The Shrinking Generator

Don Coppersmith Hugo Krawczyk Yishay Mansour

IBM T.J. Watson Research Center
Yorktown Heights, NY 10598

Abstract. We present a new construction of a pseudorandom generator
based on a simple combination of two LFSRs. The construction has at-
tractive properties as simplicity (conceptual and implementation-wise),
scalability (hardware and security), proven minimal security conditions
(exponential period, exponential linear complexity, good statistical prop-
erties), and resistance to known attacks. The construction is suitable for
practical implementation of efficient stream cipher cryptosystems.

1 Introduction

We present a new construction of a pseudorandom generator that uses as ba-
sic modules a pair of LFSRs. The inherent simplicity of LFSRs, the ease and
efficiency of implementation, some good statistical properties of the LFSR se-
quences, and the algebraic theory underlying these devices turn them into natu-
ral candidates for use in the construction of pseudorandom generators, especially,
targeted to the implementation of efficient stream cipher cryptosystems. Indeed,
many such constructions were proposed in the literature. (See Rueppel’s compre-
hensive survey on LFSR-based constructions of pseudorandom generators and
related analysis tools [18]). On the other hand, some of the attractive properties
listed above are also the reason for the failure of many of these constructions
to meet a good cryptographic strength. In particular, the inherent linearity of
LFSRs and the algebraic structure are many times the basis for breaking these
systems.

Nevertheless, due to their technological advantages for simple hardware im-
plementation of fast cryptosystems, LFSRs are still studied (and used!) as basic
modules for these systems. In particular, the increasing speeds of transmitted
information and the simple methods for LFSR parallelization and pipelining in-
dicate that this interest is plausible to persist in the (visible) future. In addition,
there is no reason to believe that good and simple constructions are impossible.

This paper presents a construction which is attractive in the sense that it
is very simple (conceptually and implementation-wise) and passes the minimal
tests that such constructions require to be worth being considered. We can prove
that both the period and linear complexity of the resultant sequences is exponen-
tial in the LFSR’s length, and that these sequences have some nice distributional
statistics (measured in a rigorous way). The construction appears to be free of
traditional weaknesses and has stood (up to now) several potential attacks. As
said, these are just minimal conditions for the construction to deserve the atten-
tion of the cryptographic community, not a “proof” of their ultimate strength.

Copyright (c) 1998, Springer-Verlag

23

The practical strength of such a construction can be determined only after pub-
lic scrutiny. (A desirable goal is to have a real proof of the strength of such a
system - i.e., a proof of the unpredictability by efficient means of the generated
sequences. Unfortunately, such a proof is not known for any efficient pseudo-
random generator and, moreover, such a proof will require a breakthrough in
complexity theory. On the other hand, the theoretically well-founded approach
of relating the strength of a pseudorandom generator to the hardness of generic
or specific problems [4, 20] has led to a beautiful theory and constructions but
these are still too impractical for many real-world applications).

1.1 The Construction

Our construction uses two sources of pseudorandom bits to create a third source
of pseudorandom bits of (potentially) better quality than the original sources.
Here quality stands for the difficulty of predicting the pseudorandom sequence.
(In general, through this paper, we use the notion of pseudorandomness and
predictability in a rather informal way, although we rigorously analyze and prove
some of the random-like properties of the resultant sequences). The sequence we
build is a subsequence from the first source where the subsequence elements
are chosen according to the positions of ‘1’ bits in the second source. In other
words, let ag,a;,... denote the first sequence and so,s1,... the second one.
We construct a third sequence 2, 21, ... which includes those bits a; for which
the corresponding s; is ‘1’. Other bits from the first sequence are discarded.
(Therefore, the resultant sequence is a “shrunken” version of the first one).
Formally, for all ¥ = 0,1,..., zx = ai,, where 7y is the position of the k-th ‘1’
in the sequence sy, s1,.... We call the resultant pseudorandom generator, the
shrinking generator (SG) .

This generic idea can be applied to any pair of pseudorandom sources. Here
we analyze the construction where the two sources are generated using Linear
Feedback Shift Registers (LFSR). LFSRs are very well known structures con-
sisting of a shift register controlled by a clock, which at each clock pulse outputs
its most significant bit, shifts its contents in the most significant direction and
inputs a bit to its less significant position. This feedback bit is computed as a
linear combination (over GF(2)) of the bits in the shift register. This linear com-
bination can be fixed (e.g. wired in a hardware implementation) or variable. In
the latter case, the linear combination (or connections) is defined by a binary
vector of the length of the LFSR. (In a hardware implementation this is achieved
using, in addition to the shift register, a programmable control register which
determines the shift register cells that are connected to the XOR circuit).

We denote by A the first LFSR in our construction, and by S (for Selector)
the second one. |A| and |S| denote their lengths and the sequences they produce
(after fixing the connections and initial contents of the registers) are denoted
ap,a,... and sg,si,..., respectively. We also refer to these sequences as A-
sequence and S-sequence. Finally the resultant shrunken sequence is denoted by

20,21,..., and called the Z-sequence.
Copyright (c) 1998, Springer-Verlag

24

This construction is well defined for both fixed and variable connection LF-
SRs. In general, we recommend the use of variable connections both for security
and flexibility. This issue is discussed throughout this paper in the appropriate
places. Let us mention that in the case of a fixed connection implementation
only the seeds (i.e., the initial contents of the shift registers) for the LFSRs A
and S constitute the secret key for the pseudorandom generator (or the encryp-
tion/decryption key, when used as a stream cipher). If variable (programmable)
connections are used then the value of these connections is also part of the key.

