set of three
red filters is not considered in the search. Such assumptions result in reduction of the
complexity of the search algorithm, but are very case-specific. In general, though, an
exhaustive search where r << n will have é complexity O(n").

In addition to the above-mentioned case of choosing three filters from a given set

of filters, it is possible to construct a scanning filter by cascading more than one filter

106



from the given set of filters. The transmissivity of the resulting filter would be the

product of the transmissivities of the individual filters, recall equation (2.8):

m = aﬁr;-”, for some a, u; >0,
i=1
In an expression for a filter as the product of a number of existing filters, the density
of each filter, u;, may be treated as a variable. This makes the problem far more com-
plex, and an exhaustive search of all such possibilities is much more computationally
expensive. Reports exist in the literature of attempts to form scanning filters in such
a manner [5, 9, 41]. Again, these attempts use a different optimization criterion as

mentioned earlier.

4.2 An Unacceptable Solution to the Optimization Problem

Section 4.1 presents a method of choosing the best set of r scanning filters from an
existing filter bank. When the filters are not to be chosen from a filter bank but are
to be manufactured, there is much more freedom in the choice of filter characteristics,
and it is expected that the measure of the optimal set will, in general, be larger
than that of a set chosen from an existing filter bank. To take full advantage of
the filter-manufacturing process, though, considerable attention must be paid to the

limitations of the process of filter fabrication.

The expression for the data-independent measure in terms of the matrix M in
equation (4.1) provides an optimization criterion for the design of filters that are to
be manufactured. Notice that all matrices except the matrix M are known. The
dimension of M is N x r where r is the number of scanning filters and N is the num-

ber of samples of a visible spectrum between 400 nm and 700 nm. In the examples
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discussed here, N = 31. Without any other restrictions, the measure is a function
of rN parameters, each parameter being the transmissivity of a filter at a particular
wavelength. The filter design problem may be interpreted as an optimization prob-
lem where the goal is maximization of the measure with respect to each of the rN

parameters.

A simple and straightforward solution to the optimization problem is

m;(k) = m‘l,:((:)) i = 1,2, 3,....s; h(k)#0 (4.2)
where
_ max vi(k) _

is the normalization constant for the i** filter so that the maximum transmissivity
of each designed scanning filter is unity. Recall that h(k) represents the scanner
characteristic at the k" wavelength, and {v;}{_, represents the space to be spanned.
The set of optimal filters of equation (4.2) consists of r filters such that My = VA,
where A, is a diagonal matrix with diagonal values k;. The scanning system will
replicate the vectors v;.

For the scanner characteristic of Fig. 4.1, and V = A, the three scanning filters
defined by equation (4.2) are shown in Fig. 4.2. Notice that the scanner characteristic
is far from uniform, with a very large dynamic range, and that this is likely to present
problems in filter design. The filters designed according to equation (4.2) have a large
dynamic range (of the order of 10*), because of the large variation in values of h(k).
The large dynamic range is not by itself necessarily a problem, but the fact that
low values of the designed filters may be associated with high values of the scanner

characteristic could lead to problems. In particular, this leads to an ill-conditioned
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Figure 4.2: Filters for the Replication of the CIE Matching Functions with Scanner
Characteristic 1

problem and high susceptability to small errors in the fabrication process. Further,
smoothness of filter transmissivity curves is an important restriction in the filter
fabrication process, and Fig. 4.2 indicates that filters designed according to equation
(4.2) will not be easy to fabricate exactly. Another example of non-smooth filters of
the form of equation (4.2) is presented in Fig. 4.4, which are CIE replications with
another actual scanner characteristic, [lluminant 2, plotted in Fig. 4.3. This makes
it clear that each constructable filter does not possess N degrees of freedom and that
expressing the measure as a function of rN independent variables will not necessarily
result in optimal realizable filters. The above example implies that the optimization
problem should be formulated so that a non-smooth curve with a high dynamic range

is not an acceptable solution to the problem of filter design.

To see the effect of fabrication errors on the performance of the filters, consider
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SCANNER CHARACTERISTIC
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Figure 4.3: Illuminant 2
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Figure 4.4: Filters for the Replication of the CIE Matching Functions with Scanner
Characteristic 2
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a transmissivity less than 0.01 at the k" wavelength for a filter designed according
to equation (4.2). A fabrication error of 0.01 can result in zero transmissivity at the
corresponding point in the fabricated filter. The corresponding error in the effective
scanning filter Hm; at the & point is h(k)m;(k). This error is small if the corre-
sponding value of h(k) is small. If the fabrication error occurs at a wavelength where
the scanner characteristic does not have a low value, then the fabrication error results
in a considerably higher error in the resulting scanning system. For a quantitative
analysis, consider the following. Suppose that

Vio (kO)
h(ko)

m; (ko) = ki, < 0.01 for some iy and ko (4.4)

An error of 0.01 in the fabrication process results in a value of zero for my, (kg), which
in turn results in a value of zero for Hmy,(ko), which results in an error of k;,v;, in
the effective scanning filter Hm,, at wavelength \i,. A normalized value of this error

is

Ko vio (kO) _ viO (ko)
max - max
k ’fiovio(k) k Vio(k)

To obtain an expression for the normalized error implied by inequality (4.4), consider

the following. Equations (4.3) and (4.4) imply that

max vy (k). _; Vi, (ko)

