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Abstract

We introduce the Longterm Observation of Scenes (with
Tracks) dataset. This dataset comprises videos taken from
streaming outdoor webcams, capturing the same half hour,
each day, for over a year. LOST contains rich metadata,
including geolocation, day-by-day weather annotation, ob-
ject detections, and tracking results. We believe that shar-
ing this dataset opens opportunities for computer vision re-
search involving very long-term outdoor surveillance, ro-
bust anomaly detection, and scene analysis methods based
on trajectories. Efficient analysis of changes in behavior in
a scene at very long time scale requires features that sum-
marize large amounts of trajectory data in an economical
way. We describe a trajectory clustering algorithm and ag-
gregate statistics about these exemplars through time and
show that these statistics exhibit strong correlations with
external meta-data, such as weather signals and day of the
week.

1. Introduction
The world is an exciting place because it is constantly

changing. These changes occur at many time scales, but
most work on video surveillance is evaluated on video
data captured over scales of minutes to hours. At longer
time scales, changes include natural phenomema such as
weather, man-made changes such as construction, or so-
cial constructs such as holidays and festivals. This paper
explores the variation in scene behavior at these long time
scales.

To support this research, we offer the Longterm Obser-
vation of Scenes (with Tracks) dataset, a series of videos
taken from 19 streaming webcams. This imagery has been
captured almost every day for the last year; we capture im-
agery for the same half hour each day, for each camera. Half
an hour of video portrays many complex patterns of activity
in the scene (i.e., not just a few trajectories), and captur-
ing the same half hour each day supports analysis of the
consistency–or variation–of the activity between days. We
capture a variety of scenes, shown in Figure 1 (top), that

Figure 1. A collection of images taken from the Longterm Obser-
vation of Scenes (with Tracks) dataset (top). LOST contains over
1,200 hours of streaming video taken from many outdoor scenes
over the span of several months, as well as freely available tracking
results (bottom).

include close up views of trajectories across small church
plazas and more distant views of airport tarmacs and large
intersections.

For each camera, for each half hour of video, we use
standard tools for background subtraction to detect objects
and then link them into tracks; a few of these tracks are
shown in Figure 1 (bottom). In this scene, tracks capture
the changing activities in a dynamic construction setting,
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and changing patterns over time, as the construction pro-
gresses. Included in our database are scenes whose trajecto-
ries are remarkably consistent, others have trajectories that
vary over time, both due to temporary changes (e.g. street
festivals), and long-term changes (e.g. construction).

This dataset offers several contributions to the commu-
nity of researchers interested in surveillance and tracking.
The performance of tracking algorithms within different
weather conditions has received relatively little attention,
and this dataset supports explorations of approaches to, for
example, learn strong priors on object trajectories on clear
days, in order to improve tracking on more challenging
days. The dataset also supports the study of the statistics of
variability of trajectories within the same scene over time.

Our second contribution is to suggest one possible
method for the analysis of long term patterns of activity.
The key to capturing variations over the scale of months is
to find small descriptors of the behavior over a given day.
In our case, we create a scene-specific basis for the behav-
ior in a scene by clustering the trajectories observed in that
scene and finding a small set of representative trajectories.
These clusters offer a useful statistic that allows one to auto-
matically find scenes where activities vary as a function of
external meta-data, such as weather, temperature, and day
of the week.

1.1. Background and Related Work

Here we highlight a small part of the vast work in track-
ing and trajectory analysis, with a focus on recent work
in representing motion patterns, clustering trajectories, and
datasets with long extents.

Given video over a few minutes, one can extract motion
patterns of the scene [6, 11, 24] Given data from a day, one
can functionally annotate the scene [16, 22], factor the video
into viewpoint changes [21], and characterize appearance
model allowing one to find anomalies (e.g. unexpected traf-
fic jams or harsh shadows in Times Square) [2, 19]. From
long term data analysis, one can geolocate camera feeds [9],
and find regions with changes in vegetation [7, 10].

Stauffer and Grimson [20] describe a system that is sim-
ilar to ours, in that they successfully track millions of ob-
jects through many months of video. While a classic paper
in background modeling and object recognition, the data is
limited to a single geolocation, and the video stream has not
been archived.