1.2 Properties

We analyze some of the properties of the resultant LFSR-based shrinking gener-
ator. We show that the period of the Z -sequences is exponential in both |A| and
|S|, and that its linear complexity is exponential in |S|. The linear complexity
of a sequence is the length of the shortest LFSR that generates that sequence
(or equivalently, the shortest recursive linear dependence over GF(2) satisfied by
the sequence bits). The importance of this property is that sequences with low
linear complexity are easily predictable (see section 2) and constructions based
on LFSRs tend to preserve much of the linearity inherent to LFSRs. The above
properties equally hold for fixed or variable connections. On the other hand, our
statistical analysis of these sequences takes into account variable connections
(chosen with uniform probability over the set of primitive connections'). We
show that the space of resultant sequences has some of the necessary statistical
properties for a pseudorandom generator: low correlation between the sequence
bits, normalized appearance of 0’s and I’s, and balanced distribution of subpat-
terns. Our statistical analysis uses Fourier analysis and e-biased distributions
as the main tools. The period and linear complexity bounds are proven mainly
through algebraic techniques.

We stress, again, that all these properties are only necessary (but far from
sufficient) conditions on the cryptographic strength of the pseudorandom gener-
ator. They just show that the elemental goals for an LFSR-based construction
are achieved, namely, the destruction of the linearity while preserving the good
statistical properties.

In section 4 we present some attacks and analyze their effect on our con-
struction. These attacks work in time exponential in the length of register S,
and indicate an effective key length bound of about half of the total key length.

Practical considerations regarding the implementation and practical use of
our generator are discussed in section 5. In particular, we show how the problem

! Connection vectors for LFSRs are closely related to polynomials over GF(2). Best
connections for LFSRs are those which correspond to primitive polynomials of the
same degree as the LFSR’s length. In that case, the sequence generated by the
LFSR has mazimal length, namely, a period of 2" — 1, where n is the length of the
register [9]. Throughout this paper we implicitly assume a construction of the SG
using primitive connections. Such connections are easy to find using probabilistic
methods, e.g. see [17]. '

Copyright (c) 1998, Springer-Verlag

25

of irregular rate of the output bits present in our basic scheme can be solved at
a moderate cost in hardware implementation.

Finally, in section 6 we discuss some existing alternative constructions and
their relation to the shrinking generator.

2 Period and Linear Complexity

In this section we prove exponential bounds on the period and linear complexity
of sequences produced by the shrinking generator. In the case of the period this
bound is tight; for the linear complexity there is a gap by a factor of 2 between
the lower and upper bound.

The importance of a long period is to avoid the repetition of the sequence
after short period of times. An exponentially large linear complexity avoids one
of the more generic attacks on pseudorandom sequences and/or stream ciphers.
There is no need to even know the way a sequence is generated in order to
break it through its linear complexity. Any sequence of linear complexity £ can
be entirely reconstructed out of 2¢ known bits by using the Berlekamp-Massey
algorithm, which in time O(£?) finds the shortest linear dependency satisfied
by the sequence (a-priori knowledge of the value of £ is not necessary). See,
e.g. [3]. (On the other hand, high linear complexity by itself is far from being
an indication of the sequence unpredictability. It suffices to mention that the
sequence 00...001 has linear complexity as the length of the sequence).

Our results on the period and linear complexity of sequences generated with
the shrinking generator are stated in the next theorems.

Theorem 1. Let A and S form a shrinking generator Z. Denote by T4 , Ts,
the periods of the A- and S- sequences respectively. If

— A and S are mazimal length (i.e. have primitive connections)

— (Ta,Ts) =1
then the shrunken sequence Z has period T4 - 25171 = (2141 — 1) . 2lSl-1,

Note: S must not be of maximal length. In the general case the period of the
Z-sequence is Ty -Ws, where W is the number of 1’s in a full period of S. If both
A and S are of maximal length then the condition (T4,Ts) = 1 is equivalent
to (JAl,|S]) = 1. For the next theorem S may also not be a maximal length
sequence but we do need that Wgs be a power of 2.

Theorem 2. Under the conditions of Theorem 1, the shrunken sequence Z has
linear complezity LC, where |A| - 21512 < LC < |4|- 215171

In the following proofs of theorems 1 and 2 we use some well-nown algebraic
facts about sequences produced by LFSRs. These properties can be found in
many textbooks (e.g. [9, 14]).

Notation: For the sake of readiness we use the following notation through these

.) sa the A_cennence ef1) t - z(1) the shrunken
proofs: a(¢) denot S the Asagmence sli) he S-sequence, and z(1)

26

sequence Z. By k; we denote the position of the i-th ‘1’ in the S sequence. In
other words, Vi, z(i) = a(k;). We denote by W the number of 1’s in a full period
of S. For a maximal length sequence § this number is 2/51-1,

Proof of Theorem 1:

Assumption: For simplicity of the proof we assume

S| S T (ice. |A| > log|S]). (1)

The following fact is immediate from the definition of the shrunken sequence
Z. Fact 1: Advancing Wg elements in the sequence 2 results in advancing T’s
elements in the sequence a. Formally, 2(i + W) = a(k; + Ts).
In general, for all j = 0,1, ...,

Z(i +jW3) = a(k,- +jT3). (2)