<0.01
The above inequality implies that
max
Vh‘)(gfk‘i) <001 k" (Vﬁo(%)) < 0.01 nﬁmvi‘)(k)
° k h(k)
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which implies that

—_m;’;’(ko) < 0.01_Bko)
min
ko vig(k) k h(k)

The above inequality provides an upper bound on the normalized error in terms of

the dynamic range of the sensor characteristic:

max
v, (k0) k h(k)
AT <0.01——=
min
k Vio (k) k h(k)
For the scanning filters of Fig 4.2,
mazx
b Bk) 5144
min
k h(k)

which implies that normalized errors of approximately 13.14 are possible in the repli-
cations. As the defined normalized error cannot exceed unity, this implies that large

normalized errors are possible. For the scanning filters of Fig. 4.4,

max

k) sy
min
k h(k)

and a maximum normalized error of approximately 0.1484 can occur.

The above calculations indicate that replications made with scanner characteristic
2 are less likely than those made with characteristic 1 to present the problems of
amplification of fabrication error due to large dynamic range. The bound on the
dynamic range of these filters is also smaller than the bound on the range for the
filters designed using scanner characteristic 1. The large dynamic range is just one

reason for the inadequacy of the design method. Another reason is non-smooth filters
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resulting from non-smooth scanner characteristics. Equation (4.2) indicates that the
designed filters will be highly non-smooth if the scanner characteristic is non-smooth
because the CIE matching functions are fairly smooth. The effect of the non-smooth
nature of the scanner characteristic is enhanced by the division of the values of v; by
the scanner characteristic, especially when the scanner characteristic takes on small

values.

4.3 Parametrization of Filter Characteristics

One way of incorporating a manageable dynamic range and smoothness of the filters
into the optimization algorithm is by modelling each filter in terms of known, smooth,
non-negative mathematical functions. This section deals with the modelling of the
filters as single gaussians, as the sum of two gaussians, as raised cosines and sums of
raised cosines, and as exponential cosines. The modelling results in the parametriza-
tion of the filters in terms of the parameters defining the respective functions. The
total number of parameters is less than 5r in each case, resulting in tractable formu-

lations of the optimization problem and in physically realizable filters.

Parametrization of the filters implies parametrizing the measure as well. The
measure is a function of at most 5r variables. The functional form of the measure
in terms of the parameters is not simple, and it is not possible to find a closed-
form solution to the resulting optimization problem. Various existing optimization
algorithms may be used to find local points of extrema of the measure with respect
to the parameters. It is not, in general, possible to find global extrema for functions
such as the measure. However, it is possible to obtain a number of local points of

extrema and present the optimal one among these as the optimal point. In general,
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the local point of extremum obtained depends on the initial point.

4.3.1 Gaussian Filter Models

A gaussian function with mean u and standard deviation o is:

1 (z — w)?

po) = —oemp(— )

If each filter m; is modelled as a gaussian function of mean u; and standard deviation

o0; the normalized filter vectors m; are

2
m; (k) = exp(—(A’“—Q;?—‘fi) (4.5)
where )\, depends on the sampling of the spectra. Each filter is a function of 2
independent variables and the measure is a function of 2r independent variables. The
resulting ‘optimal’ filters will be gaussians and hence easier to fabricate. The results
for the single-gaussian filter model and the scanner characteristics in Figs. 4.1 and
4.3 are presented in Section 4.4. While the smaller number of parameters makes
finding the optimal values mathematically tractable, the resulting filters have limited
spectral shapes. Given the scanner characteristic, considerable flexibility in shape is
required for ‘good’ filters. The results demonstrate that the single-gaussian model
does not produce very good filters.

One way of allowing more freedom in filter design is to extend the single-gaussian
model to a sum-of-gaussians model. Each filter may be modelled as the weighted sum
of two gaussians. Each filter is then a function of 5 parameters (2 means, 2 variances
and 1 weighting factor). This results in vectors m; of the form

()\k - Mi1)2

. _ (A = pig)?
m;(k) = exp( 207 )

) + asexp(— 207

(4.6)
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The function v(Ap,Mpy) is now a function of 5r variables. Standard optimization
routines can provide values of the 5r parameters such that the measure is maximum,
or close to maximum. Thus, one can find an optimal set of filters for particular
scanner characteristics such that each filter is modelled as the sum of two gaussians.
Section 4.4 presents the results obtained for the scanner characteristics of Figs. 4.1

and 4.3.

4.3.2 Raised-Cosine Filter Models

One cycle of the raised cosine function with period T and phase ( is:

p(z,T,¢) = { (I + cos(F(z = Q)))/2 |v - ¢|<F

0 else

If each filter m; is modelled as one cycle of a raised cosine function of period 7; and

phase (;, the filter vectors are:

m) = {0 e EO -G ST

or,
mz(k) = P()\k, T;, Ci)
Each filter is a function of 2 variables and the measure is a function of 2r variables.

The filters may also be modelled as weighted sums of one cycle each of raised

cosines, so that
m;(k) = p(Ak, Tiay 1) + aip(Ae, Tiz, Gi2) (4.8)

Each filter is a function of 5 variables and the measure is a function of 5r variables.

