
A framework for secure electronic voting

Stefan Popoveniuc and Poorvi L. Vora

The George Washington University

Department of Computer Science

801 22nd. St. NW

Washington DC 20052

{poste,poorvi}@gwu.edu

Phone: 202 994 7181

Keywords: voting, voter-verifiable, mixnets

Abstract

We describe a single framework in which to view the end-to-end-
independently-verifiable (E2E) voting systems based on mixnets. We use
the framework to invent new systems that combine front and back-ends
from existing systems.

Note to editor: a first draft of this paper was presented at WOTE
2008, which does not have formal proceedings. This is not referenced
in the paper body to preserve author anonymity, it will be referenced
in the final paper in a single sentence in the introduction.

1 Introduction

Recent advances in cryptographic voting systems have led to the invention of
several voting systems that are end-to-end-independently-verifiable (E2E) by
the voter [4, 8, 14, 6]. These systems provide receipts to the voter that can be
used to ensure that her vote is counted, without revealing the vote. The mixnet-
based E2E systems use different front-ends (for ballot preparation and the voting
ceremony) and back-ends (for vote tallying and tally auditing), and most of
the existing literature on these systems describes a single, complete mechanism
that does not typically address the components separately. This paper describes
the existing mixnet-based E2E voting systems in a single framework, and, by
combining hitherto uncombined front and back-ends, presents new systems with
hitherto unachieved properties.

As mentioned above, mixnet-based voting systems can be decomposed into
two modules: the back-end and the front-end. The front-end is responsible
for producing the inputs for the back-end: it defines what the ballots look
like (either paper or electronic), what the voting ceremony is, how the receipt is

1



produced, and how the voter interacts with the system after the casting process.
It is responsible for the verifiable casting of votes. The back-end is the mixnet
[10] itself, responsible for shuffling and eventually decrypting the ballots in an
auditable fashion. It provides the verifiable tallying of the votes. With a number
of options for front and back-ends, a jurisdiction can choose a back-end and a
front-end that are most appropriate for a particular election. Some front-ends
may be more usable, while others may protect privacy better. Some back-ends
may be simpler to audit, while others yield higher performance. It is possible
to use a single back-end and multiple front-ends for the same election. Having
a range of choices gives freedom to the election authorities, who are directly
responsible for choosing the technology most appropriate for their needs.

The approach of the work is as follows. In a departure from previous systems
that provided integrity and privacy to voters who voted remotely using trusted
computational power, the voter-verifiable schemes enable a voter to check for
correct encryption in a polling booth without the use of trusted computational
power. This is made possible through the use of special two-part ballots; one
contains the encryption key, and the other the encrypted vote. The manner of
ballot presentation enables a voter to check correct encryption through simple
visual examination. The encryption is a symmetric key encryption: either a one-
time pad with a pseudo-randomly generated key, or encryption with a simple
substitution cipher. Inside the booth, the voter checks that the symmetric-key
encryption is correct. The use of audits before, after, and/or during the election
ensures that the keys are generated and printed correctly. Thus, the front-end
provides different ways to generate the key and encrypt the ballot, and the back
end to decrypt the ballots in a verifiable manner while preserving voter privacy.

The contribution of this work is two-fold: on the one hand, it is a survey of
front-ends and back-ends of the practical end-to-end mixnet-based voting sys-
tems. On the other hand, it presents a single framework of which each existing
end-to-end mixnet-based voting systems is a special case, and it describes how
front and back ends can be combined (see Table 1) in ways that yield hitherto
unachieved properties. We survey three back-ends: mixnets using public keys
and onions [10], punchscanian mixnets using pre-committed paths and onions
[14], and pointer-based mixnets [7], with pre-committed paths and no onions.
The back-ends differ in the simplicity of the design, robustness and efficiency.
We also survey four front-ends: visual cryptography [4], shuffling the order
of the candidates (Prêt à Voter [8]), indirection-based encryption (PunchScan
[14]), and a front-end that is an overlay to the current optical scan (Scantegrity
II[6]). Proofs are outside the scope of this paper.

The rest of the paper presents related work, the front and back-ends with
their advantages and disadvantages, and a framework that generalizes the front
and back-ends. Within this framework, the client can choose the end-to-end
voting solution that is best suited for her needs. Table 1 presents the existing
systems and the contributions of this paper.

2



Onion mixnets Punchscanian mixnet Pointer mixnet
Visual Crypto X ⋆

Prêt à Voter X ⋆ ⋆

PunchScan ⋆ X ⋆

Scantegrity II ⋆ ⋆ X

Table 1: Recent mixnet-based voter-verifiable voting systems and the compo-
nents they use. X stands for work that has already been done while ⋆ represents
new concepts proposed in the current work.

2 Related Work

In Scratch&Vote [1], Adida and Rivest explain how their homomorphic scheme
would work with two types of front-ends (Prêt à Voter and PunchScan). Van
de Graaf [15] notices similarities between PunchScan and Prêt à Voter and
describes a detailed mechanism that allows the use of a Prêt à Voter front-
end with a PunchScan back-end. Lundin [12] investigates from a much larger
perspective, all the aspects of voting, including registration, election method,
election mechanics, election management, transfer methods, etc. Chaum [2]
suggests writing a common XML format for representing the results of the
scanning of PunchScan and Prêt à Voter ballots to allow the interchange of
scanning technologies.

Our work is general, presenting the advantages of various ballot styles, and
suggesting general ways of connecting them to mixnet based back-ends that
have distinct properties. At the same time, our work provides details about
each possible combination of front and back ends.

