
Vote Verification using CAPTCHA-like Primitives

Rahul Simha and Poorvi L. Vora∗

Department of computer Science
The George Washington University

Washington, D. C.

June 15, 2007

Abstract

Recently proposed voter-verifiable protocols provide encrypted paper receipts to voters, who may
later check that these receipts are in the electronic ballot box. This paper describes an enhancement that
allows the voter to electronically transmit, from the polling booth, her encrypted receipt to an external
verifier, who may perform the check on her behalf. It uses a CAPTCHA-like primitive – whose security
depends on the hardness of an AI problem – as a humanly-recognizable digital signature, to enable the
voter to be certain that the receipt has been securely deposited with the external verifier. This approach
presents several advantages: the voter is not required to do anything outside the polling booth, no receipts
are needed after polling, and all receipts generated by the polling machine can be checked. Additionally,
an audio-based format is an easy extension for those with visual disabilities, and it is anticipated that a
public already familiar with CAPTCHAs will find the approach easy to use.

1 Introduction

The past few years have witnessed a number of voter-verifiable voting techniques (for example: [3, 5, 6, 2, 7])
that can convince a voter that (a) her vote was cast as intended, and (b) all votes were counted as cast. These
techniques provide a level of integrity and verifiability not present in previous techniques, because they do
not require the voter to trust any entity at the polling place – polling machine, election official, or third party.
A unique aspect of these protocols is a paper receipt received by the voter that contains her vote in encrypted
form. The voter may check that her encrypted receipt is in the public electronic bulletin board that forms the
ballot box. This receipt is either encrypted [3, 6, 2] or incomplete [7] and therefore maintains vote privacy.

Unfortunately, this idea of letting a voter take her receipt out of the polling booth for individual verifi-
cation has some drawbacks. First, the verifiability of these schemes requires voter participation: if voters
choose not to check the presence of their receipts on the bulletin board, it is not possible to catch a cheating
or defective polling machine. Second, in some of the published schemes, voters are first presented with
complete ballots but are asked to leave with only a portion of the ballot for verification, in order to prevent
them from being able to prove how they voted. However, it may be physically difficult to force voters to
leave with only part of the ballot as instructed. Third, the receipts are themselves susceptible to abuse from
malicious voters: even if a forged receipt can be identified, the labor or legal costs of handling false claims
can be prohibitive. Finally, the act of allowing a voter to walk out with a receipt connected to her vote, even

∗Contact author: poorvi@gwu.edu. This work was partially supported by NSF Grant ITR-0325207 and NSF Grant SGRE-
0505510

1

though encrypted, and the requirement that the voter follow up with the checking of the vote, even if helped
by someone else, is distinct enough from the current voting process to pose a challenge to public acceptance
and widespread use.

This paper explores the use of an additional CAPTCHA-like primitive to securely (and electronically)
transmit the receipt to one or more third-party verifiers, who check for the presence of the receipt on the
public bulletin board. The primitive serves as a humanly-verifiable digital signature1 – the receipt received
by the verifier is returned using a format and images agreed upon ahead of time by the voter and the verifier,
and is easily and immediately validated by the voter with little effort. This shared information, as we will
see, is both reasonably assumed to be known only to the verifier, and hard to reverse-engineer by the polling
machine (without solving a hard AI problem). The use of this primitive addresses the problems pointed out
above with receipts, and in addition, allows on-the-spot detection of an improper electronic receipt. Note that
the electronic transmission of a receipt does not preclude the issuing of a paper receipt as well. If a county
wishes to provide paper receipts, it may do so; the electronic receipts issued will all be checked, while it is
likely that only a fraction of voters with paper receipts will make the effort to check their presence on the
public electronic bulletin board. Further, voters should also be given the option of not sending the receipt to
any verifier at all.

While several schemes have recently contributed to simplifying the user interface (ballot format) for
voter-verifiability [6, 8], we are, however, not aware of any work that attempts to transmit the receipt elec-
tronically to a verifier, or uses hard problems in AI as the basis of the security mechanism. Although the ideas
presented here can be applied to a variety of voting protocols, this paper, for ease of exposition, explores
the use of this primitive with two well-known protocols: Punchscan [2] and ThreeBallot [7]. The use of this
primitive is not without some weaknesses. First, it requires continuous maintenance of secure connections
between polling machines and verifiers. Second, a defective or malicious verifier can interfere with voting
by sending back incorrect responses.