Fact 2: Let k and %' be any pair of indices. If for all Jia(k+jTs) = a(k'+357Ts),
then T4 divides k — k' .
Proof: Because of the A-sequence being of maximal length and (T4, Ts) = 1
then the sequence a(k + jTs) , j = 0,1,..., is also maximal length and thus its
period is T4 . o
Denote by T the (minimal) period of the sequence z. Clearly, the sequence
z becomes periodic after T4 - Ws elements (since then both sequences ¢ and
s simultaneously complete a period). Therefore, T divides T4 - Wg . We now
proceed to show that T4 - Wg divides 7.
By definition of 7', for all ¢ | z(i) = z(i + T). In particular, for all i and 7s
z(i 4+ jWs) = 2(i + T + jWs). Using (2) we get, for all i and Jra(ki+jTs) =
a(kiy1 + jTs). Using Fact 2, we have

Vi, TA divides k,’+T - k,’. (3)

Next step is to show, that (3) is possible only if Ws divides T. We reformulate
(3) as:
Vi, 355 kivr = ki + T4 (4)

Putting ¢ + 1 instead of 7 in (4) we get
kiv1+1 = kiy1 + jis1Ta (5)
Subtracting (4) from (5) we get:
Vi, kirry1 = kivr = kip1 — ki + (Jig1 — 5:)Ta. (6)

Notice that ki and kiypy; , as well as k; and k;.; , are the positions of
consecutive 1’s in the S-sequence. If j;1; — j; would be different than zero, it
would imply the existence of at least 74 consecutive zeros in the S-sequence,
which is impossible by assumption (1). Therefore we get Ji+1—Ji =0, and then
for all 4, kitr41 — kiyr = kiyy — k; .

The later implies that the subsequence of s starting at s(k;) is identical to the
subsequence starting at 8(ki+r). This means that T divides kivr — k; , or

Copyright (c) 1998, Springer-Verlag

27

equivalently, that the number of elements in the S-sequence between s(k;) and
s(ki+r) is a multiple of its period . But then the number of 1’s in this segment
is a multiple of Ws. On the other hand, the number of 1’s is exactly. T', thus
proving that Wg divides T
Let t be such that
T =tWs. (7)

We have, for all j:
a(ke) = 2(0) = z(jT) = 2(jtWs) = a(ko + jtTs). (8)

Last equality follows from (2). We got that for all j : a(ko) = a(ko +jtTs). This
implies that T4 divides tTs , and since (T4,Ts) = 1, then T4 divides £. From
(7) we get T4 - W divides T. a
The lower bound in the following proof of Theorem 2 is derived using the
proven exponential period through an elegant technique from Gunther [10].
Proof of Theorem 2:
Upper bound on the linear complexity: Let z denote the variable corre-
sponding to the sequence Z. To show an upper bound on the linear complexity
of the sequence Z it suffices to present a polynomial P(-) for which P(z) = 0 (i.e.
the coefficients of P represent a linear relation satisfied by the elements of Z).
The variable z%s denotes the sequence Z decimated by W, i.e. the sequence
z(jWs),j = 0,1,... Fact 1 in the proof of Theorem 1 states that this decimation,
written in terms of the A-sequence, results in a sequence of the form a(i + jTs).
Since we assume (Ts,T4) = 1, the latter is a maximal length sequence with same
linear complexity as the original A-sequence, and then it satisfies a polynomial
Q(-) of degree |A|. But then also the decimated sequence z*¥s satisfies the poly-
nomial, i.e. Q(z"5) = 0. Therefore, we have found a polynomial P(z) = Q(z"*)
of degree |A| - W, such that P(z) = 0, and then the linear complexity of the
Z-sequence is at most |A| - [Ws| = |4] - 2I51-1.
Lower bound on the linear complexity: Let M(z) denote the minimal poly-
nomial of z. Since the sequence Z satisfies @(z¥5) = 0, we have that M(z)

must divide Q(z"s). Since Ws = 2!5171, we have Q("s) = Q2" =
(Q(z))zlsl—l, and then M(z) must be of the form (Q(z))t for ¢t < 2I5I71. As-
sume t < 2/51-2. Then, M(z) divides (Q(z))zlsm. Since @(z) is an irreducible
polynomial of degree |A| it divides the polynomial 1 + zT4. Therefore, M(z)
divides (1 + zT4)2""'"™" = 1 4 zT42'™" but then the period of Z is at most

T, - 251=2 contradicting Theorem 1. Therefore, ¢ > 2/51-2 and the lower bound
follows. a

3 Statistical Properties

3.1 Background

In this subsection we bring the required background on the techniques used in
our analysis of the statistical properties of the shrinking generator; specifically,

the notions of Fourier Transform (for Boolean domains) and ¢-bias distributions.
Copyright (c) 1998, Springer-Verlag

28

Fourier Transform Boolean functions on 7 variables are considered as real
valued functions f: {0,1}" — {-1,1}. The set of all real functions on the cube
is a 2"—dimensional real vector space with an inner product defined by:

<gf>=2"" 3" f(z)g(z) = E(gf)

z€{0,1}n

(where E is expectation) and as usual the norm of a function is defined: ||f|| =

v< f, >, which is the Euclidean norm.
The basis of the cube Zg is defined as follows: For each subset S of {1,---,n},
define the function ysg:

Xs(xl,'--,zn) = {'H if Zies z; 1s even

-1 Y @i is odd
The following properties of this basis functions can be easily verified:

— For every A,B: xsxp = XAaB, where AAB is the symmetric difference of
A and B.

— The family {xs} for all $ ¢ {1---n} forms an orthonormal basis, i.e., if
A # B, then < x4,xp >= 0, and for every A, < xa,x4 >=1.

