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Abstract. In many biomedical imaging applications, video sequences
are captured with low resolution and low contrast challenging conditions
in which to detect, segment, or track features. When image deformations
have just a few underlying causes, such as continuously captured cardiac
MRI without breath-holds or gating, the captured images lie on a low-
dimensional, non-linear manifold. The manifold structure of such image
sets can be extracted by automated methods for manifold learning. Fur-
thermore, the manifold structure of these images offers new constraints
for tracking and segmentation of relevant image regions. We illustrate
how to incorporate these new constraints within a snake-based energy
minimization approach, and demonstrate improvements in using snakes
to segment a set of cardiac MRI images in challenging conditions.

1 Introduction

Many diagnostic and medical applications require segmenting particular tissue
structures in every frame of a long 2D or 3D data set. This is challenging be-
cause medical video images often have low resolution and low contrast. Com-
bining cues between frames is difficult because often tissues move significantly
between frames, and this motion may include complicated deformations that do
not lend themselves to simple parameterized models. Creating automated tools
to understand and parameterize image data that is affected by a small set of
deformations has the potential to impact a large set of relevant medical imaging
problems.

For the purpose of segmentation or boundary detection, a collection of tools
support imposing various priors on the expected solution. Snakes [1], for instance,
are a tool for integrating cues from image data with priors on the expected
smoothness of a contour. Within video sequences, these smoothness constraints
can be extended to enforce temporal consistency, minimizing variation between
consecutive frames, providing cues for segmentation in image regions that have
particularly low contrast or high noise.

However, there is often additional structure in a set of images beyond consis-
tency between consecutive frames. In particular, medical image sequences often
vary due to a small number of factors. For example, in cardio-pulmonary imag-
ing, the patient breathing cycle causes a deformation of the chest cavity, and the
heartbeat leads to large deformations of the shape of the heart. It is complicated
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to define parametric models of these deformations that fit multiple patients. For
any one patient, however, a collection of cardio-pulmonary images forms a 2
dimensional manifold, where each image is indexed by the current phase of the
breathing and heartbeat cycles.

The observation within this paper is that the manifold structure of these data
sets provides stronger constraints between images than temporal consistency. In
[2], a method is proposed to incorporate a statistical prior on the shape of the
segmenting contour, while our work can be viewed as a method to use manifold
learning to help enforce priors on the changes of shape. We offer an example
mechanism to exploit automated manifold learning tools as a pre-processing
step to provide a new multi-image constraint to be used in energy-minimization
based segmentation procedures. We implement these tools for the specific case of
extracting left ventricle wall contours in cardio-pulmonary MRI. In this example
domain, a variation in the breathing cycle leads to a uniform translation of
the heart. Variation in the heartbeat cycle leads to variations in the shape of
the heart, but, largely, not its position. These deformations suggest that strong
constraints can be placed on the expected variation of the heart contour between
images — constraints more specific than general smoothness constraints.

The following section gives a brief overview of related work in manifold learn-
ing and image segmentation. This is followed by an explanation of how to use
Isomap in order to extract the cardiopulmonary manifold structure. Then, the
primary contribution of this paper is presented – the classical snake-based en-
ergy function is extended in order to exploit using this manifold structure to
fit snakes simultaneously in many images. We conclude by demonstrating the
efficacy of these constraints on both simulated and real data.

1.1 Background and Previous Work

This work integrates ideas from snake-based energy minimization and manifold
learning. To our knowledge, these ideas have not been explicitly considered to-
gether before. In order to ground our later presentation, we first introduce, very
briefly, some recent research in the use of snakes in biomedical image analysis
and an overview of manifold learning.

Snakes for Medical Image Segmentation. The enormous amount of prior
work on snakes is a testimony to the effectiveness of active contours on a wide
variety of problems in medical imagery (for general reviews, see example [3, 4]).
With respect to tracking in cardiovascular imagery, an important use of de-
formable models is to measure the dynamic behavior of the human heart, espe-
cially the left ventricle. Accurately characterizing heart wall motion is necessary
to diagnose and estimate the severity and extent of diseases such as ischemia [5].