There have been many results dealing with large quan-
tities of long-term outdoor imagery. The Weather and Il-
lumination Database [14] provides a high quality view of
an urban scene over the span of one year with additional
metadata. The Archive of Many Outdoor Scenes [8] con-
sists of imagery from thousands of webcams taken at half
hour intervals over several years. Webcam Clip Art [12] is
similar dataset that captures higher-resolution images from

over 50 webcams, with additional geo-location and geo-
orientation estimates. However, these datasets contain still
images through time, and are not appropriate for video anal-
ysis, due to their low framerate.

Many recent video datasets contain labeled tracking re-
sults in a variety of scenarios. The yearly Advanced Video
and Signal-Based Surveillance (AVSS) Challenges [1]
and Performance Evaluation of Tracking and Surveillance
(PETS) [17] datasets offer labeled tracking data to evalu-
ate many detection and tracking scenarios, including aban-
doned baggage detection (PETS 2006, AVSS 2007), multi-
camera tracking (PETS 2001/2003, AVSS 2009/2010), and
action recognition (PETS 2003/2004). The Next Generation
SIMulation project [15] offers 30 to 45-minute labeled traf-
fic videos in a few select locations in California and Geor-
gia to study traffic patterns. The Columbus Large Image
Format dataset [3] contains videos from an aerial platform,
often used in evaluating wide-area surveillance algorithms.
These datasets have led to fantastic progress by giving stan-
dard datasets across which algorithms can be compared.
Our dataset may support the same goal, but also gives op-
portunity to compare results across weather and seasonal
variations, over long time periods.

Other work has performed clustering on similar types of
video for a variety of goals. In [22], the authors first break
the scene into many cells through calibration of the camera,
and then use unsupervised learning approaches to annotate
the scene based on what tracks pass through those cells. The
result is a cell-wise annotation of the scene into several un-
labeled categories that highly correlate with functional la-
bels, such as streets, sidewalks, and parking areas. Breit-
enstein et al. [2] observe long-term surveillance video for
streaming anomaly detection. They also represent a scene
as a set of cells, and create data-driven models on these cells
to detect and isolate anomalies. Towards the goal of creat-
ing useful video synopses, the authors of [18] recognize and
cluster activities in the scene to play back all activities si-
multaneously. In this paper, we use a track-based clustering
step to explore the changes in daily track behavior.

Morris and Trivedi provide a survey [13] of trajectory
analysis methods in the surveillance literature. One key in-
sight of this survey is that a major pre-processing step to-
ward trajectory analysis is track normalization, so that each
track shares the same dimensionality, regardless of length.
For most algorithms, this is a necessary first step that must
be carefully implemented for clustering to perform well. As
mentioned in the survey, although there are metrics that al-
low comparison between arbitrary dimensional tracks, they
are often unstable or inaccurate. In this paper, we make
use of a track clustering technique based on the Chamfer
distance, which allows more flexibility than track normal-
ization techniques, and resolves these numeric issues.

A closely-related track clustering algorithm by Fu et.
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ID Videos Total Duration FPS Dimensions
2 357 174:31:09 14.00 640× 480
7 203 100:31:16 0.73 320× 240
8 225 111:05:37 0.79 640× 480
9 232 112:13:17 1.66 704× 576
10 163 81:24:07 0.98 480× 360
12 5 0:51:06 8.01 320× 240
13 370 159:36:28 12.47 320× 240
14 173 68:43:03 7.42 320× 240
15 40 19:58:25 1.69 800× 600
16 86 40:39:36 4.27 352× 288
17 403 199:56:45 5.96 640× 480
18 131 64:39:38 1.27 640× 480
19 406 202:21:14 4.24 320× 240
20 396 195:36:33 5.15 640× 480
21 235 76:56:41 2.95 640× 480
22 383 189:38:23 1.43 768× 576
23 347 173:25:11 5.12 640× 480
24 6 2:59:58 1.81 640× 480
27 392 194:43:01 1.00 480× 360

Table 1. Statistics about the videos in the LOST dataset.

al [5] uses a hierarchical clustering method to identify
groups of track clusters, based on a spectral clustering
method that makes use of a pairwise affinity matrix. These
affinity scores are generated by computing Euclidean dis-
tance between the first n points, where n is the minimum
track length for any given pair. In our paper, we also use a
pairwise affinity matrix to isolate exemplar tracks, but we
define an affinity function that allows arbitrary-length track
vectors.

