
The Whirlpool Secure Hash Function

WILLIAM STALLINGS

Abstract In this paper, we describe Whirlpool, which is a block-cipher-based
secure hash function. Whirlpool produces a hash code of 512 bits for an input
message of maximum length less than 2256 bits. The underlying block cipher,
based on the Advanced Encryption Standard (AES), takes a 512-bit key and oper-
ates on 512-bit blocks of plaintext. Whirlpool has been endorsed by NESSIE
(New European Schemes for Signatures, Integrity, and Encryption), which is a
European Union-sponsored effort to put forward a portfolio of strong crypto-
graphic primitives of various types.

Keywords advanced encryption standard, block cipher, hash function, sym-
metric cipher, Whirlpool

Introduction

In this paper, we examine the hash function Whirlpool [1]. Whirlpool was developed
by Vincent Rijmen, a Belgian who is co-inventor of Rijndael, adopted as the
Advanced Encryption Standard (AES); and by Paulo Barreto, a Brazilian crypto-
grapher. Whirlpool is one of only two hash functions endorsed by NESSIE (New
European Schemes for Signatures, Integrity, and Encryption) [13].1 The NESSIE
project is a European Union-sponsored effort to put forward a portfolio of strong
cryptographic primitives of various types, including block ciphers, symmetric
ciphers, hash functions, and message authentication codes.

Background

An essential element of most digital signature and message authentication schemes is
a hash function. A hash function accepts a variable-size message M as input and pro-
duces a fixed-size hash code HðMÞ, sometimes called a message digest, as output.
For a digital signature, a hash code is generated for a message, encrypted with the
sender’s private key, and sent with the message. The receiver computes a new hash
code for the incoming message, decrypts the hash code with the sender’s public key
and compares. If the message has been altered in transit, there will be a mismatch.

To be useful for message authentication and digital signature, a hash function
H must have the following properties:

Address correspondence to William Stallings, c=o Cryptologia, Department of Mathe-
matical Sciences, United States Military Academy, West Point NY 10996, USA. E-mail:
ws@shore.net

1The other endorsed scheme consists of three variants of SHA: SHA-256, SHA-384, and
SHA-512.

Cryptologia, 30:55–67, 2006
Copyright � Taylor & Francis Group, LLC
ISSN: 0161-1194 print
DOI: 10.1080/01611190500380090

55



1. H can be applied to a block of data of variable size.
2. H produces a fixed-length output.
3. HðxÞ is relatively easy to compute for any given x, making both hardware and

software implementations practical.
4. For any given value h, it is computationally infeasible to find x such that

H(x) ¼ h. This is sometimes referred to in the literature as the one-way property.
5. For any given block x, it is computationally infeasible to find y 6¼ x such that

HðyÞ ¼ HðxÞ. This is sometimes referred to as weak collision resistance.
6. It is computationally infeasible to find any pair ðx; yÞ such that HðxÞ ¼ HðyÞ.

This is sometimes referred to as strong collision resistance.

The general iterated hash structure proposed by Merkle [8] and Damgard [3] is
used in virtually all secure hash functions. The hash algorithm involves repeated use
of a compression function, f , which takes two inputs (an n-bit input from the previous
step, called the chaining variable, and a b-bit block) and produces an n-bit output. At
the start of hashing, the chaining variable has an initial value that is specified as part
of the algorithm. The final value of the chaining variable is the hash value. Often,
b > n; hence the term compression. The hash function can be summarized as follows:

CV0 ¼ IV ¼ initial n-bit value

CVi ¼ f ðCVi�1;Yi�1Þ; 1 � i � L

HðMÞ ¼ CVL

where the input to the hash function is a message M consisting of the blocks
Y0;Y1; . . . ;YL�1.

The motivation for this iterative structure stems from the observation by Merkle
[8] and Damgard [3] that if the compression function is collision resistant, then so is
the resultant iterated hash function. Therefore, the structure can be used to produce
a secure hash function to operate on a message of any length. The problem of design-
ing a secure hash function reduces to that of designing a collision-resistant com-
pression function that operates on inputs of some fixed size.