3 The Front-end

The front-end represents the manner in which the ballots are presented to the
voters and the voter’s interaction with the system. In the voting protocol, the
front-end represents a voter-verifiable encryption of the vote; the receipt bears
the encrypted vote. The ballots presented in this work fall in two categories.
The first category is that of symmetric ballots: those that have two parts, each
of which is sufficient to recover the vote (the original scheme using visual cryp-
tography [16, 9] described in Sect. 3.4, and PunchScan described in Sect. 3.5).
On visual examination of the two parts appropriately laid out, the voter is able
to confirm that each part bears the encryption of her vote. The second category
is that of asymmetric ballots: those that have two parts, of which a specific one
is needed to recover the vote (Prêt à Voter described in Sect. 3.6 and Scantegrity
II described in Sect. 3.7). In this category too, the voter visually examines both
parts of the ballot laid out in a particular manner (side by side) to confirm that
the encrypted vote represents her ballot. Scantegrity II requires an indirection
not present in other schemes, we discuss this in more detail later. We define

3



symmetric and asymmetric ballots more formally below.

Definition 1 (Symmetric ballot) A symmetric ballot is a ballot that has n
parts and:

• when combining the n parts the clear text vote is available

• a single part does not reveal anything about how a voter voted

• any single part can become the receipt

Definition 2 (Asymmetric ballot) An asymmetric ballot is a ballot that has
n parts and:

• when combining the n parts the clear text vote is available

• a single part does not reveal anything about how a voter voted

• a designated part always becomes the receipt

3.1 The General Receipt

We now describe more formally a receipt. In all the voting systems we study in
this paper, the voter gets a receipt of serial number s ∈ S, where S is the set of
all serial numbers. A vote is v ∈ V, where V is the set of all possible votes. E is
the encryption cipher used to generate the receipt, E = (V,R,K, E,D), where
R is the space of all ciphertexts for E ; K the keyspace, and E : K×V → R and
D : K ×R → V the encryption and decryption functions respectively. Finally,
a function f : S → K provides the association between the key and the receipt.
Note here that the encryption schemes used are deterministic; serial numbers are
unique, keys are rarely, if ever, reused, and the encryption cipher is a symmetric
key encryption, though f may involve the use of asymmetric key encryption.
Using this notation, the receipt obtained by a voter in a correct instance of
the voting protocol is the triplet (s;x;E(f(s), v)) where v is the vote, and x
represents any other information, such as onions and commitments made by the
voting system. This receipt is the only vote-related information to enter the
voting system, and the tally is constructed from this information.

Definition 3 (Receipt) A receipt is the triplet (s, x, r), where s is the se-
rial number, x any additional information on the receipt, and r the purported
encrypted vote.

Note that we are not always assured that r = E(f(s), v) and that x is
correctly formed.

4



3.2 The General Printing Audit

All front-ends discussed here are based on paper ballots; this enables the voter
to retain a physical artefact of the voting process (a paper receipt), and provides
some resemblance to voting with paper ballots, a process familiar to most voters.
(We do not claim that all the E2E voter-verifiable voting systems are as easy
to use as regular paper-ballot voting, we simply indicate that the choice of a
paper receipt, as opposed to any other type of receipt, has not been arbitrary
by the inventors of the protocols). At some point, hence, the ballots and/or
receipts need to be printed. Verifying the correctness of the printed ballots is
referred to as a printing audit, and is carried out either before, during, or after
the election.

A correct printing provides a Correct Decryption, which enables the system
to correctly decrypt the vote. There are two possibilities for the mixnet-based
decryption.

1. The key may be referenced through s–either through a lookup table in-
dexed by s, or by performing function f on s. In this case, a printing
audit checks that the key used for encryption is indeed f(s).

2. The receipt may bear additional information in the form of an onion that is
used by successive mixes to effectively decrypt the receipt using the correct
key. In this case, the printing audit checks that the key represented by
the onion(s) is that used for encrypting the vote.

Definition 4 (Printing Audit) A printing audit is a process that ensures
each voter, with high probability, that the entity that produced the ballot did
so correctly (consistent with the other published data about the election).

The most general printing audit allows each voter to choose a number of
ballots, one to vote with, and the others to spoil and verify. Because the choice
of which ballots to spoil is made at random by the voters, the probability that an
incorrect printing is undetected drops exponentially as the number of misprinted
ballots increases. Variations on this method are possible, for example the voter
does not actively spoil a ballot, as it becomes a natural result of the voting
process: some voters simply make mistakes when filling them in, spoil them,
and ask for a second ballot; the spoilt ones may be checked by the election
authorities. Unfilled ballots may be checked at the end of an election. This
type of audit works for both symmetric and asymmetric ballots.

The printing of symmetric ballots may also be audited by examining for
correctness the ballot half chosen for a receipt. Because the system cannot
predict beforehand which half will be chosen, the probability that an incorrect
printing is undetected decreases exponentially with the number of incorrect
ballots.

5



3.3 Types of Receipts

After all ballots are cast, the voting system makes available all receipts on a
public bulletin board. The voter can check that the triplet (s, x, r) is among
these. If she notices a discrepancy, she can file a complaint. There are two types
of receipts the voter can get: proof receipts and indication receipts.

Definition 5 (Proof Receipt) A proof receipt is a receipt held by the voter
that is non-repudiable by the voting system.

A proof receipt is one that is produced and “signed” by the voting system
itself (or by an election official). When a voter holds a proof receipt that is
inconsistent with the information on the public bulletin board, and the digital
signature scheme used is assumed secure, it is sufficient evidence that the bulletin
board contains erroneous information. This, in turn, is an irrefutable indication
that something went wrong with the election.

Definition 6 (Indication Receipt) An indication receipt is a receipt held by
the voter and that, in case the voter notices a discrepancy between the proof
receipt and the public data, can be used to trigger additional investigation.