The paper is structured as follows. In Section 2, we de-
scribe our dataset and its contributions to the computer vi-
sion community. In Section 3, we discuss our algorithms
for computing track clusters from many tens of thousands
of tracks. Then, in Section 4, we discuss some possible ap-
plications of track clustering, which strongly correlate with
external signals such as weather and day of the week.

2. The LOST dataset

The Longterm Observation of Scenes (with Tracks)
dataset is a resource of streaming video with metadata in-
cluding geolocation and weather annotation. This dataset
shares a wealth of information to the computer vision com-
munity; LOST provides baseline detection and tracking re-
sults, geolocation estimates, and daily weather annotation
through the weather signals provided by Weather Under-
ground [23]. Our cameras come from a variety of locations
across the globe, including a construction site in Alabama, a
plaza in Norway, busy intersections in the Czech Republic,
and a pedestrian mall in Japan.

The dataset consists of videos taken from 17 streaming

Figure 2. A screenshot of the web interface, which shows sum-
maries for the most recently-captured video, including (from left
to right) an example background image, a motion summary, and
the tracks found.

cameras, on average 28 minutes each day from July 24,
2010 to the current day. The videos range in framerate from
14 fps to less than 1 fps (on average, 4.75 fps). In total, there
are 4,505 videos, resulting in over 2,150 hours of video.
Throughout these videos, we have identified 111,053,610
individual detections resulting in 423,313 tracks. A web
interface allows downloading videos, background models,
detections, tracks, and metadata for any camera and day.

Table 1 reports statistics about the videos in the dataset.
Figure 2 shows a screenshot of the LOST website, with
summary statistics of today’s tracks from each camera.

2.1. Implementation

Each day, approximately 9 hours of video is captured.
Each video source is a publicly available MJPG stream,
which is recorded and annotated with per-frame times-
tamps. The system encodes the captured MJPGs as Xvid
AVIs for archival purposes, and object tracking is run on
the original video data.

Object tracking is achieved through frame-to-frame blob
detection and linking. The blobs in each frame are found
by comparing each frame to a combination of two naive
background models and calculating the per-pixel difference.
The video is divided into two minute windows, with the me-
dian of each providing the first background model for all the
frames in a given window. The second background model
is the previous frame. The two minute background model
isolates the static elements of the scene, while the previous
frame comparison compensates for changes in lighting from
the sun and clouds.

We then use these background models and perform sim-
ple blob detection based on a per-camera threshold, and a
postprocessing step removes small blobs. For each blob, we
compute the nearest neighbor in the previous and next frame
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Figure 3. Natural track statistics. (a) A histogram of track length
of all tracks in the LOST dataset. There are 1,136 tracks (less than
0.3% of the dataset) not shown on this histogram that persist for
longer than 50 seconds. The maximum track length is over three
minutes. (b) A histogram of mean change in velocity for each
track in the LOST dataset, for a time step dt = 5 frames.

and link pairs of blobs if they are mutual nearest neighbors.
Finally, we remove short tracks (either in frame length or to-
tal image distance) and apply average-of-neighbors smooth-
ing.

The combination of thresholding out too-small objects
in the detection stage and discarding too-short tracks in the
connection stage results in tracks that represent nearly all
objects of interests moving through the scene, despite po-
tentially noisy blob tracking.

2.2. Tracking Statistics

The dataset comprises streaming imagery over many dif-
ferent days, weather conditions, and environments. There-
fore, because the dataset is so broad, we are able to report
on various track statistics without inducing strong bias from
camera geolocation or local weather conditions. These gen-
eral statistics are potentially important for applications that
make assumptions on track length, track acceleration, or a
variety of other tracking statistics.