Simulation results using raised-cosine filter models are presented in section 4.4.
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4.3.3 Exponential-Cosine Filter Model

Another filter model is

mi(k) = { (exp(aicos(Zw—)lk%i)) — exp(—a;))/ei |\ — (] S% (4.9)

0 else

where ¢; = exp(a;) — exp(—a;) is a normalizing constant for the i** filter. Each filter
is a function of 3 variables, and the measure a function of 3r variables. Simulation

results are presented in section 4.4.

In general, an increase in the number of parameters used to define the filters
should give better results. An increase in the number of parameters, does, in general,
increase computation time and also results in filters with more local maxima. In
some instances, an increase in model parameters does not improve the set of filters
substantially. To illustrate this, optimum sets with a sum-of-three-gaussians model

are presented in section 4.4.

4.4 Experimental Results

For the particular scanner characteristics of Figs. 4.1 and 4.3, the parametrizations
suggested in section 4.3 were implemented to obtain the ‘best’ set of colour scanning
filters. The viewing illuminant was assumed uniform, i.e. L = I. From the results in
this section it is clear that the filters obtained are very good. To test the performance
of the filters, the scanning process was simulated using a set of spectra of Munsell
chips. The average and maximum AFE;,; errors were calculated for corrected data

(see section 2.2 and equation(3.8)).
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4.4.1 Optimization Algorithm

For all parametrizations the MATLAB [43] function ‘fmins’ was used to find optimal
filters. This function is an implementation of the Nelder-Meade simplex algorithm.
The algorithm is iterative. Given a function of n variables to be optimized, the value
of the function is evaluated at selected n+1 points at each iteration, to decide the
direction to move in for the next estimate. The function “fmins’ is best for finding

minima of functions with five or fewer unknown parameters.

Very clearly, the measure does not have one global maximum, as, for example, the
filters in a different order will give a different point in parameter space but the same
value of the measure. It is also likely that the measure has many local maxima which
are not global maxima. This implies that a stopping point is a function of the starting
point and not necessarily a global extremum. To minimize this effect several different

initial points were used. The resulting filters gave varying but similar results.

4.4.2 Single-Gaussian Model

The parameters for the single-gaussian model of equation(4.5) were calculated for
the scanner characteristics shown in Figs. 4.1 and 4.3. The measure of the resulting
optimal set of filters, v, the means, p, 2 and u3, the standard deviations, oy, oy, and
03, and the average and maximum AFE},, errors E and E,,,, over the set of Munsell
chips for corrected estimates are tabulated in Table 4.2 for each case.

The designed filters for Illuminant 1 are plotted in Fig. 4.5. Barr Associates, a
filter manufacturer, provided an estimate of the closest filters they could manufacture
given the specifications for Illuminant 2 above. This closest filter set had a measure

of 0.9478, an average AFE[,, error of 0.86, and a maximum AFE;, error of 2.5. The
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Table 4.2: Parameters for Single Gaussian Model

Filter | [lluminant v Filter Filter Filter E |Enu
Set No. 1 No. 2 No. 3
1 1 0.9556 |y = 4383 |uy = 548.0|pus = 607.0[1.75| 9.16
o1 = 264 |oy = 376 |03 = 19.1
2 2 0.9485| 1 = 459.1 |y = 557.7\pus = 592.9(0.84 | 2.46
op = 220 |0y = 403 |o; = 35.8

Filter Transmissivities

400 450 500 550 600 650 700

Wavelength in nm.

Figure 4.5: Designed Filters for Single-Gaussian Model and Illuminant 1

designed filters for Illuminant 2 and the closest filters Barr Associates can manufacture

are shown as solid and dotted lines respectively in Figs. 4.6, 4.7 and 4.8.
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Filter Transmissivities
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Figure 4.6: Designed and Fabricated (Blue) Filter for Single-Gaussian Model and
luminant 2
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Figure 4.7: Designed and Fabricated (Green) Filter for Single-Gaussian Model and
[Nluminant 2
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Figure 4.8: Designed and Fabricated (Red) Filter for Single-Gaussian Model and
Nluminant 2
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4.4.3 Sum-of-Gaussian Model

The parameter values obtained for the sum-of-gaussian filter model of equation (4.6)

are tabulated in Table 4.3

Table 4.3: Parameters for Sum-of-Gaussian filter model

Filter | Illuminant v Filter Filter Filter E | Frz
Set No. 1 No. 2 No. 3
1 1 0.9928 | 111 = 442.7 |9y = 593.6 | u3; = 601.2 [0.46| 1.71

Jg11 = 24.6 091 = 14.7 031 = 11.2
iz = 428.2 | poe = 539.9 | uzs = 638.1
019 = 7.0 O99 = 29.0 039 = 49.4
ap = 0.3022|ay; = 0.5281 a3 = 0.3969
2 1 0.9832 |11y = 116.8 gy = 545.3 | g1 = 642.8 |1.25| 7.45
Jg11 = 7.1 091 = 0.6 031 = 57.2
p12 = 438.3 | pee = 551.3 | ugy = 602.1
O12 = 26.4 099 = 38.8 O3 = 10.4
ap = 1.1656 |ay = 0.0069 |3 = 2.2182
3 2 0.9698 [ 1117 = 461.6 |pg = 559.7 | a1 = 585.2 |0.75 | 3.28
011 23.4 091 = 7.6 Jg31 = 27.6
12 = 443.7 | pee = 549.3 | ugs = 622.0
J19 = 4.1 0929 = 43.8 039 = 25.5
ap = 0.4558|ay = 0.9552 | a3 = 0.5897

The designed filters of set 1 are plotted as solid lines and the filters of the set Barr
Associates are able to manufacture are plotted as dotted lines in Figs. 4.9, 4.10 and
4.11. The measure of the filter set Barr Associates can manufacture with respect to
the scanner it was designed for is 0.9900. The average AE,, error for the fabricated

set was 0.50. The maximum AFE},, error for the set was 1.95.