Most of the published proposals for hash functions fall into one of two cate-
gories: those based on the use of a block cipher for the compression function, and
those based on the use of a compression function specifically designed for the hash
function. In either case, it is difficult to design a hash function that is secure [5, 9, 10].

To appreciate this difficulty, it is worthwhile to summarize some recent history
of hash functions. MD4, developed by Ron Rivest, one of the designers of the RSA
public-key algorithm, was introduced in 1990 and became quite popular. However,
some weaknesses were discovered in MD4 and Rivest soon replaced it with a more
complex version, called MD5. Both MD4 and MD5 produce a 128-bit hash code.
Rivest conjectured that MD5 is as strong as possible for a 128-bit hash code; namely,
the difficulty of coming up with two messages having the same message digest is on
the order of 264 operations, whereas the difficulty of finding a message with a given
digest is on the order of 2128 operations. A series of increasingly sophisticated attacks
on MD4 and MD5 (e.g., [4], [21]), however, led RSA Laboratories, where Rivest
developed MD4 and MD5, to recommend phasing out these algorithms in favor
of the Secure Hash Algorithm (SHA) family [15].

SHA was developed by the National Institute of Standards and Technology
(NIST) and published as a federal information processing standard (FIPS 180) in

56 W. Stallings



1993. SHA has a hash length of 160 bits. Thus, from the point of view of brute-force
attack, it is stronger than MD5: The difficulty of finding a message with a given
digest using a brute-force attack is 2160. When weaknesses were discovered in
SHA, a revised version was issued as FIPS 180–1 in 1995 and is generally referred
to as SHA-1. SHA is based on the hash function MD4 and its design closely models
MD4. SHA-1 produces a hash value of 160 bits. In 2002, NIST produced a revised
version of the standard, FIPS 180–2, that defined three new versions of SHA, with
hash value lengths of 256, 384, and 512 bits, known as SHA-256, SHA-384, and
SHA-512. These new versions have the same underlying structure and use the same
types of modular arithmetic and logical binary operations as SHA-1. In 2005, NIST
announced the intention to phase out approval of SHA-1 and move to a reliance on
the other SHA versions by 2010. Shortly thereafter, a research team described an
attack in which two separate messages could be found that deliver the same SHA-1
hash using 269 operations, far fewer than the 280 operations previously thought
needed to find a collision with an SHA-1 hash [22]. This result should hasten the
transition to the other versions of SHA [16].

Given the difficulties encountered with this whole line of hash functions based
on essentially the same compression function model, it makes sense to investigate
the use of a block-cipher based hash function with a strong cipher as its base.

Preneel [14, 11] performed a systematic analysis of block-cipher-based hash func-
tions. In this study, the hash code length equals the cipher block length. Additional
security problems are introduced and the analysis is more difficult if the hash code length
exceeds the cipher block length. Preneel devised 64 possible permutations of the basic
model, based on which input served as the encryption key and which served as plaintext
and what input, if any, was combined, using XOR, with the ciphertext to produce the
intermediate hash code. Based on his analysis, he concluded that only schemes in which
the plaintext was combined with the ciphertext were secure. Such an arrangement makes
the compression function difficult to invert. Confirmation of these results are reported in
[2], but the authors pointed out the security problem of using an established block cipher
such as AES: The 128-bit hash code value resulting from the use of AES or another
scheme with the same block size may be inadequate for security.

The Whirlpool Approach

Whirlpool is based on the use of a block cipher for the compression function. There
has traditionally been little interest in the use of block-cipher-based hash functions
because of the demonstrated security vulnerabilities of the structure. The following
are potential drawbacks:

1. Block ciphers typically exhibit certain regularities or weaknesses. For example,
[10] demonstrates how to compromise many hash schemes based on properties
of the underlying block cipher.

2. Typically, block-cipher-based hash functions are significantly slower than hash func-
tions based on a compression function specifically designed for the hash function.