Any real valued function on the cube can be uniquely expressed as a linear
combination of the basis functions, i.e. Y5 CsXs, Where ¢g are real constants.
The Fourier transform of a function [is the expression of f as a linear combina-
tion of the xs’s. For a function fand § C {1,---,n}, the S’th Fourier coefficient
of S denoted by f(S) is what was previously called cg, ie, f=Y¢ f(S)xs.

Since the xs’s are an orthonormal basis, Fourier coefficients are found via:

For boolean f this specializes to:

f(8) = Pr[f(2) = @icszi] - Prlf(z) # Diesi]

where z = (2, z,,... yTn) is chosen uniformly at random.

e-biased Distributions We consider a distribution function as a function from
{0,1}" to the interval [0, 1]. Given a probability distribution g, then 3 _ u(z) = 1
and p(z) > 0. We can treat p as any other function, and consider its Fourier
coefficients. For example the uniform distribution is U (z) = 3w, which implies
that U(S) = 0, for § # 0, and U(0) = =

A distribution is e-bias if it is “close” to the uniform distribution in the
following sense.

Definition 3. A distribution g over {0, 1}™ is called an e-bias distribution if for
every subset § C {1...n}, [4(S)| < e2—".

Copyright (c) 1998, Springer-Verlag

29

The notion of ¢-bias distribution was introduced in [16], the main motivation
being the derandomization of randomized algorithms, and the construction of
small sample spaces that approximate the uniform distribution.

The following theorem from [1] connects LFSRs and e-bias distributions.

Theorem 4. ([1]) Consider the distribution D(m,n) of strings of length n out-
put by a LFSR A of length m, where the connections for A are chosen with
uniform probability among all primitive polynomials over GF(2) of degree m,
and the seed for A is chosen uniformly over all non-zero binary strings of length
m. Then, D(m,n) is an Z=L-bias distribution.

Definition 5. Let f be a function from {0,1}" to the real numbers. Define
Li(f) =Xs |7 (S)l-

The following lemma relates e-bias distributions and the norm Ly(f). (See
[13]).) The function f can be seen as a test for distinguishing the distribution p
from the uniform distribution. The lemma states an upper bound on the quality
of distinction, and therefore it is useful for tests of pseudorandomness.

Lemma6. ([13])
|Eu(f] — Eulf]l < el1(f)

where U is the uniform distribution and p is an £-bias distribution.

Proof. By simple arithmetic

Eulfl =Y f(s)i(S) = F®)a(®) + 3 F(S)AS).
S

S#0
Note that by definition f(8) = Ey[f]. Since 4(0) = 1/2",
|Ey[f] - Bulfll = Y F(S)A(S) < eLn(f)-
S#0

Here we used the fact that each ji(S) is bounded by €. O

L, norm Lemma 6 is useful if we can upper bound the value Li(f). In this
section we present some methods for bounding the L; norm of a function. The
following technical Lemma gives a tool for doing that.

Lemma?7. Let f and g be functions from {0,1}" to the real numbers. Then,
Li(fg) < L1(f)L1(g) and Li(f + g) < L1(f) + L1(9)-

For many simple functions we can show that the L, is small. Here are a few
examples.

Copyright (c) 1998, Springer-Verlag

30

Lemma 8.

= Let sum(z) = 37, i, then Ly(sum) = n.

— Let AND(z) =[], zi, then Li(AND) = 1.

— For B € {0,1,*}" we define a template templategz(z) = 1 iff z and B
agree on each 0 or 1 in B, i.e. for each b; # * then b; = ;. (For ezample
template,,,;,(10110) = 1 while template,,,,,(00110) = 0.) For any B €
{0,1,%}" then L (templatey) = 1.

Proof. For the sum, we can rewrite it as n/ 2437, x1i}(z)/2. Using the additivity
of the L; the claim follows.

Note that the AND function is either 0 or 1 (and not +1). We rewrite the
AND to be

ﬁ 1 - xgiy(2)
i=1 2
Note that Ll(l;x_g_}ﬂ) = 1, and the claim follows from the multiplicative prop-
erties of L; (see Lemma 7).
For templateg(z) the proof is the same as for the AND function. We rewrite
the function as,

template z(z) = (H -l-jzi‘}—(?l)(H w)

:b;=1 Jib;=0

and again we use the multiplicative property of the L;. o

3.2 Applications to LFSR with variable connections

In this subsection we show that LFSR with variable connections have many
properties that resemble random strings. In fact the only property that we use
is that LFSR where the connections are chosen at random generates an e-bias
distribution, with exponentially small £ (see Theorem 4).

Theorem9. Let A be an LFSR where the connections for A are chosen with
uniform probability among all primitive polynomials of degree m over GF (2).
Let X be the sum of n different bits 1y,...,4, in the A-sequence (we assume
thati; < 2™ — 1), Let Y = D1 i where y; are i.i.d. {0,1}-random variables
and Probly; = 1] = 1/2. Then, the expected value bof X is at most ;—,,2, The
difference between the variance of X and Y is bounded by E%mL"z Furthermore,
|E[X*) - BlYH)| < 2.

Proof. By definition X = sum(a;,,...,a;). By Lemma 8, L1(X) = n. Also,
Li(X?) < n? and L, (X*) < n*. The theorem follows from Theorem 4 and
Lemma 6. O

The following theorem applies the ideas of a general template to an LFSR
sequence and shows that the probability that the template appears is close to
the probability it appears in a random string.