The designed filters of set 2 are plotted as solid lines and the filters of the set
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Figure 4.9: Designed and Fabricated (Blue) Filter for Double-Gaussian Model (Set
1) and Hluminant 1
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Figure 4.10: Designed and Fabricated (Green) Filter for Double-Gaussian Model (Set
1) and Hluminant 1
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Figure 4.11: Designed and Fabricated (Red) Filter for Double-Gaussian Model (Set
1) and Illuminant 1

Eastman Kodak is able to manufacture are plotted as dotted lines in Figs. 4.12, 4.13
and 4.14. The measure of the set that can be manufactured is 0.9769, the average

AFEpq error is 1.10, and the maximum AFE;, error is 6.94.

The two designs for scanner characteristic 1 were obtained from different initial
points for the optimization algorithm. The filters that can be manufactured from
both designs are sufficiently accurate as indicated by the errors in Table 4.3. Chapter
5 deals with the sensitivity of the data-independent measure and the mean square
AFELp error to fabrication errors, and an analysis of the change in these values due

to fabrication errors is presented there.
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Filter Transmissivities
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Wavelength in nm

Figure 4.12: Designed and Fabricated (Blue) Filter for Double-Gaussian Model (Set
2) and Illuminant 1
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Figure 4.13: Designed and Fabricated (Green) Filter for Double-Gaussian Model (Set
2) and Hluminant 1
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Figure 4.14: Designed and Fabricated (Red) Filter for Double-Gaussian Model (Set
2) and Illuminant 1
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The designed filters for Set 3 are plotted in fig 4.15. The effective scanning filters

Filter Transmissivities

400 450 560 550 600 650 700

Wavelength in nm.

Figure 4.15: Designed Scanning Filters for Sum-of-Gaussian Model and Illuminant 2

of Set 3 i.e. the combined effect of the designed Filter Set 3 and Illuminant 2 are
plotted in Fig. 4.16. These plots give an idea of what the combined effect of the
scanning filters is, and illustrate that the effective filter set need not be ‘close’ to the

CIE matching functions for a ‘good’ filter set.

4.4.4 Sum of Three Gaussians

Some experiments were performed to obtain the best sum-of-three-gaussians for the
two illuminants. Using the optimal results for sum-of-two-gaussians presented in the
previous section as intial estimates did not result in filters that were substantially

different from the sum-of-gaussian ones. These results are hence not presented here.
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Figure 4.16: Designed Effective Scanning Filters for Sum-of-Gaussian Model and
[luminant 2

Other initial points provided slightly higher values of the measure. For example,
starting with the initial estimate listed as Filter Set 1 in Table 4.4, the filter estimates
of Table 4.4 were obtained. The estimates are plotted in Fig. 4.17 and Fig. 4.18.
Note that the values of the measure are larger than the corresponding values of the
measure listed in Table 4.3 for the sum-of-gaussian model for either illuminant, and
that the values of E' and F,,,, are considerably smaller for Illuminant 1. The fact
that the AEp,;, errors are not perceptible implies that it is not worthwhile to increase
the number of parameters further. Also, the sum of a larger number of gaussians

could result in a multi-modal curve which might be difficult to fabricate.
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Figure 4.17: Designed Filters for Three-Gaussian Model and Illuminant 1
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Figure 4.18: Designed Filters for Three-Gaussian Model and Illuminant 2
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Table 4.4: Parameters for Sum-of-Three-Gaussian Filter model

Filter | Illuminant v Filter Filter Filter E | Erox
Set No. 1 No. 2 No. 3
1 Initial p11 = 400.0 |po; = 500.0 31 = 600.0
Estimate o1 = 20.0 091 = 20.0 o317 = 20.0
iy = 420.0 |pes = 520.0 |pz = 620.0
J12 = 20.0 099 = 20.0 039 = 20.0
13 = 440.0 | pe3 = 540.0 w33 = 640.0
o13 = 20.0 o953 = 20.0 o33 = 20.0
a2 = 1.0 Qg = 1.0 azs = 1.0
13 = 1.0 Qg3 = 1.0 Q33 = 1.0
P 1 0.9951 [py; = 4304 |pp; = 592.9 |ps = 626.7 023 1.19
o1 = 13.2 091 = 16.3 031 = 41.9
pi2 = 450.7 |pg2 = 538.3 p32 = 601.3
J12 = 36.2 092 = 27.8 039 = 10.9
M1z = 460.2 Moz = 994.3 M3z = 674.1
Jg13 = 12.6 O923 = 4.7 033 = 11.8
ap = 0.1898 |y = 0.5832 |a3, = 0.2570
Q13 = 0.5656 Qg3 = 0.4971 Q33 = 0.2371
3 2 09722 |y = —144.1|pgy = 5755 | s = 593.6 |0.73] 3.0
Jg11 = 33.0 091 = 43.8 031 = 17.1
iz = 441.1 |pgy = 624.8 M3z = 554.8
J19 = 8.9 O099 = 15.6 039 = 10.6
M1z = 466.2 Moz = 555.1 H33z = 608.3
J13 = 18.4 093 = 3.6 033 = 38.5
1 = 0.8158 Q9g = —0.2314 Q3 = 0.8429
13 = 1.4860 Qo3 = 1.3712 Q33 — 0.8846
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4.4.5 Single-Raised-Cosine Model

The parameters obtained for the single-raised-cosine model of equation (4.7) for Illu-

minants 1 and 2 are tabulated in Table 4.5. Also tabulated are the maximum AFE;,

error, Fy,.,, the average AFEp,;, error, E, and the measure of the optimal sets of filters.