3. A principal measure of the strength of a hash function is the length of the hash
code in bits. For block-cipher-based hash codes, proposed designs have a hash
code length equal to either the cipher block length or twice the cipher block
length. Traditionally, cipher block length has been limited to 64 bits (e.g.,
DES, triple DES), resulting in a hash code of questionable strength.

The Whirlpool Secure Hash Function 57



Since the adoption of AES, however, there has been renewed interested in devel-
oping a secure hash function based on a strong block cipher and exhibiting good per-
formance. Whirlpool is a block-cipher-based hash function intended to provide
security and performance that is comparable, if not better, than that found in non-
block-cipher based hash functions, such as SHA. Whirlpool has the following features:

1. The hash code length is 512 bits, equaling the longest hash code available with SHA.
2. The overall structure of the hash function is one that has been shown to be resist-

ant to the usual attacks on block-cipher-based hash codes [2, 14].
3. The underlying block cipher is based on AES and is designed to provide for

implementation in both software and hardware that is both compact and exhibits
good performance.

The security goals for Whirlpool, as stated on their Web site (http:==paginas.

terra.com.br=informatica=paulobarreto=WhirlpoolPage.html), can be expressed as
follows. Assume we take as hash result the value of any n-bit substring of the full
Whirlpool output. The design of Whirlpool sets the following security goals:

. The expected workload of generating a collision is of the order of 2n=2 executions
of Whirlpool.

. Given an n-bit value, the expected workload of finding a message that hashes to
that value is of the order of 2n executions of Whirlpool.

. Given a message and its n-bit hash result, the expected workload of finding a
second message that hashes to the same value is of the order of 2n executions of
Whirlpool.

. It is infeasible to detect systematic correlations between any linear combination of
input bits and any linear combination of bits of the hash result, or to predict what
bits of the hash result will change value when certain input bits are flipped (this
means resistance against linear and differential attacks) [12].

The designers assert their confidence that these claims have been met with a con-
siderable safety margin. However, a formal proof of these claims has not been
achieved.

We begin with a discussion of the structure of the overall hash function, and
then examine the block cipher used as the basic building block.

Whirlpool Hash Structure

Whirlpool Logic

Given a message consisting of a sequence of blocks m1;m2; . . .;mt, the Whirlpool
hash function is expressed as follows:

H0 ¼ initial value.

Hi ¼ EðHi�1;miÞ �Hi�1 �mi ¼ intermediate value:

Ht ¼ hash code value:

The encryption key input for each iteration i is the intermediate hash Hi�1

value from the previous iteration, and the plaintext is the current message block mi.
The output for this iteration ðHiÞ consists of the bitwise XOR of the current message
block, the intermediate hash value from the previous iteration, and the output from W .

58 W. Stallings



The algorithm takes as input a message with a maximum length of less than
2256 bits and produces as output a 512-bit message digest. The input is processed
in 512-bit blocks. Figure 1 depicts the overall processing of a message to produce
a digest. The processing consists of the following steps:

. Step 1: Append padding bits. The message is padded so that its length in bits is an
odd multiple of 256. Padding is always added, even if the message is already of the
desired length. For example, if the message is 256� 3 ¼ 768 bits long, it is padded
by 512 bits to a length of 256� 5 ¼ 1;280 bits. Thus, the number of padding bits is
in the range of 1 to 512.
The padding consists of a single 1-bit followed by the necessary number of
0-bits.

. Step 2: Append length. A block of 256 bits is appended to the message. This block
is treated as an unsigned 256-bit integer (most significant byte first) and contains
the length in bits of the original message (before the padding).
The outcome of the first two steps yields a message that is an integer multiple of
512 bits in length. In Figure 1, the expanded message is represented as the
sequence of 512-bit blocks m1;m2; . . . ;mt, so that the total length of the expanded
message is t� 512 bits. These blocks are viewed externally as arrays of bytes by
sequentially grouping the bits in 8-bit chunks. However, internally, the hash state
Hi is viewed as an 8� 8 matrix of bytes. The transformation between the two is
explained subsequently.