Copyright (c) 1998, Springer-Verlag

31

Theorem 10. Let A be an LFSR where the connections for A are chosen with
uniform probability among all primitive polynomials of degree m over GF (2).
Let X be the first n output bits of A and Y a random string of n bits. Let
B € {0,1,%}™ be a template. Then

|E[template 5(X)] — E[templateg(Y)]| < -2%

Proof. By Lemma 8, we have that L, (templateg) = 1. By Theorem 4 the string
X is an e-bias distribution, with € < 5%. The theorem follows from Lemma 6.
O

When we will consider the selector register S of the shrinking generator it
would be important to argue how many bits we should consider in order to
generate k output bits. The following theorem shows that the expected number

is O(k).

Theorem 11. Let S be an LFSR where the connections for S are chosen with
uniform probability among all primitive polynomials of degree m over GF(2). Let
11(S) be the location of the kth 1 bit in S, then the ezpectation

Es[ix(S)] = O(k).

The proof of the above theorem will be given in the final version.
Remark: Note that all the proofs in this subsection were based only on the
¢-bias properties, and therefore would hold for any e-bias distribution.

3.3 Applications to the Shrinking Generator

In this subsection we apply the results in the previous subsection to the shrinking
generator. Basically we show that the good random-like properties that existed in
LFSR with variable connection remain in the shrinking generator. (Clearly, the
shrinking generator has other essential properties not present in LFSR sequences,
e.g. the exponential linear complexity.)

The following is a simple corollary of theorem 9, which states that the mo-
ments of the output of the shrinking generator are very close to the moments of
a random string.

Corollary 12. Let Z be a sequence generated by a shrinking generator with reg-
isters A and S. Let X be the sum of consecutive n bits in the Z-sequence (we
assume that n|S| < 2141). Let Y = Y0 | y; where y; are i.i.d. {0,1}-random
varzables and Prob[y, = 1] = 1/2. Then, the ezpected value of |X| is at most

—|—|- The difference between the vanance of X andY is bounded by —z-f‘}r- Fur-
thermore, |E[X*] - E[Y*]| < 3%

Proof. Fix a specific S-sequence. The consecutive n bits in Z were generated by

some n non consecutive different bits in the A-sequence, denote their indeces in

this sequence by i1,...,in. Since n|S| < 24|, we are in the same period of A4,
Copyright (c) 1998, Springer-Verlag

32

ie. 3; < 2M41 — 1. Since X is the sum of those bits, the corollary follows from
Theorem 9. O

The following theorem shows that each template is distributed similarly in
the output of the shrinking generator and a random string.

Theorem 13. Let Z be a sequence generated by a shrinking generator with reg-
isters A and S. Let X be the first n bits in Z and Y be a random string of n
bits. Let B € {0,1,*}" be a template. Then

|E[template 5(Z)] — Eltemplate 5(Y)]| = O(-2I—7Z-I-).

Proof. The bits of X come from the first in(S) bits of A, where i,,(§) is the index
of the nth ‘1’ bit in the S-sequence. Given S and B we can create a, template
Bs of size i,(S) for A (we simply put * in any location that § is 0, and copy B
in the locations where § is 1).

Note that template 5(X) = templateg_(A), once we fix S. Therefore it is
Sufficient to bound

Z Prob[S] IEA[templateBs (A)] — Ey[templatez(Y)]|.
5

By Theorem 10 the difference between the expectation is bounded by i, (S5)/2/4l.
Therefore,

Z Prob[S]|E[templatez_(A)] - Eltemplatez(Y)]| <
S

1n(S) Es[in(S
< proisfs) - BelafS]_on)

The last identity follows from Theorem 11. o

We now show some interesting applications of the above theorem. First we
Consider correlation between pairs of output bits. The correlation between two
bit positions is the difference (in absolute value) between the probability that
the two bits are equal and the probability that they differ.

Corollary 14. Let Z be a sequence generated by a shrinking generator with reg-
tsters A and S. Let X1, X, be two bits in the Z -sequence that are at distance £.
The correlation between X1 and X, is bounded by 0(5,‘1-[)

£

Proof. Simply use the four templates oy % -+ - ¥ 02, where 07,07 € {0,1}, and
Apply Theorem 13. o
The next corollary shows that the distribution of patterns is almost uniform.

Corollary 15. Let P be any binary string (pattern) of k bits and let X, be the

consecutive bits in the Z-sequence. The probability that Xi = P is in the range
2+ 0(zhy).

Note that this corollary is a special case of Theorem 13,

Copyright (c) 1998, Springer-Verlag

33

4 Attacks

In this section we present some attacks on the shrinking generator. These attacks
indicate an effective key length of the length of register S, or about twice this
length if the connections for the registers are part of the key (i.e. the connections
are variable and secret). More details on these and other attacks will be presented
in the final version of this paper.

4.1 Attacking through S

If the connections for both S and A are known then one can exhaustively search
for S’s seed; each such seed can be expanded to a prefix of the S-sequence using
the connection of S. Let n = |A| and suppose we expand the S-sequence until its
n-th ‘1’ is produced. From this prefix, and from knowledge of a corresponding
n-long prefix of the Z-sequence, one derives the value of n (non-consecutive)
bits in the A-sequence. Since A’s connections are known then A’s seed can be
recovered given these n bits by solving a system of linear equations (in general,
the dimension of this system is about n/2 since about half of the seed bits —
corresponding to 1’s in S - are known). Therefore the attack’s complexity is
exponential in |$| and polynomial in |A|, or more precisely, O(2!5! . |A[®).