Indication receipts provide only a hint that something might have gone
wrong, but additional evidence needs to be provided in order to prove that
something went wrong. Indication receipts can be produced by voters them-
selves and are not “signed” by any election authority; these receipts are hence
not non-repudiable.

We now describe in more detail the “voting ceremony” for several front-ends,
and indicate how the front-ends are specific instances of the general description
above. The voting ceremony consists of the specific steps a voter needs to take
to cast a ballot, and, eventually, to verify later that the ballot was printed
correctly and recorded as cast. We will describe the receipt; in particular, we
will describe the encryption process. We will intentionally not describe the value
in x, as that depends on the back-end.

3.4 Ballots using visual cryptography

Chaum [3] describes a ballot made of multiple parts, such that the combina-
tion of all parts makes the text readable; but no information is revealed about
the vote when only a subset of the parts is available. The layer used as an
encryption of the vote can later be decrypted by a mixnet to recover the vote
unambiguously. The first instantiation of this idea used visual cryptography
[13].

A detailed explanation on how the layers are built can be found in [16, 9].
On the top layer, the odd pixels are generated pseudo-randomly, while on the
bottom layer, the even pixels are generated pseudo-randomly. The rest of the
pixels are generated in a way that constructs the clear text image of the ballot
only when the two layers are overlaid. The voter is able to read her vote when

6



(a) A ballot contain-
ing a vote for ZERO.

(b) One layer can represent
with equal probability a vote
for either ZERO or X, depend-
ing on what the other layer is

Figure 1: A Sample Ballot using Visual Cryptography

the two pages are overlaid (see Fig. 1(a)), but when looking at a single layer,
no information is leaked about the voter’s choice (see Fig. 1(b)).

A more formal description is as follows. A correct receipt is of the form
(s, x, v ⊕ ka) where ⊕ denotes bitwise XOR, ka represents the key for the layer
corresponding to the receipt. The other layer is encrypted using key kā. The
keys are generated using different seeds for a pseudo-random number genera-
tor; ka = fa(s) = F (Sign(s, pa)), where Sign(s, a) is the deterministic digital
signature of the serial number using the private key of the polling machine that
corresponds to layer a, and F the public pseudo-random number generator. If
the two receipts are (sa, xa, ra) and (sā, xā, rā), because of the manner in which
the bits in each layer are presented, the voter can visually check that ra⊕rā = v,
sa = sā. The information in x depends on the back-end used.

3.4.1 The voting ceremony

On election day, the voter goes to her assigned polling place, authenticates her-
self as a legitimate voter and uses a touch screen to make the desired selections.
When finished, the computer prints the two layers, the voter checks that, when
the two layers are overlaid, her vote is shown. The voter chooses one of the
layers as a receipt and watches the other one being destroyed. The computer
prints additional information on the receipt, that allows anyone to check that
the pseudo-random pixels on the chosen layers have been constructed correctly.
A digital signature is also printed. After election day, any voter can go to the
election authority web site, enter the serial number for her ballot, check that the
ballot is there and that it matches the page she possesses: the pixelized image
and the strings on the receipt should be the same as the ones posted on the web
site. This voting scheme hence provides a proof receipt and uses a symmetric
ballot. Correct printing is checked by auditing the ballot half that forms the
proof receipt.

7



(a) A sample Punch-
Scan ballot. When the
two pages are overlayed,
the symbols on the bot-
tom page are visible
through the holes.

(b) A voted ballot.
Looking at each layer
individually, one cannot
say that the mark is for
“Yes” or for “No”.

(c) Given only one layer of
the ballot, the marks on
that layer are equally likely
to represent a vote for any
candidate.

Figure 2: PunchScan’s ballot

3.4.2 Advantage and disadvantages

The advantages of this approach are: the high degree of generality (it can ac-
commodate any type of contest, including write-ins), that the receipt is created
automatically, that it allows a fixed order of candidates, that it offers excellent
privacy (except for the fact that the voting machine knows the clear text votes),
and that there is no need for a strict chain of custody of the ballots. The disad-
vantages are: the voters are not familiar with the receipt interface, the order of
events must be precise, the alignment of pixels is difficult, the receipt is difficult
to check by the voter, it is very difficult to implement in practice (one reason
is the alignment of the two pages), it does not accommodate disabled voters, it
does not allow manual recounts, the cost is very high (because one machine per
booth is needed), and the administration of the system is difficult.

3.5 Ballot with indirection

To allow the same separation of information as in the previous case, the following
technique can be used: on one page each candidate is associated with a random
symbol; on another page the same set of symbols appears in a random order. For
convenience the two pages can be overlayed, with the top page having holes and
the symbols on the bottom page being visible through the holes. (see Fig. 2(a)).
This technique was first proposed in PunchScan [5] and therefore this style of
ballot is known as a PunchScan ballot.

In PunchScan, the voter uses a dauber to mark the selection of candidates.
The diameter of the ink disc is greater than the diameter of the hole punched
through the top page, therefore the dauber leaves a mark on both the top and
the bottom ballot pages. Fig. 2(b) contains a ballot voted for “Yes”. Because
the order of the symbols on the two pages of a ballot is different (and inde-
pendently and uniformly distributed), one cannot determine which mark is for

8



which candidate by viewing only one voted page. The association of candi-
dates with symbols, and the order of the symbols on the bottom page, can be
uniformly random, or pseudorandom.

Thus, in PunchScan, the receipt is of the form: (s, x,E(f(s), v)) where E
is viewed as a permutation of the plaintext space (all encryptions are trivially
permutations of plaintext space) composed of two distinct permutations: the
first the association of candidate choice with dummy variables on the front
(viewed as a map of candidates in canonical order, such as alphabetical order,
to dummy variables in canonical order) and the second the association of dummy
variables with positions on the back (again the map can be between canonical
orderings). With abuse of notation, using the same notation for the key and the
encryption function it represents, the key f(s) = σa(s)◦σā(s) is the composition
of two permutations, each a well-defined function of s.