. Step 3: Initialize hash matrix. An 8� 8 matrix of bytes is used to hold intermediate
and final results of the hash function. The matrix is initialized as consisting of all
0-bits.

. Step 4: Process message in 512-bit (64-byte) blocks. The heart of the algorithm is
the block cipher W .

Block Cipher W

Unlike virtually all other proposals for a block-cipher-based hash function, Whirl-
pool uses a block cipher that is specifically designed for use in the hash function

Figure 1. Message digest generation using Whirlpool. Note: triangular hatch marks key input.

The Whirlpool Secure Hash Function 59



and that is unlikely ever to be used as a standalone encryption function. The reason
for this is that the designers wanted to make use of a block cipher with the security
and efficiency of AES but with a hash length that provided a potential security equal
to SHA-512. The result is the block cipher W, which has a similar structure and uses
the same elementary functions as AES [20], but which uses a block size and a key size
of 512 bits. Table 1 compares AES and W.

Although W is similar to AES, it is not simply an extension. In fact, AES is one
version of the cipher Rijndael, which was submitted as a candidate for the AES. The
Rijndael proposal for AES defined a cipher in which the block length and the key
length can be independently specified to be 128, 192, or 256 bits. The AES specifi-
cation uses the same three key size alternatives but limits the block length to 128 bits.
AES operates on a state of 4� 4 bytes. Rijndael with block length 192 bits operates
on a state of 4� 6 bytes. Rijndael with block length 256 bits operates on a state of
4� 8 bytes. W operates on a state of 8� 8 bytes. The more the state representation
differs from a square, the slower the diffusion goes and the more rounds the cipher
needs. For a block length of 512 bits, the Whirlpool developers could have defined a
Rijndael operating on a state of 4� 16 bytes, but that cipher would have needed
many rounds and it would have been very slow [18].

As Table 1 indicates, W uses a row-oriented matrix whereas AES uses a
column-oriented matrix. There is no technical reason to prefer one orientation to
another, because one can easily construct an equivalent description of the same
cipher, exchanging rows with columns.

Overall Structure

Figure 2 shows the overall structure of W . The encryption algorithm takes a 512-bit
block of plaintext and a 512-bit key as input and produces a 512-bit block of cipher-
text as output. The encryption algorithm involves the use of four different functions,

Table 1. Comparison of Whirlpool block cipher W and AES

W AES

Block size (bits) 512 128
Key size (bits) 512 128, 192, or 256
Matrix orientation input is mapped row-wise Input is mapped column-wise
Number of rounds 10 10, 12, or 14
Key expansion W round function dedicated expansion algorithm
GFð28Þ polynomial x8 þ x4 þ x3 þ x2 þ 1 (011D) x8 þ x4 þ x3 þ xþ 1 (011B)
Origin of S-box recursive structure multiplicative inverse

in GFð28Þ plus
affine transformation

Origin of round
constants

successive entries of the S-box elements 2i of GFð28Þ

Diffusion layer right multiplication by
8� 8 circulant MDS matrix
(1, 1, 4, 1, 8, 5, 2, 9) -
mix rows

left multiplication by
4� 4 circulant
MDS matrix (2, 3, 1, 1) -
mix columns

Permutation shift columns shift rows

60 W. Stallings



or transformations: add key (AK), substitute bytes (SB), shift columns (SC), and mix
rows (MR), whose operations are explained subsequently. W consists of a single
application of AK followed by 10 rounds that involve all four functions. We can
concisely express the operation of a round r as a round function RF that is a com-
position of functions:

RFðKrÞ ¼ AK½Kr� �MR � SC � SB ð1Þ
where Kr is the round key matrix for round r. The overall algorithm, with key input
K, can be defined as follows:

WðKÞ ¼ O
10

r¼1
RFðKrÞ

� �
� AKðK0Þ

where the large circle indicates iteration of the composition function with index r
running from 1 through 10.