This paper is organized as follows. Our approach is described in Section 2. Section 3 contains formal
statements of protocol properties, and concluding remarks are presented in Section 4.

2 How it Works

Before we describe our enhancements, we provide an overview of PunchScan, ThreeBallot, and CAPTCHAs.
We use the term Election Authority (EA) in the usual manner to mean the organization that oversees the
polling, the voting machines, and the counting. Our CAPTCHA-based enhancements of Punchscan and
ThreeBallot, which we term C-PunchScan and C-ThreeBallot respectively, have the following additional
requirements:

• Verifier. A verifier is an entity to whom an electronic version of the voter’s receipt is sent from the
polling booth. In C-Punchscan, a single receipt is sent to a single verifier who might be chosen by
the voter or at random by the machine. In C-ThreeBallot, the three ballots are sent to three different
verifiers, randomly assigned by the machine.

• Polling machine. To enable communication with the verifier, our approach requires a polling machine
to be able to (a) display an image (and play audio for the visually-impaired), and (b) set up a secure
connection with servers maintained by the verifiers.

1Our thanks to an anonymous referee for suggesting that our use of the primitive was as a humanly-verifiable digital signature

2

2.1 Overview of Punchscan

We describe Punchscan for the simple case of two candidates. The Punchscan ballot consists of two layers,
one below the other. The upper layer contains a one-to-one map from the candidates to a set of dummy
variables, such as letters of the alphabet. The lower layer contains another map, from the dummy variables
to a position in a list – such as left and right (see Figure 1). A voter marks the position (and dummy variable)
of the candidate of her choice. Because of a hole in the upper layer, the mark appears on both layers. Thus,
both layers contain information on the vote, however, neither, by itself, provides information on the choice
of candidate.

4/9/2007 CS284/Spring07/GWU/Vora/Entropy 1

Obama: A

Clinton: B

467935

B A

467935 467935

AB

Obama: A

Clinton: B

467935

Obama: A

Clinton: B

467935

B A

Figure 1: A Punchscan Ballot. From left to right: upper layer of unmarked ballot; lower layer of unmarked
ballot; a marked ballot for Candidate Obama with layers superimposed; upper layer of marked ballot; lower
layer of marked ballot

A voter chooses a single layer as the record of her vote. The other layer is destroyed. The single layer
is scanned into the polling machine, and displayed on a public bulletin board. It is also the voter’s receipt.
The EA is able to decrypt the ballots as it possesses the mappings from position to candidate for each serial
number; the decrypted ballots are displayed on the public website. The original set of ballots is shuffled, and
the serial numbers stripped, to preserve anonymity.

The printed ballots are audited for correctness through the opening of the mappings (stored and commit-
ted to) for each of half of the total number of ballots. These audited ballots are treated as spoiled and are not
used for the election. The decryption process is audited through the use of a process similar to randomized
partial audits of mixes. These details are described in [6].

The integrity of the casting stage of Punchscan depends on (a) at least some voters requesting paper
receipts and at least some of these voters checking them and (b) the unforgeability of the paper receipts. The
casting stage of C-Punchscan, on the other hand, makes it possible to electronically check the presence of
all requested receipts on the bulletin board without any voter follow-up, and sidesteps the issue of unforge-
ability because no receipts are given to voters. Instead, its integrity depends on the unforgeability of regular
digital signatures and on the security of the humanly-verifiable digital signature primitive. The privacy of
Punchscan depends on the security of the encryption and commitment schemes used. So does the privacy
of C-Punchscan. That is, the use of the humanly-verifiable digital signature primitive does not affect the
privacy properties of Punchscan.

2.2 An Overview of ThreeBallot

The ThreeBallot ballot consists of the list of candidates, arranged one below the other in a fixed, pre-defined
order, and three columns next to the candidates. To choose a candidate, the voter marks two of the three
columns corresponding to the candidate. For all other candidates, the voter marks exactly one column. The
three columns are separated out and cast separately, each as a ballot. Each ballot has an associated serial

3

number, though the serial numbers are independent. The voter scans in all three and takes exactly one home
with her.