3.5.1 The voting ceremony

On election day, the voter goes to her assigned polling place, authenticates
herself as a legitimate voter, and before seeing the ballot, commits to which
page to keep as a receipt. In the privacy of a booth, the voter marks the hole
that contains the symbol associated with her favorite candidate, and, when
done, scans the page chosen in the first step, keeps it and shreds the other one.
After election day, any voter can go to the election authority web site, enter the
serial number for her ballot, check that the ballot is there and that it accurately
resembles the page she possesses: her marks are recorded correctly and the
order of the symbols on her receipt is the same as the order posted. The receipt
is signed, and this method provides a proof receipt using a symmetric ballot.
Correct printing is ensured through the auditing of uncast and spoiled ballots.

3.5.2 Advantages and disadvantages

The advantages of this method are: the receipt is created automatically and is
easily checkable by the voter, it allows a fixed order of the candidates on the
ballot, it offers excellent privacy (the scanner does not know the clear text votes),
the cost is low, the dispute resolution is easy and it accommodates disabled
voters (see the PunchScan website for a brief description of such capability,
which also follows for Prêt à Voter; this capability is, however, not described
in detail yet, a paper is in preparation). The disadvantages are: it does not
accommodate write-ins (but it accommodates most types of contests), the voters
are not familiar with the voting interface (the indirection may cause usability
problems), its privacy properties require a strict chain of custody before the
ballots reach the voters, and it does not allow a manual recount.

3.6 Permuting Candidate Order

Prêt à Voter [8] proposes a simplification of the two-part visual cryptography
ballot presented in Sect. 3.4, see Fig. 3(a). The ballot is printed on a single page

9



(a) A sample Prêt à Voter
ballot. A permuted list of
candidates is on the left

(b) A voted Prêt à Voter
ballot. When the right side
is separated from the left
side the mark is not a clear
vote anymore

(c) Given only the right
side, the mark is equally
likely to represent a vote for
any candidate.

Figure 3: Prêt à Voter ballot

of normal paper, with the names of the candidates on the left and the places
to mark on the right. A voter makes a mark next to her favorite candidate
(see Fig. 3(b)). The names of the candidates are permuted on each ballot and
when the left part is separated from the right part, the marks on the right are no
longer associated with candidates (see Fig. 3(c)). This ballot style is an example
of a ballot that has two parts (left and right) but the information is distributed
asymmetrically in the two parts. Thus the Prêt ã Voter receipt is of the form
(s, x,E(f(s), v)) where f(s) is a permutation.

3.6.1 The voting ceremony

On election day, the voter goes to her assigned polling place, authenticates
herself as a legitimate voter, gets two ballots from the election officials and
chooses one to audit (for the printing correctness check) and one to use for
voting. In the privacy of the voting booth, the voter makes an X on the right
side of the ballot, next to her favorite candidate. The voter separates the list of
candidates (on the left) from the marks (on the right), destroys the left side and
scans the right side. The marks are recorded and made public. The scanned
side is kept by the voter and anytime after election day, the voter can go to the
election authority web site, enter the serial number for her ballot, check that
the ballot is there and that it accurately resembles the page she possesses. The
receipt is signed, and this method provides a proof receipt using a symmetric
ballot. Correct printing is ensured through audits of spoiled ballots.

10



(a) A sample
Scantegrity ballot,
just like a regular
optical scan ballot.

(b) A voted
Scantegrity ballot.
When the oval is
filled in, a confir-
mation number
appears.

(c) The symbols on the receipt may
correspond to any candidate.

Figure 4: Scantegrity Ballot: Blue is the ballot form, and Yellow is the re-
ceipt. Typically, the indication receipt may contain the serial number and the
confirmation number.

3.6.2 Advantages and disadvantages

The advantages of this method are: the voters are somewhat familiar with
the interface,the receipt is created automatically and is easily checkable by the
voters, it accommodates disabled voters, and it offers excellent privacy (the
scanner does not know the clear text votes) at a low cost. The disadvantages
of the method are: it does not accommodate write-ins (but it accommodates
most types of contests), it does not allow a fixed order of candidates, its privacy
properties require a strict chain of custody before the ballots reach the voters,
and it does not allow for a manual recount.

3.7 Standard optical scan ballot, encoded receipt

Scantegrity [7] and Scantegrity II [6] address the usability concerns of PunchScan
while keeping the order of candidates fixed on all ballots. A Scantegrity ballot
contains two asymmetrical parts, but because the two parts are never separated,
it is printed on a normal piece of paper that will not be divided in any way.
One part of the ballot is a normal optical scan ballot, which can be scanned
and used by any certified optical scan voting system. The other part is a set of
confirmation numbers associated with the candidates (e.g. printed next to the
candidates). The association is different on each ballot. See Fig. 4 for a sample
Scantegrity II ballot.

The difference between Scantegrity and Scantegrity II is that the voter only
gets the confirmation numbers for the candidates she is choosing in Scantegrity
II, while in Scantegrity the voter is able to see the confirmation numbers for
all the candidates. The immediate benefit is in the dispute resolution process:
voters that claim to have their ballots registered improperly must provide the
confirmation numbers, which are random and hard to predict. The election
authority can then discard the complains that contain confirmation numbers

11



that do not appear on the indicated ballot and race. In Scantegrity the receipt
is of the form (s, x,E(f(s), v)) where f(s) is a permutation of some standardly
ordered symbols (alphabetically ordered letters), whereas in Scantegrity II f(s)
is a mapping between candidates and randomly chosen codes.