If the connections of A are secret as we recommend, then the above procedure
does not work since in order to write the system of equations one needs to know
these connections. In this case the following attack avoids doing an exhaustive
search on A’s connections. This attack tries all possible seeds and connections
for S (assuming S’s connections are secret). Each pair of seed and connections
for S is used to expand the seed into a t-long prefix of the S-sequence, for
some integer t. With this prefix and sufficiently many bits (about ¢/2 bits) from
the Z-sequence (known plaintext) it is possible to generate the first ¢ bits of the
product sequence p; = a;-s;. (Notice that bits from the A-sequence corresponding
to positions of 1’s in the S-sequence are known using the known part of the Z-
sequence, and positions in which the s; = 0 are also (’s in the product sequence).
The interesting property of this product sequence is that its linear complexity
is at most |A| - [S| (see [18]) and therefore having t = 2 - |4] - |§] in the above
attack suffices to find the whole product sequence p;. The cost is quadratic in
|A|-|S|. This information together with the S-sequence, which is known, permits
deriving the full sequence Z;. Therefore the cost of the attack is the number of
seeds and connections to be tried for § (about 22/5/|S|) times the complexity
of recovering p; through its linear complexity (i.e. O((|A4|-]}S])?)). The necessary
amount of plaintext (i.e. bits from Z) is |A|-|S|. As before this attack indicates
an effective key length of at most twice the length of S, or about half of the total
key length.

4.2 Linear Complexity

Attacking the SG through its linear complexity requires the knowledge of an
exponential in |S| number of bits from the sequence, more precisely, 2!5/=2 - | A|

Copyright (c) 1998, Springer-Verlag

34

bits at least (see Theorem 2). On the other hand, the typically quadratic work
that takes to derive the sequence from a prefix of that length is not necessary
here. Having 2!5I. | A] consecutive bits from the sequence one can derive the whole
sequence. The proof of Theorem 1 indicates that a decimation of the Z-sequence
by factors of Wg = 2I5i-1 implies the decimation of the A-sequence by a factor
of Ts = 2I5| — 1. Therefore, from z(i+jWs), j =0,1,...,2- |A| - 1 one derives
z(i + jWs), for all j.

The complexity to break the whole sequence in this way is O(2!5!-|4|?) (even
if the connections are secret). In addition to this computational complexity this
attack requires 2/5/. |A| consecutive bits from the sequence. In any case, the
parameters for the SG should be chosen such that collecting this many number
of sequence bits be infeasible.

4.3 Other Attacks

The more traditional attacks on LFSR-based construction seem not to apply to
our construction due to its different nature. These attacks include the analysis
of boolean functions used for the combination of LFSR, outputs, the correlation
of generated bits relative to subcomponents in the system, and others (See [18]
for more details on these attacks and their applications).

It is worth mentioning that a typical weakness of LFSR-based systems is
encountered in implementations where the connection polynomials are chosen
to be very sparse (i.e. only a few coefficients chosen to be non-zero). In this
case, special attacks can be mounted taking advantage of this fact. We recom-
mend not to implement any of these systems in such a way, including ours. (In a
hardware implementation having sparse connections may be advantageous only
if the connections are fixed). On the other hand, most of these attacks will work
not only if the connection polynomial itself is sparse, but also if this polyno-
mial has a multiple of moderately large degree which is sparse. We can mount
special attacks on our system against such sparse multiples, although they are
all exponential in |S|. Again these attacks are more relevant to fixed connection
implementations, where heavy preprocessing can be done against the particular
connections, than in the case of variable connections.

5 Practical Considerations

5.1 Overcoming Irregular Output Rate

The way the SG is defined, bits are output at a rate that depends on the ap-
pearance of 1’s in § output. Therefore, this rate is on average 1 bit for each 2
pulses of the clock governing the LFSRs. This problem has two aspects. One is
the reduced throughput relative to the LFSRs speed, the other the irregularity
of the output. We show here that this apparently practical weaknesses can be
overcome at a moderate price in hardware implementation (on the other hand,
these “weaknesses” give most of the cryptographic strength to this construction).

Copyright (c) 1998, Springer-Verlag

35

We stress that this hardware cost is usually less than the required for adding
more LFSRs (even one) to the construction (as many constructions do).

In order to achieve an average of 1 bit per clock pulse, the LFSRs can be
easily speeded up with a very moderate cost in hardware: only the XOR tree is
to be replicated (this is true also if the connections are variable!). Notice that
whether this speed-up is necessary depends on the relation between the LFSR
clock speed and the required throughput from the SG (e.g., when used in a
stream cipher system this throughput depends on the data speed). If the clock
is fast enough this speed-up may be not necessary at all. On the other hand, for
fast data encryption a speedup mechanism may be necessary regardless of the
reduced throughput of our construction.

The problem of irregular output rate can be serious in real-time applications
where repeated delays are not acceptable. Fortunately, this problem can be also
solved at a moderate cost. The solution is to use a short buffer for the SG
output intended to gather bits from the SG output when they abound in order
to compensate for sections of the sequence where the rate output is reduced. In
[11] Markov analysis is applied to analyze the influence of such a buffer for the
output rate of the SG. It is shown that even with short buffers (e.g., 16 or 24 bits)
and with a speed of the LFSRs of above twice the necessary throughput from the
SG the probability to have a byte of pseudorandom bits not ready in time is very
small. (Examples are a probability of 5 - 103 for buffer of size 16 and speedup
factor of 9/4, or a probability of 3-10~7 for a buffer of size 24 and speedup factor
of 10/4. These probabilities decrease exponentially with increasing buffer sizes
and speedup factors). We note that in most implementations of stream ciphers,
some buffering naturally exist because of data coming in blocks of a given size
(e.g depending on the bus width). Therefore the above technique may add none
or very little bits to the buffer size. In many cases the above small probabilities of
delayed pseudorandom bits is affordable. In cases it is not, we propose filling the
missing bits with arbitrary values (e.g. alternate 0’s and 1’s) which can hardly
hurt with a miss probability of 3-10~7 or so. An alternative (but somewhat less
simple) heuristic solution is to periodically buffer some bits of the A-sequence
corresponding to 0’s in S in order to use them for filling the missing bits in case
of need.