The plaintext input to W is a single 512-bit block. This block is treated as an
8� 8 square matrix of bytes, labeled CState. Figure 3 illustrates that the ordering
of bytes within a matrix is by row. So, for example, the first eight bytes of a 512-bit

Figure 2. Whirlpool cipher W.

The Whirlpool Secure Hash Function 61



plaintext input to the encryption cipher occupy the first row of the internal matrix
CState, the second eight bytes occupy the second row, and so on. The represen-
tation of the linear byte stream as a square matrix can be concisely expressed as
a mapping function l. For a linear byte array X with elements xk (0 � k � 63),
the corresponding matrix A with elements ai;j (0 � i; j � 7), we have the following
correspondence:

A ¼ lðXÞ , ai;j ¼ x8iþj :

Similarly, the 512-bit key is depicted as a square matrix KState of bytes. This key
is used as input to the initial AK function. The key is also expanded into a set of 11
round keys, as explained subsequently.

We now look at the individual functions that are part of W .

The Nonlinear Layer SB

The substitute byte function (SB) is a simple table lookup that provides a nonlinear
mapping. W defines a 16� 16 matrix of byte values, called an S-box (Table 2), that
contains a permutation of all possible 256 8-bit values. Each individual byte of
CState is mapped into a new byte in the following way: The leftmost 4 bits of the
byte are used as a row value and the rightmost 4 bits are used as a column value.
These row and column values serve as indexes into the S-box to select a unique 8-
bit output value. For example, the hexadecimal value2 {95} references row 9, column
5 of the S-box, which contains the value {BA}. Accordingly, the value {95} is
mapped into the value {BA}. The SB function can be expressed by the following cor-
respondence, for an input matrix A and an output matrix B:

B ¼ SBðAÞ , bi;j ¼ S½ai;j�; 0 � i; j � 7:

where S½x� refers to the mapping of input byte x into output byte S½x� by the S-box.

Figure 3. Whirlpool matrix structure.

2A hexadecimal number is indicated by enclosing it in curly brackets when this is needed
for clarity.

62 W. Stallings



The S-box can be generated by the structure of Figure 4. It consists of two non-linear
layers, each containing two 4� 4 S-boxes separated by a 4� 4 randomly generated box.
Each of the boxes maps a 4-bit input into a 4-bit output. The E box (Table 2b) is defined
as: EðuÞ ¼ Bu if u 6¼ F and EðFÞ ¼ 0, where arithmetic is performed over the finite field
GFð24Þ with the irreducible polynomial f ðxÞ ¼ x4 þ x þ1. The inverse function E�1 is
also used (Table 2c). The R box is a pseudorandomly generated permutation (Table 2d).

The SB function is designed to introduce nonlinearity into the algorithm. This
means that the SB function should exhibit no correlations between linear combina-
tions of input bits and linear combinations of output bits. In addition, differences
between sets of input bits should not propagate into similar differences among the
corresponding output bits; put another way, small input changes should cause large
output changes. These two properties help to make W resistant against linear and
differential cryptanalysis.

Table 2. Whirlpool S-box

(a) S-box

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 18 23 C6 E8 87 B8 01 4F 36 A6 D2 F5 79 6F 91 52
1 60 BC B 8E A3 0C 7B 35 1D E0 D7 C2 2E 4B FE 57
2 15 77 37 E5 9F F0 4A CA 58 C9 29 0A B1 A0 6B 85
3 BD 5D 10 F4 CB 3E 05 67 E4 27 41 8B A7 7D 95 C8
4 FB EE 7C 66 DD 17 47 9E CA 2D BF 07 AD 5A 83 33
5 63 02 AA 71 C8 19 49 C9 F2 E3 5B 88 9A 26 32 B0
6 E9 0F D5 80 BE CD 34 48 FF 7A 90 5F 20 68 1A AE
7 B4 54 93 22 64 F1 73 12 40 08 C3 EC DB A1 8D 3D
8 97 00 CF 2B 76 82 D6 1B B5 AF 6A 50 45 F3 30 EF
9 3F 55 A2 EA 65 BA 2F C0 DE 1C FD 4D 92 75 06 8A
A B2 E6 0E 1F 62 D4 A8 96 F9 C5 25 59 84 72 39 4C
B 5E 78 38 8C C1 A5 E2 61 B3 21 9C 1E 43 C7 FC 04
C 51 99 6D 0D FA DF 7E 24 3B AB CE 11 8F 4E B7 EB
D 3C 81 94 F7 B9 13 2C D3 E7 6E C4 03 56 44 7F A9
E 2A BB C1 53 DC 0B 9D 6C 31 74 F6 46 AC 89 14 E1
F 16 3A 69 09 70 B6 C0 ED CC 42 98 A4 28 5C F8 86