The designed filters are plotted in Figs. 4.19 and 4.20 respectively.

Table 4.5: Parameters for the Single Raised-Cosine Filter Model

Filter | Illuminant v Filter Filter Filter E | Fne
Set No. 1 No. 2 No. 3
1 1 0.9415((; = 4373 |, = 5485 |(3 = 6084 |1.68]| 8.12
Ty, = 1374|Ty, = 181.1|T3 = 105.7
2 2 0.9445|(; = 460.2 |, = 551.9 |(s = 598.9|0.89| 2.40
Ty = 109.5|T, = 185.9|T; = 160.3

4.4.6 Sum-of-Raised-Cosine Model

The parameters obtained for the sum of raised-cosines model of equation (4.8) are

tabulated in Table 4.6, along with average and maximum AFE},, errors E and E,,,,

respectively. The filters are shown in Figs. 4.21 and 4.22 respectively.
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Figure 4.19: Designed Filters for Single-Raised-Cosine Model and Illuminant 1
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Figure 4.20: Designed Filters for Single-Raised-Cosine Model and Illuminant 2
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Table 4.6: Parameters for the Sum-of-Raised-Cosines Filter Model

INluminant v Filter Filter Filter E |Ena
No. 1 No. 2 No. 3
1 0.9887 Ty, = 1274 [Ty = 631 |T3 = 56.7 |0.53| 1.69
Cu = 4424  [(n = 594.0 | (3 = 601.2
T12 = 30.7 T22 = 17.0 T32 = 287.8
Cia = 4306 |Gy = 547.2 |G, = 659.1
a; = 0.3380 |ay = 0.6441 |5 = 0.4933
2 0.9607 |T1; = 98.7 [Ty, = 1189 [Ty, = 135.9 [0.48] 1.46
Ci1 = 461.8 |(y = 560.4 |(3; = 614.8
T12 = 54.5 TQQ = 92.3 T32 = 121.4
Ci2 = 465.1 |(p = 501.7 |3y = 577.1
ap = —0.3478 |y = 0.4349 | a3 = 0.9501
P

500
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550 600
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650 700

Figure 4.21: Designed Filters for Sum-of-Raised-Cosine Model and Illuminant 1
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4.4.7 Exponential-Cosine Model

The parameters obtained for the exponential-cosine model of equation (4.9) for Illu-
minants 1 and 2 are tabulated in Table 4.7. Also tabulated are the maximum AFEj,
error, I, the average AFEp,;, error, E, and the measure of the optimal sets of filters.

The designed filters are plotted in Figs. 4.23 and 4.24 respectively.

Table 4.7: Parameters for the Exponential Cosine Filter Model

Illuminant v Filter 1 Filter 2 Filter 3 E | Ee

1 0.9544| (3 = 4378 | (; = 541.9 | (3 = 606.4 |1.95|10.47
T, = 2553 | Ty, = 176.1 | T3 = 141.2
a; = 2.5936|ay; = 0.7777 a3 = 1.9117
2 0.9303| ¢; = 459.4 | (, = 566.9 | (3 = 603.8 [1.71| 7.24
T, = 2213 | Ty, = 233.7 | T3 = 167.7
a; = 2.2221|a; = 1.0725|a3 = 1.0357

4.4.8 Discussion of Results

The single-gaussian and the raised-cosine models give similar results. The maximum
AFEpq error for the best single-raised-cosine model is slightly lower than the corre-
sponding error for the single-gaussian model for Illuminant 1. The exponential-cosine
filters are worse in performance than both single-gaussian and single-raised-cosine as
indicated by both average and maximum AFp,, errors, in spite of the fact that the
exponential-cosine model involves more parameters (nine) than the other two models,
which involve six parameters. It may be noted that the slightly higher value for the
measure obtained for the exponential-cosine model and Illuminant 1 is not indicative

of the higher values of the AEy,;, errors as compared to the single-raised-cosine model
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Figure 4.23: Designed Filters for Exponential-Cosine Model and Illuminant 1
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Figure 4.24: Designed Filters for Exponential-Cosine Model and Illuminant 2
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for the same illuminant. The single-gaussian model provides the highest values of the
measure for both illuminants.

The sum-of-raised-cosines model and the sum-of-gaussians model both provide
similar results. The sum-of-raised-cosines model provides an imperceptible maximum
AFErpq error for Illuminant 2 which is not true of the sum-of-gaussians model. The
maximum AFE},, errors for the sum-of-gaussians model and the sum-of-raised-cosines
model are far smaller than the corresponding errors for the single-gaussian, single-
raised-cosine and exponential-cosine models (except the unusually high value of the
maximum AFEp,, error for Illuminant 2 and the sum-of-gaussian model), justifying

the increase in parameters from six and nine to fifteen.