All ballots are posted online with the corresponding serial numbers. Each voter checks if the ballot she
took away is on the bulletin board. She does not know if the other two ballots are there too (and unchanged),
but because the EA cannot guess which piece she took home with her, it will be caught with high probability
if it changes even a few ballots. Anyone can tally the votes – the winner will be the candidate with the most
marks. The number of votes obtained by each candidate is the number of marks less the total number of
voters. The integrity of this scheme depends on the scanner and the EA not being able to anticipate which
ballot will be kept by the voter.

We demonstrate the challenges in retaining the integrity and privacy of ThreeBallot. The integrity of
the original ThreeBallot scheme depends on the voting machine not knowing the voter’s choice of receipt
from among the three ballots cast by each voter; however this condition cannot be satisfied when the polling
machine sends the receipt to the verifier. Hence, C-ThreeBallot requires that the machine send all three
ballots, each to a verifier. To preserve the involuntary privacy of voting, the voter may not choose the
verifiers, as their collusion will reveal the vote. The collusion of a single verifier with the voting machine
can change the vote, hence the integrity of ThreeBallot is considerably weakened, and it is not as well-suited
to our approach as is Punchscan. Further, additional cryptographic checks are required to ensure that the
verifiers are randomly chosen by the machine, defeating one original purpose of ThreeBallot – to obtain a
voting scheme that did not use cryptography.

2.3 An Overview of CAPTCHAs

In the general Human Interactive Proof (HIP) problem, the goal is to distinguish between a human and
machine using a simple test. By focusing on exceptional cognitive abilities such as visual perception, a HIP
tries to place a high barrier to machine duplication of human ability. A CAPTCHA is an application of this
notion to security problems: it is a security primitive whose hardness assumption is based on a problem in
Artificial Intelligence [9]. The AI problems are somewhat distinct from the usual hard problems used in
cryptographic schemes (problems in algorithmic number theory) because standard approaches to breaking
them require the use of a large data set to learn from. The applications of CAPTCHAs have also hence been
different – they have typically been used in situations where the security depends on the machine not solving
the hard AI problem in real time. Thus, while a typical cryptographic scheme is required to be unbreakable
into the future, it is usually enough if a CAPTCHA cannot be broken in a few minutes.

A popular use of a CAPTCHA is to prevent bots from logging onto sites or accessing certain types of
online services. In this application, a string of text is converted, by a program, into an image from which a
human may recognize the text, but a program not knowing the text may not. Before being allowed to log
in, a user is required to obtain the string from the image – an easy task for a human, but difficult for a bot.
This problem can be made quite difficult by incorporating not simply visual recognition, but also face and
theme recognition, common historical knowledge (for example, identities of presidents), or emotions (happy
vs. sad) in the images. Further, one may similarly use audio-based CAPTCHAs that exploit human abilities
to recognize speakers and intonations in a way that has been out of reach for machines.

We do not use our secure primitive for the purposes CAPTCHAS have typically been used for, which is
why we do not refer to it as a CAPTCHA (even though its security is also based on a hard problem in AI). In
the commonly used bot-defeating application, the CAPTCHA is used to encrypt a number so that any human
can decrypt it, but no machine can, without solving a hard problem in AI in real time. Also, it is required
that the hard problem in AI not be hard for humans. In this paper, however, the primitive is used to provide
a secret-key digital signature that a human with possession of a visual representation of the secret key can

4

verify, but that a computer not knowing the secret key cannot forge without solving a hard problem in AI in
real time. We also assume that the hard AI problem is not solved by a human in real time either. A similar
primitive is used in [4] for the purpose of document authentication.

In our approach, we require the verifier to generate a composite image representing the voter’s receipt,
using a specific format and set of images (the private key) known only to the voter and the verifier. We
require that the computer providing the composite image to the voter not be able to determine, in a short
time period, the format and set of images. Hence, it would not be possible for a computer to change the
receipt received from the verifier – that is, it would not be possible, given the signature on one receipt, to
forge it onto another.