For this task, one approach uses a 2D deformable contour model to segment
the LV boundary in each slice of an initial image volume. These contours are
then used as the initial approximation of the LV boundaries in corresponding
slices of the image volume at the next time instant and are then deformed to
extract the new set of LV boundaries [6, 7].
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A traditional snake is a parametric contour embedded in the image plane,
represented as a closed curve C(s) = (x(s), y(s))�, where x and y are the coordi-
nate functions and s ∈ [0, 1] is the parametric domain. The shape of the contour
minimizes the following functional:

E =
∫ 1

0
Eint(C(s)) + Eimg(C(s)) + Econ(C(s))ds, (1)

where Eint represents the internal energy of the snake due to bending, Eimg is
the image energy derived from the image, and its local minima coincide with
intensity extrema, edges, and other image features of interest, and Econ is a
place holder for additional constraints appropriate for a given context, including
prior shape models and limitations on changes between consecutive images. Our
contribution within this work is to offer a method for having these additional
constraints depend upon the automatically extracted manifold structure of an
image set.

Once the energy function is specified, one can obtain the snake minimizing
the functional in Equation 1 by solving the following Euler-Lagrange equation:

Ct = −α
∂2C

∂s2 + β
∂4C

∂s4 + ∇Eimg (2)

where Ct is the partial derivative of C(s, t) with respect to the introduced time
variable t, which tracks the evolution of the snake. Equilibrium is achieved when
the internal force and image force balance and the left-hand side term Ct vanishes.

The internal energy can be written as:

Eint =
1
2

(
α

∣∣∣∣∂C

∂s

∣∣∣∣
2

+ β

∣∣∣∣∂
2C

∂s2

∣∣∣∣
2
)

(3)

where α and β are blending parameters that control the snake tension and
rigidity, respectively.

A commonly used external image force is gradient vector flow (GVF) [8, 9].
This is a bidirectional image force ∇Eimg that can capture the object boundaries
from either side and can deal with concave regions. A GVF field v(x, y) is defined
as the equilibrium solution of the following system of partial equations:

vt = g(|∇f |)∇2v − h(|∇f |)(v − ∇f)
v(x, y, 0) = ∇f (4)

where vt is the partial derivative of v(x, y, t) with respect to t, and ∇f is the gra-
dient of the image edge map. The steady state of this update equation depends
on the scalar parameter κ which affects the relative weight of the smoothness
term g(|∇f |) = exp{−( |∇f |

κ )2} and the term that fits the GVF to the image
gradient h(|∇f |) = 1 − g(|∇f |).

In section 3 we offer a definition of a new Econ term that is used to en-
force constraints that are available from an understanding the intrinsic manifold
structure of an image set. The next section gives a brief background on these au-
tomated manifold learning methods, and their recent specialization for medical
imagery.
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Manifold Learning. Image data can be naturally represented as points in a
high dimensional data space (one dimension for each pixel). Often, however, a
set of images has a lower intrinsic dimensionality, and the image data set can
be mapped onto a lower dimensional space. Classical dimensionality reduction
techniques for image sets rely on Principle Component Analysis (PCA) [10] and
Independent Component Analysis (ICA) [11]. These seek to represent data as
linear combinations of a small number of basis vectors. However, many natural
image data sets have an intrinsic dimensionality that is much less than the
number of basis images required to linearly reconstruct them.

This has led to a number of methods seeking to parameterize low-
dimensional, non-linear manifolds. These methods measure local distances or
approximate geodesic distances between points in the original data set, and
seek low-dimensional embeddings that preserve these properties. Isomap [12] ex-
tends classic multidimensional scaling (MDS) by substituting an estimate of the
geodesic distance along the image manifold for the inter-image Euclidean dis-
tance as input. LLE [13] attempts to represent the image manifold locally by
reconstructing each image as weighted combination of its neighbors. SDE [14]
applies semi-definite programming to learn kernel matrices which can be used
to create isometric embeddings.