Figure 3 shows histograms of track length and angular
change in velocity. In our dataset, the most common track
length is 10 to 15 seconds, and objects rarely alter their
course by more than 45 degrees in less than 5 frames.

An advantage of long data capture is that, over the course
of many months, there are enough tracks to sample distri-
butions of trajectories very finely. In Figure 4, we leverage
this result to create scene-specific priors on future track lo-
cation (i.e., the probability that a track t will be at point
p′ in 10 frames, given that it is in point p now). Although
these priors are poorly sampled when using only a few days
of video, the priors are more reliable when computed over
several months of video.

3. Track Clustering
The dataset contains many tracked objects through time;

on average there are about 20,000 tracked objects per cam-
era. Because of the large sample size, simple track analy-

Figure 4. (top) An example camera from the LOST dataset. (bot-
tom) Prior distributions of track location in the next ten frames,
originating from the red, green, and blue points. Distributions are
generated (from top to bottom) from 7, 30, and all 161 days of
video.

sis methods offer useful summaries of scene behavior. For
any one camera, there are typically only a few modes of
distinct track behavior, repeated through time. In this sec-
tion, we propose a track clustering algorithm to group simi-
lar tracks together as a first step for higher-level analysis. In
later sections, we show that this clustered representation can
uncover high-level patterns with respect to external signals,
such as weather and day of week.

3.1. Algorithm

We represent a track T as {ti = (xi, yi, ui, vi)}|T |i=1, the
position and velocity of track T at frame i. Our clustering
method is based on a Chamfer distance metric, where the
distance D from track P to track Q is then defined as:

D(P,Q) =
1

|P |
∑
tp∈P

min
tq∈Q

|tp − tq|2, (1)

The Chamfer distance is the mean minimum distance
from each point in P to somewhere in Q. This distance
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Figure 5. Affinities gathered from the tracks on camera 14. Each track is colored by its affinity to a landmark track, shown in white (where
the track’s destination is circled). Notice that tracks close to the landmark track have high (red) affinities, while tracks that differ in velocity
or position are less similar (blue).

Figure 6. Clustering results from a few of the cameras in the LOST dataset. In each example, the track’s destination is circled. Note
that since we account for velocity during the affinity propagation step, some paths are “doubled up”, where two exemplar tracks cover
approximately the same area, but in different directions.

is effective at capturing the similarity of one track to an-
other in an asymmetric way. For example, if a short track s
follows a subset of a long track l, then the distance from s
to l will be very small, since the minimum distance from s
to somewhere on l will be close to 0. However, the inverse
is not true; for points on l far away from points on s, the
minimum distance will be large. In short, s is similar to l,
but l is not similar to s.

As noted in [13], these orderless distance metrics that
ignore the order of their points are unpopular for trajec-
tory clustering, for a few reasons. First, because tracks are
treated like sets of points, there is no implicit ordering, and
therefore tracks that overlap in space but moving in oppo-
site directions will be interpreted as similar. Also, com-
mon orderless distance metrics such as the closely-related
Hausdorff distance (the maximum of minimum distances)
are particularly brittle, in that one outlier can adversely af-
fect the entire distance calculation. We choose Chamfer dis-
tance over Hausdorff to avoid its brittleness, and extend our
trajectory representation to include position and velocity to
retain sensitivity to the direction of travel.

The n × n matrix D then forms a generally asymmetric
distance matrix. We represent D as Gaussian affinities A
so that higher values in A correspond to shorter distances in
D:

A(P,Q) = e−
D(P,Q)

σ2 (2)

Figure 5 shows example affinities and demonstrates that

this equation is effective at measuring track similarity. Fi-
nally, we perform affinity propagation[4] on the affinity ma-
trix A. This algorithm selects a small set of exemplar tracks
and partitions the set of all tracks into distinct clusters repre-
sented by these exemplars. Figure 6 gives several examples
of clustering results from the dataset.

3.2. Implementation

Performing affinity propagation on a large set of tracks
can be computationally expensive due to the construction
of the n × n affinity matrix. To reduce the time and space
requirements, we first perform an initial over-clustering step
over the original set of tracks using hierarchical k-means
with k = 2. This results in a set of a n′ tracks (where n′ ≤
n), with associated weights defining how many true tracks
this track represents. Affinity propagation is then performed
on the smaller set of tracks.