3.7.1 The voting ceremony

On election day, the voter goes to her assigned polling place, authenticates
herself as a legitimate voter, gets two ballots from the election officials and
chooses one to audit (for the printing correctness check) and one to use for
voting. In the privacy of the voting booth, the voter marks the ballot as a
normal optical scan ballot. On a separate piece of paper, she writes down the
confirmation numbers associated with the voted candidates, tears off the bottom
part of the ballot, with the serial number of the ballot on it and keeps it. The
ballot is scanned by a regular optical scanner. After election day, any voter can
go to the election authority web site, enter the serial number and check that the
symbols she wrote down are on the web site.

Because the receipt the voter gets is an indication receipt (as opposed to a
proof receipt), if the voter sees on the web site a different set of symbols then
the ones on her own piece of paper, she has to have a way of challenging the
records on the bulletin board. Depending on the length and unpredictability of
the confirmation numbers, a set of dispute resolution techniques are possible;
see [6] and [7] for details. This method hence provides a proof receipt using an
asymmetric ballot. Correct printing is ensured through the auditing of spoiled
and unused ballots.

3.7.2 Advantages and disadvantages

The advantages of Scantegrity II are: the voters are highly familiar with the
interface, it is highly usable by the election officials, the voters can easily check
their receipt, the dispute resolution process is easy, it allows for a fixed order
of the candidates, it accommodates disabled voters, it allows a manual recount,
the cost is very low, and it is very easy to administer. Another advantage is that
the voting machine can compute an independent tally; while this is also true
of the visual cryptography based system, it is more important in this instance
because it allows the voter-verifiability to be an unobtrusive aspect of a regular
voting system based on optical scan. In such a system, it is possible to compute
vote tallies at the precinct or scanner levels. The disadvantages of the method
are: it does not accommodate write-ins, the voting machine knows the clear
text votes, and it needs a strict chain of custody after the voters mark their
ballots to protect privacy.

Table 2 summarizes the advantages and disadvantages of the four types of
front-ends.

12



Visual Crypto PunchScan Prêt à Voter Scantegrity II
Generality Any type of con-

test
Most practical
contests

Most practical
contests

Most practical
contests

Familiarity with
the interface

Low Low Medium High

Receipt Creation Automatic Automatic Automatic Requires voter
effort

Voter verification Difficult Easy Easy Easy
Supports write-ins Yes No No No
Fixed order of the
candidates

Yes Yes No Yes

Ease of implemen-
tation in practice

Difficult Easy Easy Easy

Accommodates
disabled voters

No Yes Yes Yes

The voting ma-
chine knows the
clear text votes
and can compute
the tally

Yes No No Yes

Chain of custody
to protect privacy

No Before the ballot
reaches the voter

Before the ballot
reaches the voter

After the ballot
is marked

Manual recount No No No Yes
Cost High Low Low Low
Ease of adminis-
tration

Difficult Moderate Moderate Easy

Ease of dispute
resolution

Easy Easy Easy Easy

Table 2: Evaluation of various types of ballots

13



4 The Back-end

The back-end is responsible for producing clear text ballots from the encrypted
receipts produced during the voting ceremony. The process has to be fully
auditable by anyone, yielding universal verifiability, while preserving the secrecy
of the votes. In a general sense, in mixnet-based back-ends this works as follows:
in one approach the information required for decryption is composed of two or
more parts, either stored on some form of database, as in PunchScan, or printed
on the ballot in the form of an onion, as with classical mixnets. Ballots are
shuffled after the use of each piece of information; hence the encrypted ballot
has a path through the mixnet, based on its position in each shuffle. When
the decryption information is stored on the ballot the path is chosen on the fly;
when it is not, the path is pre-determined and the corresponding information in
the database is linked by pointers. In another approach, as with pointer-based
mixnets, in Scantegrity, the shuffle (a permutation of ballot order) is combined
with decryption (a permutation of candidate order).

In two of the three cases presented here, the back-end is also responsible for
creating the blank ballots initially.

Three main techniques are presented:

• classical mixnets using public keys and onions. The path followed by a
vote is determined on-the-fly.

• punchscanian mixnet using pre-established and committed paths and onions.

• pointer-based mixnet with pre-established paths and no onions.

We briefly describe each back-end and suggest simple ways to connect hith-
erto uncombined back-ends with front-ends in Table 1

4.1 Traditional mixnets

Mixnets have been classically associated with onion routing because the payload
can be viewed as an onion, with multiple layers of encryption; each mix strips
off one of the layers. Besides the onion, the payload also contains a value (a
ballot in the case of voting systems). After removing one layer of encryption
from the onion, a mix finds a seed (sometimes called a germ) that is used to
transform the value in the payload. This way, the output value is uncorrelated
with the input value.

In general, the payload is a pair (Onion, Ballot). Thus, when the backend
is a traditional mixnet, the value of x for all the front-ends contains the onion.
The serial number from the receipt is stripped after voters have checked the
presence of the receipt on the bulletin board, and the triplet (s, x, r) is reduced
to the pair (x, r), referred to as (Onion, Ballot). (Ballot hence represents the
encrypted vote). For a particular mix j and a particular input-output pair,
the input is Payloadj = (Onionj , Ballotj) and the output is Payloadj+1 =
(Onionj+1, Ballotj+1), The relation between the two onions is

Onionj = Enc(PublicKeyOfMix
J
)(seedj , Onionj+1) (1)

14



where Enc(PublicKeyOfMix
J
) represents encryption with the public key of mix j and

the comma represents concatenation. The (j+1)th onion is obtained by decrypt-
ing the jth onion and removing seedj : Onionj = Dec(PrivateKeyOfMix

J
)(Onionj+1)\

seedj , where \ denotes removal from a string. The relation between the input
and the output ballot is

Ballotj+1 = Fj(seedj)(Ballotj) (2)

where Fj(seedj) ∈ G,∀j for group G with operation ⊙, and Fj is a public
function. An important aspect is that the Onion and the Ballot have to travel
together through the mix. Thus

⊙
j Fj(seedj)(:) = D(f(s), :) decrypts the

encrypted receipt. Note that seedj is a function of s.
A mixnet may be audited by either providing a zero-knowledge proof of

correctness or using a randomized partial checking (RPC) technique [11]. In
the latter case, the mix is required to reveal seedj for a significant fraction
of the inputs (or outputs). Having the seed, the auditor (sometimes called the
challenger or verifier) can check Eq. 1 and Eq. 2 for all the revealed input-output
pairs.