Isomap performs well for image sets sampled from convex manifolds. LLE
and SDE do not fail in the case of non-convexity, but do not provide minimal
parameterizations for cyclic manifolds (i.e., they give points on a sphere three
coordinates instead of two). One algorithm which explicitly addresses cyclic man-
ifolds is [15]. These algorithms, and others [16, 17, 18] have been used in various
applications, including classification, recognition, tracking, and to a limited ex-
tent, biomedical image analysis [19]. Using image distance measures that explic-
itly reflect the variations within the image set (for instance, using estimates of
the local deformation instead of pixel intensity differences) has been shown to
be advantageous for medical imagery, and leads to low-dimensional embeddings
that more accurately reflect the underlying intrinsic degrees of freedom [20, 21].

2 Cardio-Pulmonary Image Manifolds

Cardio-pulmonary MRI imagery is an outstanding candidate for manifold analy-
sis. The appearance and deformations of MRI imagery of the chest varies greatly
from patient to patient. However, images of a particular patient vary with the
global deformation of the chest cavity due to breathing, deformation of the heart
and nearby tissues due to heartbeats, and image noise.

The analysis of these images, even the capture of MR imagery, is affected by
these parameters. Diagnostic imaging often requires “held-breath” and cardiac-
gated imaging. These protocols offer two distinct methods to minimize variation
in the captured imagery. The “held-breath” protocols require the patient to
minimize variation due to breathing (by capturing all the imagery while the
patient holds their breath and minimizes lung motion). Cardiac-gated imaging
triggers the image capture to always occur at the same part of the cardiac cycle.
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When the diagnostic value of imaging comes from analysis of motion, the
imaging process takes unconstrained samples of the cardiopulmonary image man-
ifold — a set of images that vary due to the heart and lung deformation. In this
section we consider the post hoc analysis of samples of the cardiopulmonary
image manifold. Although heartbeat monitors are relatively unobtrusive and
common in diagnostic environments, we explore methods that operate only on
the images without any additional knowledge, and focus on tools that will be
effective in the presence of significant noise. To make this presentation con-
crete, we focus on a particular, noisy MRI image set, which is illustrated in
Figures 1,4,5.

Fig. 1. The top left shows four images from a 200 image cardio-pulmonary MRI cine
sequence of the heart. Note the variation both in the shape of the left ventricle (the
white blob roughly centered in the image) and the position of the heart (shifting ver-
tically). The top right shows the cylindrical Isomap embedding of this data set (using
the algorithm of [15]). The scale of the axes is the same, and is proportional to the
distance between images (measured, as discussed in the text, as the sum of the phase
difference of a grid of complex Gabor filters). Cylindrical Isomap imposes a scale factor
so that the y-axis (the cyclic axis) is embedded in the range [−π, π). The bottom of
the figure shows two sequences, example images from two paths through the Isomap
embedding. The top sequence shows ordered image from a vertical path (drawn in
yellow) at θ ≈ 3.1. Notice that in these images the heart deforms due to its beating,
but there is no translation of the heart. The bottom sequences shows image for which
φ ≈ π/4. Notice here that the heart is not deforming, but rather there is a translation
(due to breathing).
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2.1 Isomap Embedding of Cardiopulmonary Manifolds

The Isomap procedure for dimensionality reduction starts by computing the dis-
tance between all pairs of images (using some distance function such as SSD
pixel intensities). Then, a graph is defined with each image as a node and undi-
rected edges connecting each image to its k-closest neighbors (usually choosing
k between 5 and 10). A complete pair-wise distance matrix is calculated by
solving for the all-pairs shortest paths in this sparse graph. Finally, this com-
plete distance matrix is embedded into low dimensions, by solving an Eigenvalue
problem using a technique called Multidimensional Scaling (MDS) [22]. The low-
dimensional embedding can be chosen as desired, but ideally is the number of
degrees of freedom in the image set, in our case 2 (the two intrinsic dimensions
of variability are the heartbeat and breathing).