(b) E mini-box

u 0 1 2 3 4 5 6 7 8 9 A B C D E F
E(u) 1 B 9 C D 6 F 3 E 8 7 4 A 2 5 0

(c) E�1 mini-box

u 0 1 2 3 4 5 6 7 8 9 A B C D E F
E�1(u) F 0 D 7 B E 5 A 9 2 C 1 3 4 8 6

(d) R mini-box

u 0 1 2 3 4 5 6 7 8 9 A B C D E F
R(u) 7 C B D E 4 9 F 6 3 8 A 2 5 1 0

The Whirlpool Secure Hash Function 63



The Permutation Layer SC

The permutation layer (shift columns) causes a circular downward shift of each col-
umn of CState except the first column. For the second column, a 1-byte circular
downward shift is performed; for the third column, a 2-byte circular downward shift
is performed; and so on. The SC function can be expressed by the following corre-
spondence, for an input matrix A and an output matrix B:

B ¼ SCðAÞ , bi;j ¼ aði�jÞmod 8; j 0 � i; j � 7:

The shift column transformation is more substantial than it may first appear.
This is because CState is treated as an array of eight 8-byte rows. Thus, on encryp-
tion, the first 8 bytes of the plaintext are copied to the first row of CState, and so on.
A column shift moves an individual byte from one row to another, which is a linear
distance of a multiple of 8 bytes. Also note that the transformation ensures that the
8 bytes of one row are spread out to eight different rows.

The Diffusion Layer MR

Diffusion is a cryptographic property introduced by Claude Shannon [19]. By dif-
fusion, Shannon meant spreading out the influence of a single plaintext digit over
many ciphertext digits so as to hide the statistical structure of the plaintext. Gener-
ally, this also results in each output digit being affected by many input digits. The
diffusion layer (mix rows) achieves diffusion within each row individually. Each byte
of a row is mapped into a new value that is a function of all eight bytes in that row.

Figure 4. Implementation of Whirlpool CS-Box.

64 W. Stallings



The transformation can be defined by the matrix multiplication: B ¼ AC, where A is
the input matrix, B is the output matrix, and C is the transformation matrix:

C ¼

01 01 04 01 08 05 02 09
09 01 01 04 01 08 05 02
02 09 01 01 04 01 08 05
05 02 09 01 01 04 01 08
08 05 02 09 01 01 04 01
01 08 05 02 09 01 01 04
04 01 08 05 02 09 01 01
01 04 01 08 05 02 09 01

2
66666666664

3
77777777775

Each element in the product matrix is the sum of products of elements of one
row and one column. In this case, the individual additions and multiplications3

are performed in GFð28Þ with the irreducible polynomial f ðxÞ ¼ x8 þ x4þ
x3 þ x2 þ 1. As an example of the matrix multiplication involved, the first element
of the output matrix is:

b0;0 ¼ a0;0 � ð9 � a0;1Þ � ð2 � a0;2Þ � ð5 � a0;3Þ � ð8 � a0;4Þ � a0;5 � ð4 � a0;6Þ � a0;7:

Note that each row of C is constructed by means of a circular right shift of the
preceding row. C is designed to be a maximum distance separable (MDS) matrix. In
the field of error-correcting codes, an MDS code takes as input a fixed-length bit
string and produces an expanded output string such that there is the maximum
Hamming distance between pairs of output strings (Hamming distance ¼ number
of bit positions where bit values differ). With an MDS code, even multiple bit errors
result in a code that is closer to the correct value than to some other value. In the
context of block ciphers, a transformation matrix constructed using an MDS code
provides a high degree of diffusion [6]. The use of MDS codes to provide high dif-
fusion was first proposed in [17].