The traditional mixnet is used as the back-end of the voting scheme using
visual cryptography proposed by Chaum, and by Prêt à Voter. In the scheme of
Chaum, G is the set of all bitwise XORs acting on n-bit strings, and Fj(seedj)
corresponds to a bitwise XOR using the pseudo-random string generated using
seedj . The composition of the processing of individual mixnet entities corre-
sponds to the bitwise XOR of the receipt bitstring with the bitstring used to
encrypt it. In Prêt à Voter, G is the set of permutations on sets of size c, the
number of candidates, ⊙ is permutation-composition and F = P ◦ h where h is
a one way function and P is a function that generates a permutation on a set
of size c given a seed. The composition of the processing of individual mixnet
entities corresponds to the inverse of the permutation used for encryption.

4.1.1 Advantages and disadvantages

The advantages of onion mixnets are their truly distributed nature, support
for dynamic paths and the possibility of setting up the system before the de-
tails of the elections are known. The disadvantage is low efficiency, both when
processing the ballots and during the audit process.

We now describe the combination of the onion mixnet backend with the
front-ends of PunchScan and Scantegrity.

4.1.2 PunchScan ballot with onion mixnet

Recall that
⊙

j Fj(seedj)(:) = D(f(s), :) for the onion mixnet, and f(s) =
σa(s) ◦ σā(s) for the PunchScan ballot. Hence, for a PunchScan front-end and
an onion mixnet back-end, the ballot needs an onion, which will be contained
in x. The onion contains seeds which will generate permutations whose com-
position will invert the encrypting permutation σa(s) ◦ σā(s). Thus, G is the
set of permutations on a set of size c, and ⊙ is the composition of permuations.

15



In order to generate the ballot, the ballot manufacturing facility produces a
pseudorandom permutation, say σ, as the composition of several pseudorandom
permutations σj (as many as there are mixes) each generated from a random
seed. σ is decomposed into two permutations to be used for the two pages
of the ballot, by choosing one of the permutations uniformly at random. The
seeds for the σj are buried into the onion, which is part of x. Decryption in-
volves generating the corresponding σj , and performing its inverse. That is,
Fj(seedj) = σ−1

j .

4.1.3 Scantegrity ballot with onion mixnet

The best dispute resolution properties for the indication receipts of Scantegrity
are obtained when the set of confirmation numbers is large, when a confirmation
number is used exactly once among all the ballots, and when the probability
of guessing a valid confirmation number of any candidate in a receipt is low.
When the Scantegrity ballot is used with the onion mixnet, a permutation of
a canonical ordering of all candidates over all ballots for each race is used to
generate the confirmation numbers. That is, the permutation acts on cN values
for a c-candidate race and N ballots, ensuring distinct confirmation numbers
on each ballot. The permutation is generated as for the PunchScan ballot, by
first constructing as many pseudorandom permutations as there are mixes, and
then composing them into a single permutation. The decryption is also simi-
lar thereafter; each mix applies the inverse of the pseudorandom permutation
corresponding to the seed the mix obtains.

4.2 Punchscanian mixnet

A punchscanian mixnet [14] has been viewed as an integral part of PunchScan
itself, however we describe how it may be used with other front-ends, after first
providing a brief overview. The path through a punchscanian mixnet is fixed a-
priori and commitments to it are published a priori; the paths and permutations
are pseudorandomly generated. The advantage of having pre-set paths is that
the onions do not have to be part of the payload anymore. The notion of an
onion gets degraded to a chaining of secret seeds, which are fixed along the
path. The payload becomes only the ballot itself, which carries the encrypted
selection of the voter. In a punchscanian mixnet Payloadj = (Ballotj) and
there is no relation between the degraded onions; that is, there is no variable
x in the receipt. Because the paths are pre-committed to, and only the mixnet
knows the seeds, the mixnet itself produces the ballot (as opposed to the voting
machine producing the onions). In this setting, the mixnet is a single entity, and
not composed of several entities; however, this single entity may be split among
several using standard secret sharing approaches. If RPC is used to audit the
mixing, the single entity consists of two lists for the purposes of the audit and
hence:

Ballotj = F (seedj1) ⊙ F (seedj2)(Ballotj−1) (3)

16



where F is a public function. Having access to only one of the three elements in
the equation does not leak any information about the other two. The commit-
ments to the seeds can be independent, or can be blended into the commitments
to the paths. While traveling through the mixnet, the ballot is transformed ac-
cording to Eq. 2.

After the ballots are produced, they are publicly committed to. To ensure
that the produced ballots are consistent with the seeds used to generate them, a
significant fraction of the ballots are randomly chosen to be opened, and Eq. 3
is checked for all of them. If the checks are successful, the ballots that were
not opened are also consistent, with high probability, with the paths and the
seeds actually used for the decryption. The ballots that are opened need not be
printed on paper. To ensure that the ballots that survived the audit are printed
correctly, another audit (called a printing audit) has to be performed. If all the
ballots are initially printed, then the printing audit can be combined with the
mixnet correctness audit.