One previous work that applied manifold learning to biomedical image anal-
ysis suggests modifying Isomap to use image distance functions other than pixel
intensity differences [21]. For data sets with deformable motion, the suggested
distance function is computed as the phase difference of local Gabor filters, where
the filters have a reasonable magnitude:

||I1−I2||motion =
∑
x,y

Ψ(G(ω,V,σ)⊗I1, G(ω,V,σ)⊗I2)+Ψ(G(ω,H,σ)⊗I1, G(ω,H,σ)⊗I2)

where G(ω,{V |H},σ) is defined to be the 2D complex Gabor filter with frequency ω,
oriented either vertically or horizontally, with σ as the variance of the modulating
Gaussian, and Ψ returns the phase difference of the pair of complex Gabor
responses above some threshold τ ; we choose τ to be the 50-th percentile filter
magnitude. A technical modification to the Isomap procedure also allows the
images to be embedded on a cylindrical manifold instead of a flat plane [15].
Figure 1 illustrates the cylindrical embedding of 185 frame cardiac MRI image
set, captured each 72 ms. The figure also illustrates that the manifold embedding
separates the non-rigid deformation of the heart from the translation of the heart
due to breathing. In the next section, we consider how to exploit this manifold
structure to provide new constraints for defining contours over every image of a
data set undergoing such deformations.

3 Segmentation Constraints

The manifold embedding provides an automated tool to parameterize the cardiac
image data, in terms of the motion caused by the heartbeat and the breathing.
In this section we propose a method to solve for contours of the left ventricle in
all images in the data set simultaneously. This solution uses two new constraints,
first, a generic smoothness constraint that penalizes variation in contours that fit
images nearby in the manifold, and second, a term that uses the specific nature
of the image changes along different manifold directions to provide stronger
constraints on manifold shape.

For a cardiopulmonary image sequence, heart deformation through time is
defined by cardiac phase φ and pulmonary phase θ. Therefore, we seek to define
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the shape of the heart contour as a function of φ and θ, described by C(s, φ, θ) =
(x(s, φ, θ), y(s, φ, θ))� . For a fixed φ, θ varying the arc-length parameter s traces
out the contour boundary. Varying φ, θ defines all possible contours of the heart
observed. A given cardiopulmonary image sequence specifies this contour by
minimizing the following functional:

E =
∮

Eint(C(s, φ, θ)) + Eimg(C(s, φ, θ)) + Econ(C(s, φ, θ)) ds dφ dθ (5)

The generic smoothness constraints (between nearby images on the mani-
fold), can be written naturally as a parallel to the internal energy of the snake
model, as follows:

Eint =
1
2

[
α

∣∣∣∣∂C

∂s

∣∣∣∣
2

+β

∣∣∣∣∂
2C

∂s2

∣∣∣∣
2

+µ

(∣∣∣∣∂C

∂φ

∣∣∣∣
2

+
∣∣∣∣∂C

∂θ

∣∣∣∣
2
)

+γ

(∣∣∣∣∂
2C

∂φ2

∣∣∣∣
2

+
∣∣∣∣∂

2C

∂θ2

∣∣∣∣
2
)]

(6)
where parameter µ and γ control the snake’s tension and rigidity along φ and θ,
respectively.

More specific constraints are available when the manifold dimensions corre-
spond to specific kinds of motion. The breathing of the patient, while causing
a complicated deformation of the chest cavity as a whole, results, largely, in a
translation of the heart. The cardiac cycle, absent motion caused by breathing,
causes deformation with minimal overall translation. Both of these types of mo-
tion allow stronger constraints on the relationship of a contour between frames
than simple temporal continuity. Therefore, there are additional constraints be-
tween images that are embedded at either the same φ coordinate or the same θ
coordinate. These constraints can be written as:

Econ =
η

2

∣∣∣∣∂C

∂θ
−

∫ 1

0

∂C

∂θ
ds

∣∣∣∣
2

+
ρ

2

∣∣∣∣
∫ 1

0

∂C

∂φ
ds

∣∣∣∣
2

, (7)

where the first term penalizes non-rigid changes in the snake (by integrating
the squared difference between the motion of points on the contour and the
mean motion of the contour), and the second term penalizes the overall mean
translational motion of the snake, which is minimal when motion is caused only
by the heartbeat. The rest of this section details our implementation of these
constraints.