The matrix C is an MDS matrix that has as many 1-elements as possible (3 per
row), which leads to an efficient implementation.

The Add Key Layer AK

In the add key layer, the 512 bits of CState are bitwise XORed with the 512 bits of
the round key. The AK function can be expressed by the following correspondence,
for an input matrix A, an output matrix B, and a round key Ki:

B ¼ AK ½Ki�ðAÞ , bi;j ¼ ai;j � ki;j; 0 � i; j � 7:

Key Expansion for the Block Cipher W

As shown in Figure 2, key expansion is achieved by using the block cipher itself, with
a round constant serving as the round key for the expansion. The round constant for

3We use the symbol � to indicate multiplication over the finite field GFð28Þ and � to indi-
cate bitwise XOR, which corresponds to addition in GFð28Þ.

The Whirlpool Secure Hash Function 65



round r (1 � r � 10) is a matrix RC½r� in which only the first row is nonzero, and is
defined as follows:

rc½r�0;j ¼ S½8ðr� 1Þ þ j�; 0 � j � 7; 1 � r � 10

rc½r�i;j ¼ 0; 1 � i � 7; 0 � j � 7; 1 � r � 10

Each element of the first row is a mapping using the S-box. Thus, the first row of RC

[1] is:

S½0� S½1� S½2� S½3� S½4� S½5� S½6� S½7� ¼ 18 23 C6 E8 87 B8 01 4F

Using the round constants, the key schedule expands the 512-bit cipher key K
onto a sequence of round keys K0,K1,. . .,K10:

K0 ¼ K

Kr ¼ RF ½RC½r��ðKr�1Þ

where RF is the round function defined in Equation (1). Note that for the AK phase
of each round, only the first row of KState is altered.

Performance of Whirlpool

As yet, there has been little implementation experience with Whirlpool. The NIST
evaluation of Rijndael determined that it exhibited good performance (execution
speed) in both hardware and software, and it is well suited to restricted-space
(low memory) requirements. These criteria were important in the selection of
Rijndael for AES. Because Whirlpool uses the same functional building blocks as
AES and has the same structure, we can expect similar performance and space
characteristics.

One study that has been completed was reported in [7]. The authors compared
Whirlpool with a number of other secure hash functions, including all of the versions
of SHA. The authors developed multiple hardware implementations of each hash
function and concluded that, compared to SHA-512, Whirlpool requires more hard-
ware resources but performs much better in terms of throughput.

About the Author

William Stallings holds a Ph.D. from M.I.T. in Computer Science and a B.S. from
Notre Dame in electrical engineering. He has authored numerous books on security,
computer networking, and computer architecture. He has five times received the
award for the best Computer Science and Engineering textbook of the year from
the Textbook and Academic Authors Association. His most recent book is
Cryptography and Network Security, Fourth Edition (Prentice Hall, 2005). He created
and maintains the Computer Science Student Resource Site at WilliamStallings.
com=StudentSupport.html. This site provides documents and links on a variety of
subjects of general interest to computer science students (and professionals).

66 W. Stallings



References

1. Barreto, P. and V. Rijmen. 2003. The Whirlpool Hashing Function. Submitted to NES-
SIE, May.

2. Black, J., P. Rogaway, and T. Shrimpton. 2002. Black-Box Analysis of the Block-Cipher-
Based Hash Function Constructions from PGV, Proceedings, Advances in Cryptology—
CRYPTO 002, New York: Springer-Verlag, pp. 320–335.