The optimizations reported were performed with several initial points. The results
obtained with the different initial points varied somewhat in the parameters, and the
resulting optimal measure values were either clearly not global optima or within 5%
of one another. It is suggested that the optimization program should be run with a
number of initial points to allow for a higher probability of obtaining optimal results.
There are instances when a higher measure does not imply a lower AFE;, error. This
is not particularly surprising, and the small differences imply that it is not critical for
a coarse optimization. The next section presents a method by which filter sets with

optimal AFp,, values may be obtained.

4.5 The Jacobian and its Use in Trimming Optimal Results

The experimental results of section 4.4 indicate that filters with fairly high values of
the measure do produce reproductions with perceptible errors, as indicated by the

average and maximum A E,;, error over the Munsell chip set. As mentioned in section
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3.5.4, it is impractical to use the average square AE4, error over a data set as an
optimization criterion. Once a set of ‘optimal’ (with respect to the data-independent
measure of Chapter 3) filters are found, it may be feasible to ‘trim’ these filters using
the average square AFp,;, error as an optimization criterion. Such trimming is clearly
dependent on the data set.

Once smooth filters with fairly high values of the optimization criterion are ob-
tained, the method of steepest descent [19, pg. 285], may be used to trim the filters
and obtain smooth filters with lower average square AFEp,, error over a particular
data set. The resulting filters will not be parametrizable, in general. The method
of steepest descent with initial points consisting of smooth filter sets of fairly high
measure is an efficient way of imposing the smoothness criterion. This section deals
with the trimming of some of the filters designed in section 4.4 to produce smooth
filters with lower average square AFy,, errors over a particular data set. Filters are
also trimmed for one filter model to produce a filter set of optimum measure, v. This
experiment is performed to demonstrate how the measure can change due to trim-
ming with respect to the measure, and to compare such a change with a change in
AFE5, error due to trimming with respect to this error.

The matrices My, R and V will be assumed full rank. This simply means that
the effective scanning filters are linearly independent, that the columns of V are
linearly independent and that R is invertible. The assumption implies that ML RMy,
MZIMpy and VTV are invertible.

4.5.1 Notation

The notation followed is that of Magnus and Neudecker [21]. Given a scalar function

f of an m x n matrix X, the following m x m matrix will denote the operation of
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term-by-term differentiation:

of _ ,0f
X [ax,-j]

Thus the 5™ element of a%% is the partial derivative of the function f with respect
to the 5% element of X. In the specific case of a scalar function f(x) of a column

vector x, the following column vector will denote term-by-term differentiation:

o 2
ox  'ox;
Ifx = [x1,Xg, .. ,Xg| is a row vector, the row vector

of _ (of of of

Ix - a—Xl,aXZ, ....... ,axq

denotes term-by-term differentiation. Given a matrix with ¢ columns,

X [X1, X2, ceveenn X,
the vector of stacked columns,
X1
X2
vece(X) =
Xq

defines a vector representation of X. The Jacobian of a scalar function f of the vector

vec X is defined as

of
d(vecX)T

of
6Xz'j

Df(vec X) = = (vec| T (4.10)

Notice that the Jacobian in this case is a row vector, and that it is the transpose

of the gradient vector. If df represents the differential of f and dX = [dX;;] the
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differential of X, then [21]
df = TraceJ'dX < wecd = (Df(X))T (4.11)

and

df = Df(X)vec dX (4.12)

In the specific case of a scalar function f of a column vector x, the row vector

_ o _Jar]”
DIx) = 57 = [axi]
is defined as the Jacobian of f with respect to x. If dx = [dx;] represents the
differential of x, then [21]
df = (A))Tdx <=> A(x) = (Df(x))" (4.13)

With the above notation, one variation of the method of steepest descent for a scalar

function of a matrix X is [19, pg. 285]
’UGCXk_H = ’U@CXk — Osz(f)T(Xk) (414)

In the particular application of finding M such that the average AFEL4, error over a
data set (or data-independent measure v) is optimum, the average AF}4 error (or

data-independent measure v) is the scalar function of matrix M.

The following laws of matrix differentials are used in the next sections to obtain
the required differentials:

d(aX) = adX (4.15)
d(AX) = AdX

dXY) = XdY + dXY
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d(traceX) = trace dX
dX™) = - X"1(dX)X™!

dXT) = (@X)T

4.5.2 Calculation of the Jacobian for the Data-Independent Measure

It can be shown that (see Appendix, Theorem 8)

MEMy) "M% Py (I — Py, )HdM
d(v(Ap, My)) = L7ecc2MyMa) Mg’ v ) (4.16)

where d represents the differential. From equation (4.11), [21]

OH(I — PMH>P§MH<MHMH>‘1)}T (4.17)

D()(M) = {vec(

4.5.3 Calculation of the Jacobian for the Average AF;,, Error Over a

Given Data Set

Let t(f) = [z, y, 2|7 be the estimated CIE tristimulus values for the reflectance
signal f. Let F(£(f)) = [L, a, b]” be the transformed (estimated) tristimulus vector
in CIELab space. Let t(f) = [z}, yf, 2] be the actual CIE tristimulus values for
the reflectance signal f and F(t(f)) = [Lys, as, bf]T be the transformed (actual)
tristimulus vector in CIELab space. Let AEL.(f) be the AFEp, error for reflectance
spectrum f. Then, the average square AEy,;, error over a data set with n points is:

SeABL(E) _ Bel(L = L) + (a — af)* + (b — b))’
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where Y ¢ represents the sum over the data set. Further, the first differential of the

average square AE} ., error over a data set with n points is:

d(ZfAE%ab(f)) _ Ze2((L = Lp)dl + (a — af)da + (b — by)db]
d(ZfAE%ab(f)) _ ZeTrace2((L — Ly), (a — ay), (b — by)|dF(¥(F))
Let
c(f) = 2(L - Ly), (a — ag), (b — bp)]" (4.18)
Then,
d(Zf Afi%ab(f)) — TTacerCZ;(f)df(E(f)) (419)

If [Tn, Yn, 2|7 represents the white point, recall that (from section 1.1.2, equation

(1.4))
L = 116(L)3 — 16
Yn
€ )
= 500((—=— 1/3 7 \1/3
@ = 500(Z) - (L))
and
Y173 % \1/3
b = 200((= —
(Lyr - (S
This implies that
116 dy
dl = ———
3(y2y,) /3
500 dx 500 dy

da = -
a 3($2$n)1/3 3(y2yn)1/3
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and

200 dy 200 dz

db = 3(y2y,) /3 - 3(222,)1/3

which may be written in matrix notation as

0 116 0
A 500 " -
df(t(f)) = 3(@22n)1 /3 3(yly,)/® 0 dt(f)
0 200 —200
3(y2yn)l/3  3(222,)1/3
If
ey O 0
Qf) = 0 sgmom O (4.20)
0 0 SETE
3(222n) /
then,
dF(t(f)) = TQf)dt(f) (4.21)

where the matrix T is defined in section 1.1.2, equation (1.5). Differentiating the
expression for the corrected tristimulus estimate of equation (3.8) using the laws of

matrix differentiation in equations (4.15), gives
dt(f) = ATRAIMy(MERMy)"'MLf — (4.22)
ATRMy(MLRMy) "MERIMy(MERM ) ML f —
ATRMy(MERM ) {daMERMy (MERM ) IMLF +
ATRMy;(MERM ) tdMELf

Using equations (4.22), (4.21) and (4.19), and using TraceXYZ = TraceZXY to
obtain an expression of the form TraceCdMy + dM%LG gives

d( Y AE} L (f) ) =

n

%Tmce(M:’,;RMH)‘1M§ch‘I‘QATR(I — Mg(MLRMp) "ML R)dMy
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+ dM(I — RMy(MERMy) "' Mj)fc" TQATRMz(MERM ) ™!

Using TraceX” = TraceX produces the result:

d(Ef AEgab(f)) _

n

=2(f
Trace(MgRMH)”lel(%l)(I — My(MLRMp)'MELR)dMy  (4.23)

where

[

(f) = £T(F)TQATR + RAQ(E)Y c(f)f” (4.24)

From equations (4.11) and (4.23) and using the fact that dMy = HdM,

D Ef AE%ab(f)
n

— foeeH(T — RN MRV M) 2D, o )y

is the Jacobian of the average square AFEp,;, error over a given data set. The relevant

equation for the method of steepest descent is, from equation (4.14),

AE?  (f
= O[kDTZf nLab( )(Mk)

vecMyy1 = vecM

4.5.4 Experimental Results

The results of trimming the designed filters with respect to both the data-independent

measure and the mean square AF,, error are presented in this section.

Trimming with Respect to the Data-Independent Measure v

Examples of trimming with respect to the data-independent measure v are presented

in Fig 4.25 and in Fig. 4.26. The former represents the filters of Figs. 4.9-4.11
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trimmed with respect to the data-independent measure and is referred to as Set 1.
The latter represents the filters of Figs. 4.12-4.14 trimmed with respect to the data-
independent measure and is referred to as Set 2. A comparison of the errors before
and after trimming are presented in Table 4.8. In Table 4.8, the measure v(A, Mp) is
denoted v, the average AE 4, error E, the maximum AFE ., error F,,q., and the root
mean square AEy,, error RMS. The root mean square AFE,, error is presented here
to allow comparison with the trimming with respect to mean square AEpL,, error,

results of which are presented later.

Table 4.8: Comparison Between Errors Before and After Filter-Trimming With Re-
spect to Measure v

Filter Model Before Trimming After Trimming

v E |Ene |[RMS| v E | B | RMS
Sum-of-Gaussian(Set 1) [ 0.9928 |1 0.46 | 1.71 | 0.60 [ 0.9994 |0.28| 1.23 | 0.38
Sum-of-Gaussian(Set 2)|0.9832|1.25| 7.46 | 1.89 {0.9988|0.51 | 3.38 | 0.79
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Figure 4.25: Trimmed Filters (Data-Independent Measure) for Sum-of-Gaussian
Model and Illuminant 1
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Figure 4.26: Trimmed Filters (Data-Independent Measure) for Sum-of-Gaussian
Model and Illuminant 1
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Trimming with Respect to Mean Square AFE;,, Error

The Jacobian of the average square AFEp,; error over the Munsell chip set was used
to trim the designed filters shown in Figs. 4.5; 4.6-4.8; 4.9-4.11; and 4.23. The results
of trimming the single-gaussian design of Fig. 4.5 are shown in Figs. 4.27-4.29. The
results of trimming the single-gaussian design of Figs 4.6-4.8 are shown in Fig. 4.30.
The results of trimming the sum-of-gaussian filters of Figs. 4.9-4.11 are shown in Fig.
4.31. The results of trimming the exponential-cosine filters of Fig 4.23 are shown in

Figs. 4.32-4.34.