3.1 Implementation

Splines are a widely used function approximation tool [23]. A snake can be
modeled by a closed cubic b-spline with N control points {pi = (xi, yi)�, i =
1 · · ·N}, and a closed curve C(s) as a collection of n curve segments gi(s), s ∈
[0, 1]. Each curve segment is controlled by four nearby control points, as follows:

gi(s) =
3∑

j=0

bj(s)pi+j−1, i = 1, · · · , N (8)
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where p0 = pN , pN+1 = p1 and pN+2 = p2. Uniform cubic B-spline basis func-
tions, b0 ∼ b3, are defined by:

b0(s) =
1
6
(1 − s)3

b1(s) =
1
6
(3s3 − 6s2 + 4)

b2(s) =
1
6
(−3s3 + 3s2 + 3s + 1)

b3(s) =
1
6
s3 (9)

Then, the snake contour C(s) is represented by multiplying a vector P of snake
control points with its associated b-spline basis functions:

⎡
⎢⎢⎢⎣

g1
g2
. . .
gN

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
C(s)

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b1 b2 b3 · · · b0
b0 b1 b2 b3 · · ·

b0 b1 b2 b3 · · ·
...

. . . . . . . . . . . .
· · · b0 b1 b2 b3

b3 · · · b0 b1 b2
b2 b3 · · · b0 b1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
H(s)

⎡
⎢⎢⎢⎣

p1
p2
...

pN

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
P

(10)

Using b-spline representation, one can analytically compute the snake’s k-th
order of derivatives with respect to s as:

∂kC(s)
∂sk

=
∂kH(s)

∂sk
P. (11)

To create a set of samples along each curve segment pi, we can choose a set of
paramet ric variables {sj, j = 1, · · · , k}, such that 0 ≤ s1 < s2 < . . . < sk < 1.
Then the snake can be written in a discrete form:

C =

⎡
⎢⎢⎢⎣

C(s1)
C(s2)

. . .
C(sk)

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

H(s1)
H(s2)

...
H(sk)

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
H

P (12)

Because it is our intention to solve simultaneously for snakes in every image,
we parameterize the snake control points in each image as a function of position
of each image on the manifold. Given an image sequence of M frames, we use
the manifold learning procedure to estimate the breathing phase θ and cardiac
phase φ for each image. For the i-th frame, let these values be (φi, θi). Let
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C(φi, θi) denote the snake defined by a discrete set of control points P(φi, θi) =
[p1(φi, θi), p2(φi, θi), · · · , pn(φi, θi)]�. Then we can express the set of all snakes
in all images as:

⎡
⎢⎢⎢⎣

C(φ1, θ1)
C(φ2, θ2)

...
C(φM , θM )

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
C

=

⎡
⎢⎢⎢⎣

H
H

. . .
H

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
H

⎡
⎢⎢⎢⎣

P(φ1, θ1)
P(φ2, θ2)

...
P(φM , θM )

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
P

(13)

For any control point pi(φ, θ), its position changes in different frames as a func-
tion of φ and θ. To model the relationship of the positions of control point pi

between different frames, we use a cubic B-spline surface to represent the posi-
tion of each point pi. Any point on that surface presents the position of control
point pi in the frame specified by (φ, θ). Therefore, the change of the control
point position should be locally small and continuous.