3. Damgard, I. 1989. A Design Principle for Hash Functions, Proceedings, CRYPTO 089,
New York: Springer-Verlag, pp. 416–427.

4. Dobertin, H. 1996. The Status of MD5 After a Recent Attack, CryptoBytes, 2(2): 1–6.
5. Jueneman, R. 1987. Electronic Document Authentication, IEEE Network Magazine, 1(2):

17–23.
6. Junod, P. and S. Vaudenay. 2004. Perfect Diffusion Primitives for Block Ciphers: Building

Efficient MDS Matrices, Proceedings, Selected Areas in Cryptography 004. New York:
Springer-Verlag, pp. 84–89.

7. Kitsos, P. and O. Koufopaviou. 2004. Architecture and Hardware Implementation of the
Whirlpool Hash Function, IEEE Transactions on Consumer Electronics, 50 (1): 208–213.

8. Merkle, R. 1989. One-Way Hash Functions and DES, Proceedings, CRYPTO 089.
New York: Springer-Verlag, pp. 428–446.

9. Mitchell, C., F. Piper, and P. Wild. 1992. Digital Signatures. Simmons, G. ed, Contempor-
ary Cryptology: The Science of Information Integrity. Piscataway, NJ: IEEE Press.

10. Miyaguchi, S., K. Ohta, and M. Iwate. 1990. Confirmation that Some Hash Functions are
Not Collision Free, Proceedings, Advances in Cryptology—EUROCRYPT 090. New York:
Springer-Verlag, pp. 326–343.

11. Preneel, B. 1993. Cryptographic Hash Functions, Proceedings of the 3rd Symposium on
State and Progress of Research in Cryptography. New York: Springer-Verlag, pp. 161–171.

12. Preneel, B. 1993. Differential Cryptanalysis of Hash Functions Based on Block Ciphers,
ACM Conference on Computer and Communications Security, pp. 183–188.

13. Preneel, B. 2002. New European Schemes for Signature, Integrity and Encryption (NES-
SIE): A Status Report, Proceedings of the 5th International Workshop on Practice and
Theory in Public Key Cryptosystems: Public Key Cryptography. Lecture Notes In Computer
Science, New York: Springer-Verlag, 2274, pp. 297–309.

14. Preneel, B., R. Govaerta, and J. Vandewalle. 1993. Hash Functions Based on Block
Ciphers: A Synthetic Approach, Proceedings, Advances in Cryptology—CRYPTO 093.
New York: Springer-Verlag, pp. 368–378.

15. Randall, J. and M. Szydio. 2004. Collisions for SHA0, MD5, HAVAL, MD4, and
RIPEMD, but SHA1 Still Secure, RSA Laboratories Tech Notes, August 31, 2004
Bedford, MA: RSA Security Inc.

16. Randall, J. 2005. Hash Function Update Due to Potential Weakness Found in SHA-1,
RSA Laboratories Tech Notes, March 11, 2005 Bedford. MA: RSA Security Inc.

17. Rijmen, V. et al. 1996. The Cipher SHARK, Proceedings, Fast Software Encryption, FSE
096. New York: Springer-Verlag, pp. 99–111.

18. Rijmen, V. with Willia Stallings. Private communication September 9th, 2005.
19. Shannon, C. 1949. Communication Theory of Secrecy Systems, Bell Systems Technical

Journal, 28 (4): 656–715.
20. Stallings, W. 2002. The Advanced Encryption Standard, Cryptologia, 26 (3): 165–188.
21. Wang, X., D. Feng, and H. Yu. 2004. Collisions for Hash Functions: MD4, MD5,

HAVAL-128, and RIPEMD, Proceedings, Advances in Cryptology—CRYPTO 004.
New York: Springer-Verlag.

22. Wang, X., Y., Yin, and H. Yu. 2005. Finding Collisions in the Full SHA-1, Proceedings,
Advances in Cryptology—CRYPTO 005. New York: Springer-Verlag.

The Whirlpool Secure Hash Function 67