5.2 Fixed vs. Variable Connections

Throughout the paper we have recommended several times the use of variable
connections for the LFSRs A and S. Although variable connection do not influ-
ence the period and linear complexity of the resultant sequences, their advantage
is apparent from the attacks discussed in section 4 (e.g., to.avoid attacks using
heavy precomputation for analyzing the particular connections, or the prepara-
tion of big preprocessing tables), and from the statistical analysis of section 3.
They may be also beneficial in standing future attacks to the system.

In addition to these security advantages, using variable connections provides
a large degree of flexibility to the construction (this is true for other LFSR-

LAY

based constructions copyright (&) 1598, Springer-veriag fogramming of these connections the

36

security of the sytem can be tuned down or up with no change in the hardware.
This is most important for systems where versions of different security levels use
the same physical device (e.g. cryptographic systems sold in different countries
with different levels of permitted security). Tuning down the security is done
through a virtual shortening of the registers by loading zeros into the most
significant locations of the connection registers.

We stress that while there is a cost in hardware associated with the con-
nection registers, this cost is compensated with the possible choice of shorter
registers when using variable connections, and by the above advantages. More-
over, having shorter registers implies having shorter seeds. The latter are the
part of the key which keeps changing with bit generation while the connections
are kept unchanged for long periods. Having shorter seeds help the key man-
agement and synchronization aspects (especially, when used in a stream cipher
cryptosystem).

6 Discussion and Related Work

LFSR-based constructions are encountered today in many practical systems, es-
pecially for implementation of stream ciphers. Because of their conceptual and
implementation simplicity they will keep being attractive; in particular, since
they are simple to parallelize and pipeline they are natural candidates for high
speed encryption, too. Moreover, LFSRs are widely used in non-cryptographic
applications (coding, CRCs, whitening, etc), and then it’s plausible to have new
technologies supporting the construction of efficient LFSRs. In addition, LFSR-
based constructions have the important practical property that the amount
of required hardware can be traded-off against different levels of security; on
the other hand, same hardware can handle different levels of security (see Sec-
tion 5.2). From a theoretical point of view, it is puzzling whether such simple
constructions may have a good cryptographic strength. For all these reasons it
seems important to have some good construction(s) well evaluated by the cryp-
‘tographic community. The one presented in this paper may be a good candidate
for evaluation, as it compares to the best existing alternatives, and may have
the potential to prove better.

Interesting examples of existing LFSR-based constructions for comparison
with the shrinking generator are Gunther’s alternating step generator [10], and
some of the clock-controlled generators discussed in [8], in particular the I-2
generator. They have similar proven properties as ours, but both are develop-
ments of the weak “stop-and-go generator” [2]. This generator uses two LFSRs
where the first one is used to control the clock of the second LFSR. Therefore,
a ‘l’ output by the first LFSR causes the second one to shift its state, while a
‘0’ implies that the state keeps unchanged (but still a bit, same as the previ-
ous one, is output). The output of this second LFSR is then the output of the
stop-and-go generator; and the weakness of the repeated bit is clear. The 1-2
generator solves this problem by shifting one bit of the second LFSR when the
first LFSR outputs ‘0’, and shifting two bits when the first LFSR outputs ‘1.

Copyright (c) 1998, Springer-Verlag

37

Gunther’s construction uses three registers and outputs the bitwise XOR of two
stop-and-go sequences controlled by the same third LFSR. Actually, Gunther’s
generator is equivalent to a generator that merges two LFSR sequences So and
S: according to the ‘0’s and ‘1’s output by a third LFSR (a ‘0’ implies taking
next bit from S a ‘1’ implies taking next bit from S;). This construction has
the nice property that each bit in the output may (a-priori) correspond to any
of the two sequences; on the other hand, it lacks the property of omitting bits
from these sequences.

One advantage of Gunther’s generator is that it guarantees one output bit
per LFSR clock pulse, but it pays for it with a third LFSR. In our construction,
the hardware prize we pay in order to regulate the output rate (see section 5.1)
is usually lower than introducing a third LFSR (this is due to the fact that
XOR gates usually cost significantly less than memory elements). Moreover, this
third LFSR brings the effective key length of Gunther’s scheme to one third of
the total length (it can be broken through exhaustive search on only one of the
three registers). The 1-2 generator has the effect of omitting bits through its
irregular clocking, but this omission is by nature very local, e.g. one of any two
consecutive bits originally output by one of the LFSRs appears in the generator’s
output sequence.

Locality appears in other versions of clock-controlled generators as well. In
our construction the uncertainty about omission of bits is significantly superior
(e.g., in clock-controlled constructions t bits from the control sequence determine
the original locations in the other register of ¢ output bits; in the shrinking
generator, however, 2t bits in the selecting register S are necessary (on average)
to determine the original locations of ¢ bits in the Z-sequence). In particular,
notice that the shrinking generator is not a special case of a clock-controlled
generator (e.g., its output is not synchronized with the selecting register as it
is the case in any clock-controlled scheme). Moreover, the general techniques on
clock-controlled generators [8] do not directly apply to our construction.

Finally, the work by Golic and Zivkovic [7] shows that most irregularly dec-
imated LFSR-sequences have high linear complexity; however, their result is
non-constructive by nature and has no implication on our construction.