2.4 The Enhanced Protocol: A Sketch

Our protocol, described in general for both C-Punchscan and C-ThreeBallot, proceeds as follows (note that,
in the protocol description, digital signature and its derivatives refer to the classical digital signature tech-
nique):

Step 1: Prior to election.

• The EA posts information about candidates and verifiers, polling sites and the election schedule.

• The voting machines are programmed to open secure connections to verifiers.

• Each verifier creates and maintains a secret injective mapping g between a large set V of (large) random
verification numbers and a set F of internally-generated formats and image sets that the trustee will
use. For simplicity, we refer to g(v), v ∈ V , as a format.

• The polling site is divided into two sections – the verifier area, and the voting area.

• Each verifier contributes several tickets, each ticket corresponding to a single value v ∈ V . Each ticket
contains printed on it the value v and sufficient information for a human to recognize a receipt image
in format g(v).

• The tickets are loosely placed in a box as would raffle tickets prior to a drawing. For Punchscan, the
tickets for each verifier are placed in separate boxes. For ThreeBallot, tickets of all verifiers are placed
in a single well-shuffled box. The tickets are in sealed envelopes so that a voter may not choose v or
g(v).

Step 2: The voting procedure.

• A voter enters the polling site where the verifiers are located and draws a ticket from the ticket box of
any one verifier of her choice for Punchscan, and three tickets from the single box for ThreeBallot.

• The voter is given a paper ballot in much the same way as with the original PunchScan or ThreeBallot
protocols, and directed to a voting booth where she will cast her vote.

• The voter makes her selections and scans in her ballot.

• The machine presents a summary ballot containing the two layers (for Punchscan) or the three ballots
(for ThreeBallot). Also presented is a textfield where the voter can enter her ticket number(s) v.
A function (not necessarily one-way) of the ticket number(s) identifies the verifier(s) to the polling
machine.

5

• The voter enters the ticket number(s) present on her ticket(s). For Punchscan, she also chooses a layer.

• The machine then sends the digitally signed chosen layer (for PunchScan) or all three ballots (for
ThreeBallot) to the associated verifier(s) using the secure connection(s).

• The verifier server(s) checks the signature of the polling machine on the receipt. It then constructs a
composite image of the receipt using the format g(v), and transmits that back to the voting machine.
The server also digitally signs the composite image.

• The machine displays the received image(s) to the voter, along with an option to “confirm” or finalize
the vote.

• The voter sees her summary layer in the image returned (for Punchscan), or the three ballots in the
three images returned (for ThreeBallot), in the corresponding format(s), g(v), and confirms the vote.
Note that, for ThreeBallot, she needs check only one of the three pieces at random, as the polling
machine would not know which one she would check.

Note that a disgruntled verifier could hold up this protocol by sending an incorrect composite image.
A disagreement of this kind can be resolved on-the-spot through human viewing of the ticket, receipt and
composite image, and the checking of digital signatures. Note also that, either the verifier can be trusted
to not provide two receipts with the same value of v (else the machine can learn the value of g(v)), or, if it
cannot, the only way it can cheat is through the machine. In the latter case, it does not need to create multiple
tickets with the same value2 of v.

Step 3: Post-poll checking and counting.

• Each verifier checks that each receipt is on the poll website. Any discrepancies are resolved through
the checking of digital signatures.

• Vote tallying and post-counting audits proceed according to the original scheme.

We note that, as with the original protocols, a voter may waive the option to verify her vote, in which
case she would choose not to pick up a ticket. A voter may also choose to take a paper receipt from the
original protocol, and not send it to a verifier – that is, a voter may choose to stay with Punchscan and not
participate in C-Punchscan, for example. As with the original versions of Punchscan or ThreeBallot, if even
a small number of concerned voters engage in using verifiers, the probability of a cheating polling machine
being caught is very high.

The CAPTCHAs Used
In this section we show some sample CAPTCHAs for C-Punchscan and C-ThreeBallot. We request

the reader to reserve judgement on the breakability of these particular CAPTCHAs – they are merely for
illustration. Far harder CAPTCHAs can be designed using the power of human vision and cognition.

