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1. INTRODUCTION

Currently, the global network of webcams offers recent, unique viewpoints from tens of thousands
of locations all over the globe. In the past, viewing webcam imagery with respect to its surrounding
geographic context has yielded promising results, including large-scale environmental monitoring and
estimating local weather conditions. Due to their widespread use and up-to-date imagery, webcams
are emerging as useful resources for large-scale ecological studies and surveillance, especially within
the context of geographic information systems (GIS). A recent non-exhaustive count has found URLs
for more than 17 000 webcams all over the globe, and although they provide useful visual information,
these cameras are largely unlabeled [Jacobs et al. 2008; Jacobs et al. 2009]. In this article, we describe
our efforts to attach geospatial labels to these images in order to support further studies in using
webcam images as worldwide sensors.
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The world wide web has an increasingly large, diverse, and interesting set of sensors that provide
live updates. While many projects have worked to integrate this sensing data within GIS (and to
provide frameworks for querying and visualizing this data), they typically represent streaming video
sources as “just another sensor”. However, to interpret camera data automatically, it is often vital to
know not just where the camera is, but also its orientation and camera zoom. Thus, this paper seeks to
address this problem within the context of organizing all publicly-available webcams so that they can
be coherently used as visual sensors.

In this article, we also introduce novel camera geocalibration methods which uncover the imaging
geometry with respect to the camera’s geospatial context. Geocalibration parameters (such as the cam-
era’s latitude, longitude, altitude, orientation, and zoom level) are important for understanding how
the camera fits into the environment, and camera calibration is often a necessary first step toward
more in-depth computer vision applications.

There are several challenges in effectively calibrating all cameras. Fully automated systems for
geocalibrating and geo-orienting cameras [Jacobs et al. 2007; Jacobs et al. 2008; Sunkavalli et al.
2008; Lalonde et al. 2008] report geolocation accuracy to the scale of miles, and orientation accuracy to
a scale of degrees, which is insufficient to map pixel data onto 3D models. Furthermore, current geo-
orientation algorithms assume that the orientation is fixed throughout a long-term time lapse sequence
of images, which may be invalid, especially when interpreting popular pan-tilt-zoom cameras. Also,
webcams are emplaced by a large collection of different organizations, from private citizens to national
parks to businesses of all sizes, and most cameras do not publish accurate calibration information.
Even when a camera offers geolocation estimates, they usually reference objects in the scene rather
than the camera itself, and to our knowledge, there does not exist a service which offers an estimate of
camera altitude. Thus, we believe that in the foreseeable future, human assistance will be necessary
to provide reliable geocalibration estimates.

We therefore seek to create tools which make it simple for arbitrary users on the web to contribute to
calibrating all the world’s cameras. We create a web application allowing anyone to calibrate cameras
by specifying a few corresponding points, and to create a web based visualization infrastructure that
uses the user’s web browser to embed live imagery into GIS. This eliminates the need for any central
organization to be responsible for computationally-expensive image manipulation, and makes the sys-
tem scalable to the large number of cameras by not requiring a central server to touch the live video
data.

When using input generated from arbitrary Internet users, we found that a small percentage of
their input was arbitrarily wrong (e.g. placing a correspondence many miles away from the ground
truth location). As we will show, even a single misplaced correspondence can ruin the prospect of a
usable geocalibration. Therefore, we introduce a novel `1-based calibration method that is robust to
these outliers. We show that even under a large amount of gross errors, our method recovers the
correct geocalibration parameters.

Pan-tilt-zoom (PTZ) cameras, where a user can control the camera remotely through a web interface,
are emerging as a popular choice for live imagery. PTZ cameras may benefit the most from providing
the surrounding 3D geospatial context, because their orientation and zoom can change both dramati-
cally and rapidly. We discuss methods of solving for the dynamic calibration parameters from a small
set of points clicked under different viewing directions and show our interface where a user can re-
motely move the physical camera and watch a virtual, textured camera frustum move to mimic the
camera motion. We show that our calibration method works well, recovering the ground truth camera
geolocation and geo-orientation, even in the presence of erroneous input.