The cubic b-spline surface for the i-th snake control point is defined by a
two-dimensional set of control points {q

(i)
u,v, u = 1, · · · , n; v = 1, · · · , m}. The

following is the equation of a cubic b-spline surface defined by n rows and m
columns of surface control points:

pi(φ, θ) =
n∑

u=1

m∑
v=1

Bu(φ)Bv(θ)qi
u,v

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

B1(φ)B1(θ)
B2(φ)B1(θ)

...
Bn(φ)B1(θ)
B1(φ)B2(θ)

...
Bn(φ)Bm(θ)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

︸ ︷︷ ︸
B(φ,θ)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

q
(i)
1,1

q
(i)
2,1
...

q
(i)
m,1

q
(i)
1,2
...

q
(i)
m,n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
Qi

(14)

where Bi(φ) and Bj(θ) are cubic b-spline basis functions. Then we can analyti-
cally compute the k-th order of derivatives of control point pi with respect to φ
(or θ) as

∂kpi(φ, θ)
∂φk

=
∂kB(φ, θ)

∂φk
Qi,

∂kpi(φ, θ)
∂θk

=
∂kB(φ, θ)

∂θk
Qi (15)

Considering all control points over all frames, we have
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P =

⎡
⎢⎢⎢⎣

P(φ1, θ1)
P(φ2, θ2)

...
P(φn, θn)

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

B(φ1, θ1)
B(φ1, θ1)

. . . B(φ1, θ1)
...

...
B(φm, θm)

B(φm, θm)
. . . B(φm, θm)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
B

⎡
⎢⎢⎢⎣

Q1
Q2
...

Qm

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
Q

(16)

Finally, we have a single form which expresses the contours in all images:

C = HP = HBQ. (17)

Using the calculus of variations, the snake minimizing the functional in (5)
can be found by solving for the following Euler-Lagrange equation:

∂E

∂C
=

∂Eint

∂C
+ ∇Eimg +

∂Econ

∂C
= 0

⇒ −α
∂2C

∂s2 + β
∂4C

∂s4 − µ

(
∂2C

∂φ2 +
∂2C

∂θ2

)
+ γ

(
∂4C

∂φ4 +
∂4C

∂θ4

)

+∇Eimg − ρ

(
∂2C

∂θ2 −
∫ 1

0

∂2C

∂θ2 ds

)
− η

∫ 1

0

∂2C

∂φ2 ds = 0

⇒ AintC + AconC − V = 0 (18)

where Aint and Acon are matrices corresponding to internal energy and external
constraint energy term, respectively, and they can be directly computed using
equations in (17), (15),and (11). V is the matrix presenting the collection of
GVF v sampled along C(s, φ, θ) over all images. Since the snake is implemented
using cubic b-spline, all 4-th order of partial derivatives of C with respect to
s, φ and θ are zero. Hence, in the later sections, we will ignore the blending
parameters β and γ in the equations in (18).

In order to obtained desired solution of the Euler equation (18), the snake
C(s, φ, θ) is treated as a function evolves with respect to time variable t, and the
resulting equation is

AintCt+1 − V + AconC
t+1 = −δ(Ct+1 − C

t) (19)

where δ denotes a step size. At equilibrium, the time derivative vanishes and we
end up from equation (19) and (17) the following update rules as:

C
t+1 = (Aint + Acon + δI)−1(δC

t + V)
⇒ Q

t+1 = [(Aint + Acon + δI)HB]+ (δHBQ
t + V) (20)

where I denotes identity matrix.
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4 Experimental Results

This section describes preliminary results of a system that implements the con-
straints defined in the last section. We first consider a collection of artificially
generated data, for which we can control the deformation and noise parameters,
and test our approach versus standard snake approaches. We follow this with
an application to finding the left ventricle wall shape in a noise cardiac MRI
sequence. In both cases, we used α = 0.1 for all snakes, and µ = 0.1, ρ = 0.1 and
η = 0.01 for manifold constraints. Deriving optimal choices for these parame-
ters, or other methods to automate the process of finding good parameters is in
further investigation.

4.1 Simulation Data

We construct an artificial data set by defining a shape and deforming it with a
composition of a non-rigid deformation and a rigid translation. Thus, this data
set has a 2D manifold structure, indexed by the magnitude of each deformation.
One hundred images were created, each was then corrupted by additive white
Gaussian noise, and the contrast was decreased in a randomly selected patch of
the image. The two deformation types are depicted in the top of Figure 2, and
8 selected frames among the 100 generated images are shown at the top right.