4.2.1 Advantages and disadvantages

The major advantage is the high efficiency. Millions of ballots can be tallied
in minutes. The disadvantages are the central nature of the authority, and the
need to know the details of the election before setting it up.

We now describe the use of the punchscanian mixnet with the other front-
ends. The essential approach is to absorb the onions into the mixnet and to
precommit to both onions and paths. Hence the onions used for the onion
mixnet can also be used for the punchscanian mixnet, with two differences: the
onions will not be carried with the ballots, and using more than two mixes
serves no purpose, as precommitted paths imply that decryption is performed
by a single entity. Using a larger number of mixes provides no greater privacy;
the use of two mixes is necessary, however, if tally verification consists of RPC.

4.2.2 Visual cryptography with punchscanian mixnets

Two punchscanian mixnets are constructed, one for each layer. For each layer of
each vote, the pseudorandom component contributed by each mix is committed
to, along with the path the ballot layer will travel. The voter’s choice of receipt
determines the mixnet that will be used to decrypt her vote. From the chosen
layer, the pixels that are generated pseudo-randomly are discarded and the other
pixels are run through the corresponding punchscanian mixnet.

4.2.3 Prêt à Voter with punchscanian mixnets

The onions of the Prêt à Voter ballot are committed to, along with the path
the ballot will take, at the mixnet. The onion is not part of the payload.

17



4.2.4 Scantegrity with punchscanian mixnets

The same procedure is followed as for Scantegrity with the onion mixnet, ex-
cept that the onion is not carried with the ballot, and is committed to in the
appropriate mixes along with the pre-computed path the ballot will take.

4.3 Pointer-based mixnets, or mixnets with no explicit

group operation

In its traditional form, the payload of the mix consisted of an onion and a ballot.
A first simplification step, as in the punchscanian mixnet, was to separate the
two, absorb the onions into the mixnet and require only the ballot to travel.
A second step is to remove the onion altogether. The onion does not vanish
from a conceptual perspective, but is absorbed into the other operation being
performed by the mixnet: the shuffle. This is because both the shuffling and
the decryption can be viewed as permutations when the number of messages
is small, and can be combined into one essential permutation. Another way of
viewing this is to consider the vote for each candidate in a ballot (a mark or no
mark) as a separate entity that travels independently through the mixnet (as
opposed to being part of a ballot or a contest).

Let N be the number of ballots in an election and let c be the number of
candidates on a ballot. Consider three tables: R (stands for receipt values)
contains coded votes; T (stands for tallies and results) contains clear text votes
that are countable by anyone; D (stands for decrypt) connects R with T . R is a
matrix with N rows and c columns, each row represents a ballot. R is a matrix
with c rows and N columns, each row represents a candidate. An element (i, j)
is either marked or not marked in R and T , a mark corresponds to a vote for the
candidate. D is a blob with N × c elements (the number of rows and columns
is irrelevant). Fig. 5 gives an example of the three tables for an election with
six ballots and two candidates.

Figure 5: Pointer-based mixnet

18



The tables are connected by two permutations, π1 and π2. π1 connects
R (receipts; coded votes) with D (decrypt): Dk = Rπ1(k), where k is some
canonical representation of (i, j); for example, k = (c − 1)i + j. π2 similarly
connects D with T (results or tally): Tk = Dπ2(k). These permutations are
constrained to return a mark for a particular candidate in R to a mark for the
same candidate in T .

For two candidates, the properties of the permutation may be formalized
as follows: let π1 : [0, 1, ..., N × c − 1] → [0, 1, ..., N × c − 1] be bijective and
let π2 : [0, 1, ..., N × c − 1] → [0, 1, ..., N × c − 1] be bijective such that no two
elements belonging to the same ballot initially (in the same row in the initial
set) are mapped to two elements belonging to the same candidate (the same
row in the final set):

∀i, j, i 6= j having [i/c] = [j/c] ⇒ [π2(π1(i))/b] 6= [π2(π1(j))/b] (4)

where [x] represents the greatest integer less than or equal to x. Note that
no group operation (such as modulo addition or permutation composition) is
performed on the payload. For c > 2, the condition requires that the remainder
on division by c (the candidate for a mark or nomark) be preserved; because the
rows and columns are reversed, one may then wish to view table T canonically
as listed column by column, and R row by row.

The audit checks that one of the two properties hold: Di = Rπ1(i) or Di =
Tπ

−1

1
(i) and that the properties of the two permutations π1 and π2 hold; more

precisely it is statistically checked that both π1 and π2 are injective functions
and that Eq. 4 holds. Because the voting system cannot predict which property
will be checked, a successful audit implies that both properties hold with high
probability.

4.3.1 Advantages and disadvantages

The advantages of pointer mixnets are their efficiency and the possibility of
setting up the system before the details of the election are known. Their disad-
vantage is the central nature of the authority.

4.3.2 Visual Crypto with Pointer mixnet

In order to use the pointer mixnet with the visual crypto front-end, one would
need to treat each pixel as a candidate, and the resulting system would be quite
inefficient.

4.3.3 Prêt à Voter with pointer mixnet

Each candidate, and thus mark position, is treated independently and its path
and ending point in the table with the clear votes are committed to, just as with
Scantegrity.

19



Onion mixnets Punchscanian
mixnet

Pointer mixnet

Distributed author-
ity

Yes No No

Paths Dynamic Static Static
Constructs the bal-
lot

No Yes Yes

Efficiency Low High Medium
Lazy ballot style Yes No Yes
Cryptography used Symmetric and

asymmetric encryp-
tion

Commitments Commitments

Table 3: Properties of various mixnets

4.3.4 PunchScan with pointer mixnet

Each position that can be marked is treated independently and its path and
ending point in the clear vote table is committed to, just as with Scantegrity.