We conclude by demonstrating several applications of integrating live webcam imagery into GIS, and
how to augment these applications once the geocalibration of a camera is known. We discuss methods
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to embed live and historic imagery into 3D GIS, assisting users with calibration-specific constraints,
visualizing live PTZ cameras under varying rotation and zoom levels, and remotely controlling PTZ
cameras through a geographic interface.

2. RELATED WORK

Creating systems to support the organization, querying, and data integration from distributed sensors
with known geolocation has been a major focus of work over the last decade. Classic works include
IrisNet [Gibbons et al. 2003] and SenseWeb [Nath 2006; Kansal et al. 2007], which offer frameworks
to organize, collect, filter, and combine sensor feeds, to enable distributed queries with reasonable
response times. However, these architectures leave a centralized data store responsible for collecting
data, which makes it difficult for them to deal with large sets of video feeds.

There have been several other efforts integrating video into a 3D context. Most recently, the authors
of [Kim et al. 2009] describe methods to add dynamic information into virtual earth environments, by
displaying multiple video streams in a single context. They provide compelling results by merging sev-
eral video streams into a view-dependent texture that minimizes artifacts of viewing a back-projected
texture from extreme angles.

They also augment the virtual environment through object recognition results (e.g., animating a vir-
tual pedestrian whose position is determined by a pedestrian detector) and in-depth image processing
(e.g., estimating cloud cover and updating the virtual cloud models). As a first step to these high-level
algorithms, they first calibrate their camera with respect to the surrounding geographic environment.
In this article, we solve similar geometric computer vision problems, but with the goal of making the
calibration process accessible to novice users through a scalable web interface.

Video Flashlights [Sawhney et al. 2002] provided the first instance of projecting textures onto a geo-
referenced space, which places several cameras from a network in a single 3D context, which [Sebe
et al. 2003] extended by implementing a multi-camera tracking system for surveillance purposes, in-
tegrated within a geospatial context. [Gliet et al. 2008] create a GIS-mashup that maps weather data
onto the sky part of a webcam image (but ignores the part of the scene below the horizon).

In [Sankaranarayanan and Davis 2008], the authors demonstrate a registration framework for a
network of PTZ cameras. They use a spherical ‘fisheye’ panorama to register a PTZ camera to a com-
mon geographic space through an affine transformation, and use this geographic space to coordinate
the network of cameras and track objects across the different cameras in the network. Although we
use a different calibration approach, the motivating ideas and problem statements are similar. In this
paper, we show a PTZ registration and calibration framework for a single camera that relates the pa-
rameters of a movable camera in terms of familiar camera models from computer vision. Furthermore,
we extend the work of Sankaranarayanan and Davis by incorporating geographic altitude and the
effects of zooming the camera on the resulting image.

In [Kopf et al. 2008], the authors use an image annotated with the geolocation and orientation of
the camera, as well as the 3D geographic coordinates of every pixel in the scene to dehaze, relight, and
annotate images. In this paper, we simplify the interface necessary to complete this type of registration
and consider applications to live imagery.

This article is an extension of two papers published in peer-reviewed conference proceedings [Abrams
et al. 2010; Abrams and Pless 2010].

3. A SCALABLE SYSTEM FOR PARTICIPATORY WEBCAM GEO-INTEGRATION

While the geometric transformations involved in the mapping of imagery onto 3D geometry are largely
well-understood [Hartley and Zisserman 2000], there remain important system architecture issues
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(a) (b) (c)

Fig. 1. (a) A data flow diagram for our system. Each solid line is followed once per registration, each dotted line is followed
once per scene view, and the thick dotted line is followed many times during a scene view. To register an image to Google Earth
geometry, the user drags markers across a 2D webcam image (b), and then creates a correspondence between the 2D image and
the 3D geographic space by dragging 3D markers to match the 2D points (c).

in building a system which scales to a large number of simultaneous users and accepts untrained
volunteer input.

In this section, we describe our developments in implementing a web application for users to em-
bed live imagery taken from webcam images into 3D virtual environments. Here, we discuss the con-
straints and difficulties of building this system as a web application, and how we resolved these issues
to create a publicly-accessible scalable web service.

Creating a publicly-accessible system to map image data onto 3D geometry is not scalable because
the central server would require both significant computational and network resources. The streaming
image data must come to the central server, then each image must be warped, and the resulting warped
imagery must be sent on to the client.