The noise in the image and the low contrast patches make this a challenging
data set for snakes to converge to the correct boundary. The second column of
Figure 2 gives results for classical snakes (using only a single image) with the
starting condition shown in the first column. While some optimization is possible
to improve these results for this data set, for this work it is our goal to illustrate
the advantages of using the manifold structure of these images.

The third column of Figure 2 gives the contours which are the results of apply-
ing the algorithm of the previous section, which exploits the manifold structure
of these images. These can be compared to the ground truth contours shown in
the rightmost column.

4.2 Example Application

In cardiovascular imagery, an important application is to measure the dynamic
behavior of the human heart, especially the left ventricle. Figure 3 illustrates
one example of coupled snakes [24, 25] that outline the interior and exterior
wall of the left ventricle. Often, For continuously captured cine-MRI images,
the available resolution and contrast is more limited than this example shows,
and extracting ventricle wall contours on each image individually is difficult. By
imposing manifold constraints, we solved the problem with a modified version
of [25].

Figure 4 shows examples of cine-MRI images (from the same data set as
shown in Figure 1). The rectangular region of the heart is blown up and the
results of fitting pairs of snakes to the inner and outer ventricle wall on indi-
vidual images is shown in the middle column. On the right of this figure are
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(a) (b) (c) (d)

Fig. 2. An artificial data set constructed by composing 2 deformations (shown in the
top row), a non-rigid variation to a shape and a rigid translation. The bottom four
rows show results fitting snakes to these images which are corrupted by zero mean
Gaussian noise and by a patch of reduced contrast. Column (a) shows the image and
the initial condition, column (b) shows the classical snake result on this image, column
(c) shows the result (for that image) of using the manifold based constraints to solve
for all snakes simultaneously, and (d) is the ground truth contour used to generate each
image.

the results when enforcing the additional constraints from understanding the
manifold image structure, following the algorithm outlined in Section 3. While
these results are not perfect, they are an improvement and encourage further
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Fig. 3. Important applications in cardiac imagery include measuring the thickness of
ventricle walls. For relatively high contrast, and high resolution images, a pair of snakes
can find both the inner and outer wall. Applying this algorithm to lower resolution
images (in Figure 4) fails because of insufficient image resolution and contrast.

Fig. 4. For continuously captured cine-MRI images, there are currently limits on the
available resolution and contrast. Extracting ventricle wall contours on each image
individually is difficult. The original image is shown on the left, and a subwindow
shows an expansion of the heart region, and the initial snake contour (for the interior
wall). The contours extracted from a single image are shown in the middle. On the
right are the results when enforcing the additional shape constraints from the manifold
structure extracted in Figure 1.
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Fig. 5. Additional segmentation results obtained by imposing our manifold con-
straints over the whole image sequence. Here we show 8 consecutive frames of the
200 frame sequence. Notice that in these cardio-plumonary images, the heart defor-
mation is sometimes large between consecutive images due to the relatively low sam-
pling rate. In these cases, naive temporal smoothness constraints on heart deformation
may fail.

work in integrating manifold constraints with energy minimization tools for con-
tour fitting. Additional results are shown in Figure 5, for 8 consecutive images
of the cine sequence. The frame to frame deformation is in some cases quite
large, so naive smoothness constraints between consecutive images may not be
successful.

5 Conclusion

This work presents preliminary efforts towards incorporating manifold learn-
ing as a tool to provide additional constraints for finding contours using energy
minimization tools. The advantages of combining these two techniques were illus-
trated for a collection of simulation data and demonstrated on a low-resolution,
high-noise cardiac MRI video sequence.

It is also possible to extend the manifold constraints to a level set based seg-
mentation framework for handling topological changes and numerical stability of
evolving curves [26]. We believe that many algorithms may be improved through
better understanding and exploitation of non-linear image manifold learning al-
gorithms, and tight integration of these with classical analysis tools.
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