We first show how C-Punchscan can mimic the use of Punchscan. Consider the ticket in Figure 2. It
depicts a ticket number shown in a particular CAPTCHA-style font. A voter with this ticket can assume that
only she and the verifier know that font, and that the font is difficult to reverse-engineer.

If, in the manner of Punchscan, the voter chooses the top-layer, the top-layer is sent in plain text to the
verifier by the machine. The verifier then returns the image displayed in Figure 3. One can see that the image
is a replica of Punchscan’s top layer: it contains the ticket number, the mapping from candidates to dummy
variables, and the position of the encircled vote. Likewise, if the voter instead chose to keep the bottom, the
image displayed in Figure 4 is returned by the verifier, showing the ticket number and the selection made.

6

Figure 2: C-Punchscan Ticket

Figure 3: C-Punchscan Composite Image Returned: Top Layer

The particular CAPTCHA technique above uses distorted fonts, and is the most widely used CAPTCHA
for login applications. For illustration, our example for C-ThreeBallot shows how pictures can be used.
Figure 5 shows one of the three tickets on the left. The ticket contains a description of a visual theme, in this
case an “outdoors” picture of a candidate implies a mark in the column corresponding to that candidate. On
the right, are two pictures forming the composite image returned by the verifier. It shows that the ballot the
verifier received was a mark for Obama (the other image is not outdoors). Note that the serial number of the
receipt may be displayed using distorted fonts as well.

3 Formal Statements

In this section, we state more formally our assumptions and properties of C-Punchscan and C-ThreeBallot
that we believe to be true. For some properties, we provide proof sketches.

Let R represent the set of all possible receipts (sent to the verifier), and r ∈ R a single receipt. Let R be
the set of all composite images (returned by the verifier). Let ρ(r, g(v)) ∈ R represent the composite image
corresponding to receipt r in format g(v).

We now define the security primitive. First, the primitive must be checkable by a human. That is,
given a ticket numbered v, describing the format g(v), a human must be able to recognize composite image
ρ(r, g(v)), as being r in format g(v) for all possible values of r.

Assumption 1[HUMAN CHECKABILITY] The mapping g : V → F is humanly checkable. That is, ∀v ∈ V ,
∀r ∈ R, ρ(r, g(v)) is read as being the receipt r, printed in format g(v), by a human with ticket numbered v.

2Thanks to an anonymous referee for describing this problem.

7

Figure 4: C-Punchscan Composite Image Returned: Bottom Layer

467935
Your candidate: outdoor picture

Ticket Sample ballot image

539042

Figure 5: C-ThreeBallot Receipt Showing a Single Mark For Candidate Obama

The security requirement for the primitive is that, given the value of ρ(r, g(v)) for several values of (r, v),
the computer not be able to produce an image that is accepted by a human for any other value of (r, v).

Definition 1[SECURITY BREAK] A program breaks the security of mapping g : V → F if, given some
r1, r2, ...rn ∈ R, some v1, v2, ...vn ∈ V , and ρ(r1, g(v1)), ρ(r2, g(v2)), ...ρ(rn, g(vn)), for some value
n << |V × R|, it can produce a composite image that is read as being the receipt r, printed in format g(v),
by a human with ticket numbered v, when (r, v) 6= (ri, vi)∀i.

Assumption 2 [SECURITY] In the absence of a real-time solution to an unsolved AI problem, a human and
a computer together cannot break the security of g in real time.

Assumption 3 [ONE USE TICKETS] Each ticket number v is used at most once.

Property 1 [SECURE DELIVERY] If Assumptions 2 and 3 hold, and V is large enough, a voter with ticket
v is assured that her receipt r has reached the verifier if she views a composite image that she reads to be
receipt r in format g(v), unless a real-time solution to the hard AI problem is obtained.

Proof Sketch: If not, then an entity not possessing g(v) produces a composite image that is read by the voter
to be the receipt r printed in format g(v). If assumption 3 holds, and as g is injective, the entity does not have
access to ρ(r, g(v)). From assumption 2, this entity then breaks the security of g, and provides a real-time

8

solution to the hard AI problem.

Property 2 [NONREPUDIATION] If the classical digital signature scheme used is secure, the verifier cannot
later deny that it sent a composite image that it did send.