We stress that the omission of bits is important not only in LFSR-based con-
structions but also in other constructions as well. On the other hand, not every
scheme for omission of bits is effective (e.g. a decimated LFSR sequence is as
bad as the original sequence itself). For the linear congruential number generator
outputting all of the bits of a generated number makes the task of breaking it
a very easy one [5]. Even if some bits are omitted but a block of consecutive
bits are output, efficient predicting methods are known [6, 19]. The extended
family of congruential generators is efficiently predictable if sequence elements
are output with no omission [12], but no efficient methods are reported for these
sequences if part of the bits are omitted. It is an interesting open problem what
can be proven for a shrinking generator based on congruential generators. Fi-
nally, let us mention that the idea of outputting individual bits of a sequence,

is best captured by the notion of hard bits of a one-way function, a notion that
Copyright (c) 1998, Springer-Verlag

38

plays a central role in the construction of complexity-theory based pseudoran-
dom generators (see [4, 20] and subsequent works). It would be interesting to
know whether the shrinking generator applied to two e-predictable sequences
guarantees, in general, a third sequence which is ¢’-predictable for £’ < ¢ < 1.
(Roughly speaking, a sequence is e-predictable if no polynomial-time algorithm
can predict it with probability greater than i + ¢).

Acknowledgement

We owe special thanks to Celso Brites, Amir Herzberg and Shay Kutten for their
help and involvement during the development of the shrinking generator. Many
people have contributed in different ways to this investigation; they include:
Aaron Kershenbaum, Ilan Kessler, Ronny Roth, Kumar Sivarajan, and Moti
Yung. To all of them many thanks.

References

1. Noga Alon, Oded Goldreich, Johan Hastad, and Rene Peralta. Simple constructions
of almost k-wise independent random variables. In 31** Annual Symposium on
Foundations of Computer Science, St. Louis, Missouri, pages 544-553, 1990.

2. Beth, T., and Piper, F., “The stop-and-go Generator”, in Lecture Notes in Com-
puter Science 209; Advances in Cryptology: Proc. Eurocrypt 84, Berlin: Springer-
Verlag, 1985, pp. 88-92.

3. Blahut, R., Theory and Practice of Error Control Codes, Addison-Wesley, 1984.

4. Blum, M., and Micali, S., “How to Generate Cryptographically Strong Sequences
of Pseudo-Random Bits”, STAM Jour. on Computing, Vol. 13, 1984, pp. 850-864.

9. Boyar, J. “Inferring Sequences Produced by Pseudo-Random Number Generators”,
Jour. of ACM, Vol. 36, No. 1, 1989, pp.129-141.

6. Frieze, A.M., Hastad, J., Kannan, R., Lagarias, J.C., and Shamir, A. “Recon-
structing Truncated Integer Variables Satisfying Linear Congruences”, SIAM J.
Comput., Vol. 17, 1988, pp. 262-280.

7. Golic, J.DJ., and Zivkovic, M.V., “On the Linear Complexity of Nonuniformly
Decimated PN-sequences”, IEEE Trans. Inform. Theory, Vol 34, Sept. 1988, pp.
1077-1079.

8. D. Gollmann and W.G. Chambers, “Clock-controlled shift registers: A review”,
IEEE J. Selected Areas Commun., vol. 7, pp. 525-533, May 1989,

9. S.W. Golomb, Shift Register Sequences, Aegean Park Press, 1982.

10. Gunther, C.G., “Alternating Step Generators Controlled by de Bruijn Sequences”,
in Lecture Notes in Computer Science 304; Advances in Cryptology: Proc. Euro-
crypt '87, Berlin: Springer-Verlag, 1988, pp. 88-92.

11. Kessler, I., and Krawczyk, H., “Buffer Length and Clock Rate for the Shrinking
Generator”, preprint.

12. Krawczyk, H., “How to Predict Congruential Generators”, Journal of Algorithms,
Vol. 13, 1992. pp. 527-545.

13. E. Kushilevitz and Y. Mansour. Learning decision trees using the fourier spectrum.
In Proceedings of the 23™* Annual ACM Symposium on Theory of Computing, pages
455-464, May 1991.

Copyright (c) 1998, Springer-Verlag

14.

15.

16.

17.

18.

19,

20.

39

Lidl, R., and Niederreiter, H., “Finite Fields”, in Encyclopedia of Mathematics and
Its Applications, Vol 20, Reading, MA: Addison-Wesley, 1983.

Yishay Mansour. An o(n'°8!°8") learning algorihm for DNF under the uniform
distribution. In 5** Annual Workshop on Computational Learning Theory, pages
53-61, July 1992.

Joseph Naor and Moni Naor. Small bias probability spaces: efficient construction
and applications. In Proceedings of the 22" Annual ACM Symposium on Theory
of Computing, Baltimore, Maryland, pages 213-223, May 1990.

Rabin, M.O., “Probabilistic Algorithms in Finite Fields”, SIAM J. on Computing,
Vol. 9, 1980, pp. 273-280.

Rueppel, R. A., “Stream Ciphers”, in Gustavos J. Simmons, editor, Contemporary
Cryptology, The Science of Information, IEEE Press, 1992, pp. 65-134.

Stern, J., “Secret Linear Congruential Generators Are Not Cryptographically Se-
cure”, Proc. of the 28rd IEEE Symp. on Foundations of Computer Science, 1987.
Yao, A.C., “Theory and Applications of Trapdoor Functions”, Proc. of the 23rd
IEEE Symp. on Foundation of Computer Science, 1982, pp. 80-91.

Copyright (c) 1998, Springer-Verlag