Table 4.3.4 summarizes the advantages and disadvantages of the three types
of mixnet-based decryption mechanisms.

5 Conclusions

We have presented a unified view of four practical, end-to-end, voter-verifiable
voting systems that have been proposed recently as monolithic blocks. We
present a concrete separation between the way the ballot is presented and how
the voters interact with the system (the front-end) and the way the ballots are
decrypted and the tally is verified (the back-end). We present the properties of
these front and back-ends, and describe simple ways to combine them. This gives
great flexibility in the choice of a voting system for a particular jurisdiction that
values some properties more then others (e.g. privacy more then usability). Our
work opens a new way of looking at future voting systems, component-wise. An
immediate benefit is the possibility of designing accessible front-end for each of
presented back-ends, as opposed to trying to mimic the front-end in an accessible
manner. Further research can focus only on improving or changing a particular
component of a voting system (e.g. back-end), as long as it can interact with
the other component (e.g. front-end).

References

[1] B. Adida and R. L. Rivest. Scratch & Vote: self-contained paper-based
cryptographic voting. In WPES ’06: Proceedings of the 5th ACM workshop

20



on Privacy in electronic society, pages 29–40, New York, NY, USA, 2006.
ACM Press.

[2] D. Chaum. Private communications.

[3] D. Chaum. U.S. patent 10348547 - Secret-ballot systems with voter-
verifiable integrity, 2003.

[4] D. Chaum. Secret-ballot receipts: True voter-verifiable elections. IEEE
Security and Privacy, pages 38–47, January/February 2004.

[5] D. Chaum. Recent results in electronic voting. In Presentation at Fron-
tiers in Electronic Elections (FEE 2005), Milan, Italy, September 2005.
ECRYPT and ESORICS.

[6] D. Chaum, R. Carback, J. Clark, A. Essex, S. Popoveniuc, R. L. Rivest,
P. Y. A. Ryan, E. Shen, and A. T. Sherman. Scantegrity ii: End-to-end
verifiability for optical scan election systems using invisible ink confirmation
codes. In EVT’07: Proceedings of the USENIX/Accurate Electronic Voting
Technology on USENIX/Accurate Electronic Voting Technology Workshop.
USENIX Association, 2008.

[7] D. Chaum, A. Essex, R. Carback, J. Clark, S. Popoveniuc, A. T. Sherman,
and P. Vora. Scantegrity: End-to-end voter verifiable optical-scan voting.
IEEE Security and Privacy, May/June 2008.

[8] D. Chaum, P. Y. A. Ryan, and S. Schneider. A practical voter-verifiable
election scheme. In In Sabrina De Capitani di Vimercati, Paul F. Syverson,
and Dieter Gollmann, editors, ESORICS, volume 3679 of Lecture Notes in
Computer Science, pages 118–139. Springer, 2005.

[9] D. Chaum, J. van de Graaf, P. Y. A. Ryan, and P. L.
Vora. Secret ballot elections with unconditional integrity. Tech-
nical report, IACR Eprint, 2007. http://eprint.iacr.org/ or
http://www.seas.gwu.edu/~poorvi/cgrv2007.pdf.

[10] D. L. Chaum. Untraceable electronic mail, return address, and digital
pseudonym. Communication of ACM, February 1981.

[11] M. Jakobsson, A. Juels, and R. L. Rivest. Making mix nets robust for
electronic voting by randomized partial checking. In Proceedings of the
11th USENIX Security Symposium, pages 339–353, Berkeley, CA, USA,
2002. USENIX Association.

[12] D. Lundin. Component based electronic voting systems. In IAVoSS
Workshop On Trustworthy Elections (WOTE 2007), University of Ottawa,
Canada, June 2007.

[13] M. Naor and A. Shamir. Visual cryptography. Lecture Notes in Computer
Science LNCS, 950:1–12, 1995.

21

http://eprint.iacr.org/
http://www.seas.gwu.edu/~poorvi/cgrv2007.pdf


[14] S. Popoveniuc and B. Hosp. An introduction to PunchScan. In IAVoSS
Workshop On Trustworthy Elections (WOTE 2006), Robinson College,
Cambridge UK, June 2006.

[15] J. van de Graaf. Merging Prêt à Voter and Punch-
Scan. Cryptology ePrint Archive, Report 2007/269, 2007.
http://eprint.iacr.org/2007/269.pdf.

[16] P. L. Vora. David Chaum’s voter verification using encrypted pa-
per receipts. Cryptology ePrint Archive, Report 2005/050, 2005.
http://eprint.iacr.org/2005/050.pdf.

22

http://eprint.iacr.org/2007/269.pdf
http://eprint.iacr.org/2005/050.pdf

	Introduction
	Related Work
	The Front-end
	The General Receipt
	The General Printing Audit
	Types of Receipts
	Ballots using visual cryptography
	The voting ceremony
	Advantage and disadvantages

	Ballot with indirection
	The voting ceremony
	Advantages and disadvantages

	Permuting Candidate Order
	The voting ceremony
	Advantages and disadvantages

	Standard optical scan ballot, encoded receipt
	The voting ceremony
	Advantages and disadvantages


	The Back-end
	Traditional mixnets
	Advantages and disadvantages
	PunchScan ballot with onion mixnet
	Scantegrity ballot with onion mixnet

	Punchscanian mixnet
	Advantages and disadvantages
	Visual cryptography with punchscanian mixnets
	Prêt à Voter with punchscanian mixnets
	Scantegrity with punchscanian mixnets

	Pointer-based mixnets, or mixnets with no explicit group operation
	Advantages and disadvantages
	Visual Crypto with Pointer mixnet
	Prêt à Voter with pointer mixnet
	PunchScan with pointer mixnet


	Conclusions