Filter Transmissivities

400 450 500 550 600 650 ) 760

Wavelength in nm.

Figure 4.27: Trimmed Blue Filter (Mean Square AFE},, Error) for Single-Gaussian
Model and Illuminant 1

Table 4.9 lists the different error measures before and after trimming. It is clear
that trimming improves the general characteristics of the filter set. The single-

gaussian filter sets and the exponential-cosine set have shown more improvement
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Figure 4.28: Trimmed Green Filter (Mean Square AE},, Error) for Single-Gaussian
Model and Illuminant 1
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Figure 4.29: Trimmed Red Filter (Mean Square AFEL,, Error) for Single-Gaussian
Model and Illuminant 1
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Figure 4.30: Trimmed Filters (Mean Square AEp,, Error) for Single-Gaussian Model
and Illuminant 2
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Figure 4.31: Trimmed Filters (Mean Square AFEp,, Error) for Sum-of-Gaussian Model
and Illuminant 1
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Filter Transmissivities
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Figure 4.32: Trimmed Blue Filter (Mean Square AFEp,;, Error) for Exponential Cosine
Model and Illuminant 1
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Figure 4.33: Trimmed Green Filter (Mean Square AFEp,, Error) for Exponential
Cosine Model and Illuminant 1
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Figure 4.34: Trimmed Red Filter (Mean Square AEy,;, Error) for Exponential Cosine
Model and Illuminant 1

than the sum-of-gaussian set. This is because the sum-of-gaussian set was a better
set initially. In Table 4.9, the measure v(A, Mp) is denoted v, the average AE}q;, er-
ror F/, the maximum AFEp error E,,,;, and the root mean square AF,, error RMS.
The root mean square error is used here because it is the mean square error that is the
optimization criterion for the trimming. The root mean square error should decrease
on trimming, and the amount it decreases by indicates the effect of trimming on the
original designs.

Note that the measure might decrease a little due to trimming, though the AE
error is expected to decrease. This is because the measure is data-independent and is
used to give an approximately optimum solution for the particular data set. Trimming
is highly data-dependent and provides a closer-to-optimal solution for the particular

data set. Notice that the AFq error measures for the Sum-of-Gaussian model in
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Table 4.9: Comparison Between Errors Before and After Filter-Trimming With Re-
spect to Mean Square AE,, Error

Filter Model Before Trimming After Trimming

v E | En |RMS| v E | Epee | RMS

Single-Gaussian (Illuminant 1) |0.9556 |1.75| 9.16 | 2.49 |0.9417[0.41 | 2.18 | 0.58

Single-Gaussian (Illuminant 2)|0.9485[0.84 | 2.46 | 1.09 | 0.9508 |0.27| 0.67 | 0.32

Sum-of-Gaussian 0.992810.46 | 1.71 | 0.60 [0.99180.12| 0.73 | 0.18

Exponential Cosine 0.954411.95|10.47| 2.85 |0.9282(0.71| 4.29 | 1.06

Table 4.9, which is Filter Set 1 in Table 4.8, are smaller for the trimming with respect
to the mean square AE},, error than they are for the trimming with respect to the
measure. This is as expected, and illustrates the advantage of trimming with respect

to the AFE 4, error.

4.6 Projection Methods

Projection methods have become popular ways of solving constrained optimization
problems. Set-theoretic problem formulation allows the use of a wide range of con-
straints which is not possible using classical methods. A set-theoretic formulation
of the problem of the design of colour scanning filters involves the definition of the
following sets in the space of all Nxr matrices

The set of all filter sets of ‘high enough’ measure:
C, = {Mlv(AL,My) > 1-6}

and the set of filter sets with smooth filters:
C, =

M = [my,..m]m;(j+1) + m;(j—1) — 2my(j) <§1<i<r2<j<N-1}
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The required solution is a filter set with high enough measure and consisting of
smooth individual filters. Hence, the required solution lies in the intersection of the
two constraint sets, and M € C, N C; The set C; is convex. On the other
hand, the set C, is not. A simple example demonstrates this. Suppose M € C,.
This implies that —M € C,, but 0.5(M + —M) = 0 ¢ C, This implies that
using set-theoretic methods to solve the problem will require the use of results from
the theory of sequential projections onto non-convex sets. The implementation of
sequential projections onto non-convex sets is beyond the scope of this dissertation.
As the problem has been solved using simpler methods in the preceding section, it is

not necessary.

4.7 Conclusions

The measure of goodness of a set of colour filters developed in Chapter 3 may be
used to define an optimization criterion for a scanning system. The modelling of
the filters as known, smooth, non-negative functions like the gaussian results in a
parametrization of the filter design problem. The problem is framed as a simple
optimization problem with respect to the parameters of the filter model. This problem
may be satisfactorily solved by standard minimization (or maximization) routines to
give filters with fairly high measures. Experimental results for two particular scanning
characteristics are presented. Hardware implementation indicates that this method
is very useful for designing filters for colorimetric applications. The gradient of the
average square AEpq;, error may be used to trim the optimal solutions to significantly

improve the parametrized solutions to produce smooth filters with low AFE 4, errors.
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