Affinity propagation also allows the use of a preference
vector, which specifies a priori how much we would prefer
each of the n′ tracks to be selected as a cluster exemplar. In
our experiments, we select the preference vector to be the
row-wise median of the affinity matrix, divided by the the
number of tracks that the over-clustered track represents–
the suggested default from the original paper[4].

The variance in track positions is usually very large with
respect to the variance in track velocities. Therefore, in
Equation 1, we weight the position and velocity terms by
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Figure 7. (left) The labeled clustering results from affinity propagation. (top row) Frames from a few distinct videos, and (bottom row)
their corresponding aggregate statistic representation. Best viewed in color.

defining |tp − tq|2 as

(xp−xq)2+(yp−yq)2+λv[(up−uq)2+(vp−vq)2], (3)

where λv is a weight on the velocity term.
We use n′ = 500, λv = 25, and σ = 5 times the

maximum image dimension across all cameras.

4. Results
Very long-term datasets like LOST capture variations not

present in short-term datasets, and our goal in this section
is to uncover high-level behavior that varies due to time and
different weather conditions. We show that the simple clus-
tering technique presented in the previous section provides
a way to create summaries of behavioral patterns that vary
in different scenes for weather and day of the week.

4.1. Aggregate Statistics of Clusters

For each track T , we calculate which exemplar track is
closest to T using Equation 1, and from this we generate the
frequency of an exemplar track’s appearance for each day—
the histogram of today’s tracks. This histogram is therefore
relevant for exploring long-term, high-level track behavior
at the scale of one or many days. In Figure 7, we show
how this representation of the scene effectively captures the
overall trends in track variation over the scene.

4.2. Correlations with External Signals

This simple statistic also exhibits natural patterns in hu-
man behavior with respect to external signals, such as day
of the week and weather conditions: A warm afternoon will
typically see more pedestrian traffic than a frigid morning,
a market will be busier when weather conditions are favor-
able, activity at a flight school increases when class is in
session, and a church will be busier on Sundays than the
rest of the week.

By exploring these histograms of track density through
time, we uncover a time series signal for each track that
explains how heavily that track cluster was used through
the days and seasons. In Figure 8, we show correlation of
these cluster frequency statistics with some external signals.
These results show that this formulation of track clustering
and aggregation has a high-level interpretation with respect
to natural human behavior.

5. Conclusions

In this paper, we introduce the LOST dataset for use
in the computer vision research community, and show that
even simple track clustering algorithms uncover high-level
correlations with external signals and variations in track be-
havior.

The LOST dataset is a novel contribution that contains
video data across many cameras for several months, and
rich metadata, including geolocation, weather annotation,
millions of detection results and hundreds of thousands of
tracks. The volume of the dataset allows us to uncover nat-
ural track statistics without inducing bias from camera lo-
cation or weather conditions.

Our simple track clustering method effectively finds the
dominant motion patterns in a scene, and captures how
those motion patterns change with respect to various ex-
ternal factors. While this has been done over short time
intervals (e.g. traffic light cycles), different patterns and dif-
ferent information is available in the changes at longer time
scales.

Sharing this dataset may also support analysis of the ef-
fectiveness of tracking algorithms as a function of weather
conditions, and deeper analysis of the statistics of trajecto-
ries over time.

The LOST dataset is located at
http://lost.cse.wustl.edu.
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(a) temperature (b) temperature (c) weekend

(d) weekend (e) weekend (f) wind speed

Figure 8. The per-exemplar correlation of track frequency against a variety of external signals. These results suggest that when the weather
is nice, more people walk and fewer people drive (a), and more people explore the market and meet in the plaza (b). During the weekend,
fewer people drive to work on a construction site (c), fewer planes take off at the flight school (d), and there is higher traffic in certain areas
of the plaza (e). However, as seen in (f), some signals are not as strongly correlated with track density; pedestrians aren’t strongly affected
by high wind speeds.
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