Proof Sketch: Follows from the properties of the classical digital signature schemes.

Property 3 [INTEGRITY, C-PUNCHSCAN] C-Punchscan provides at least as much integrity as Punchscan if
assumption 2 holds and verifiers are honest.

Proof Sketch: Integrity is reduced by either (a) an incorrect receipt being sent to the verifier or (b) the veri-
fier checking the receipt incorrectly or (c) a valid claim of receipt manipulation being made by a verifier is
considered invalid. (a) is addressed by Property 1, (b) by honest verifiers, and (c) by Property 2.

Property 4 [PRIVACY, C-PUNCHSCAN]
If Punchscan receipts reveal no information about the vote, Steps 2 and 3.1 of C-Punchscan do not reveal
information connecting a voter to a vote, unless it is revealed through the physical voting process or the
voting machine.

Proof Sketch: The only possible extra information revealed in C-Punchscan is the association between voter
and receipt. Because the receipt reveals no information about the vote, C-Punchscan does not reveal infor-
mation on the vote of a specific voter.

Property 5 [INTEGRITY, C-THREEBALLOT] If assumption 2 is true, and all verifiers are assumed honest
(that is, no verifier colludes with the EA to change the vote), C-ThreeBallot provides at least as much integrity
as ThreeBallot.

Proof Sketch: This proof is similar to that for Property 3.

Property 6 [VULNERABILITY, C-THREEBALLOT] A single verifier can collude with the EA to change any
number of its ballots in C-ThreeBallot (upto the maximum allowed by the other properties of ThreeBallot).

Proof Sketch: The verifier provides a correct receipt to the EA, and the voter believes her ballot is correctly
recorded. However, the verifier does not point out the discrepancy between the ballot provided by the polling
machine to the bulletin board and the ballot provided by the voter. The Polling Machine can hence change
that single ballot to any other, as long as it does not violate the other properties of ThreeBallot ballots (such
as the total number of marks is Nc + N where N is the number of voters and c the number of candidates).

4 Conclusions and Future Work

The use of CAPTCHAs in voting is promising because CAPTCHAs have been widely-used to provide secu-
rity in other applications involving human-machine interaction. A promising avenue for future work is the
incorporation of several different types of CAPTCHAs, such as audio-based CAPTCHAs, for ease of use
for those with disabilities. Such a CAPTCHA might work as follows. The ticket consists of an MP3 file
identifying to the voter a particularly stylized voice (for example, deep female voice with a strong accent).
The verifier then returns a description of the ballot-portion in that voice. Thus, the difficulty for the machine
is to create a fake vote out of that voice. Because a multitude of voices can be used, the audio snippet cannot
be spliced out of previous votes.

9

Acknowledgments
Our simple implementation depicted in the C-Punchscan example adapted captcha-creating code from the open-source
SimpleCaptcha project on Sourceforge [1]. One particular referee provided several useful suggestions.

References

[1] Simplecaptcha. http://simplecaptcha.sourceforge.net/.

[2] Punchscan, 2006. http://www.punchscan.org/.

[3] David Chaum. Secret-ballot receipts: True voter-verifiable elections. IEEE Security and Privacy, pages 38–47,
January/February 2004.

[4] Igor Fischer and Thorsten Herfet. Visual captchas for document authentication. In Proceedings, International
Workshop on Multimedia Signal Processing, October 2006.

[5] A. Neff. A verifiable secret shuffle and its application to e-voting. In 8th ACM Conference on Computer and
Communications Security, 2001.

[6] Stefan Popoveniuc and Ben Hosp. An introduction to punchscan. In IAVoSS Workshop On Trustworthy Elections
(WOTE 2006), 2006.

[7] Ronald L. Rivest. The threeballot voting system. Unpublished draft, 2006.

[8] P. Y. A. Ryan. A variant of the chaum voter-verifiable scheme. Technical Report CS-TR: 864, School of Computing
Science, Newcastle University, 2004.

[9] Luis von Ahn, Manuel Blum, Nick Hopper, and John Langford. Captcha: Using hard ai problems for security. In
Eurocrypt, 2003.

10