Our system architecture supports 2 modes of interaction: when a user is calibrating a system and
when a user is viewing a system.

The first mode of interaction is the registration stage, where a user marks corresponding points
between the 3D world and the 2D image. Towards the integration of webcams into a 3D geographic
space, we require a user to find a webcam and click on a small set of correspondences between the
image and the 3D GIS data (in our work, we use the Google Earth browser Plug-in). When the user is
done marking up a scene, we are left with a set of correspondences between the geographic world (i.e.,
a latitude, longitude, and altitude) and the image. Figure 1(b)-(c) describes this interface.

The second mode is more challenging, as users may view a camera many times and many users may
be viewing the scene simultaneously. If all data were to go through a central server, that would become
both a bandwidth and computation bottleneck. In our system, during the view of a live stream, the
image data only goes to the client computer and all image manipulation is performed on the client
side. Furthermore, this is implemented with JavaScript so that the client computers only needs a web
browser. This allows a single central server to provide this service to a very large number of potential
clients. Figure 1 shows the data flow diagram illustrating interactions between the user and the system
for both the registration process and how a user views a scene.

3.1 Additional Information

As of the time of this writing, our system has been active for over two years, and users from all
over the globe (mostly in the United States, Germany, and Romania) have contributed a total of
203 scenes, calibrating 119 cameras from 3129 correspondences. The interface can be demoed at
http://www.projectlive3d.com. This website allows a user to register and calibrate both still imagery
and PTZ cameras, download scenes in KMZ (the format used by the desktop Google Earth applica-
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tion), download calibration information for each camera, use code to embed a calibration visualization
widget into another website, and view the source code running the system.

4. GEOCALIBRATION METHODS

These correspondences between a 3D scene and 2D image form constraints on the imaging geometry
that took place when the image was captured. These constraints form the basis for camera calibration,
a well-known geometric vision problem which aims to discover how the 3D scene projects onto the im-
age. By solving for the camera calibration, we discover the camera’s position, orientation, focal length,
and more. In this section, we discuss our methods for camera calibration, particularly with the goal of
applying geographic reference to the calibration parameters.

We first describe the classical method to solve the calibration problem, and then extend it in a few
ways. We provide a robust variant of camera calibration that can handle arbitrarily-wrong corruptions
in the data, which may come from inexperienced or malicious users, and then describe a novel PTZ
calibration model that accounts for variations in orientation and zoom.

4.1 Background

In solving for the 3D camera calibration we find the 3 × 4 projection matrix M that defines a virtual
linear camera such that if a world point (X,Y, Z) in 3D projects to some image coordinate (x, y), then xwyw

w

 =M


X
Y
Z
1

 , M =

m1 m2 m3 m4

m5 m6 m7 m8

m9 m10 m11 1

 (1)

where w is a homogeneous scaling factor. Although only 6 correspondences are required to solve for M ,
we require users to submit at least 12. Given these correspondences, we then find the optimal M that
minimizes the following least-squares problem:

M∗ = argmin
M

∣∣∣∣∣∣∣∣
 xwyw
w

−M

X
Y
Z
1


∣∣∣∣∣∣∣∣
2

2

. (2)

The above equation can be solved by the following equivalent system of linear equations:

M∗ = argmin
M
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(3)

M∗ = argmin
M

|A vec(M)− b|22. (4)

We then solve for Equation 4 using standard linear least squares.
Then, M can be further decomposed into:

M = K[R|T ] =

 fx s x0
0 fy y0
0 0 1

 . . . Tx
. R . Ty
. . . Tz

 (5)
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where K contains the intrinsic parameters of the camera, R is the 3× 3 camera rotation matrix, and T
is the 3-element camera translation vector. Here, fx and fy refer to the camera’s focal lengths, x0 and
y0 give the image coordinates of the optical axis (usually in the center of the image), and s is the skew
of the camera. Once M is known, we solve for K and R by decomposing the left-most 3 × 3 submatrix
of M using the QR decomposition, which decomposes a matrix into an upper-triangular matrix and a
rotation matrix. Finally, we solve for T as:

T = K−1

m4

m8

1

 (6)

Given this calibration we solve for the position and orientation of the camera in geographic coor-
dinates. Then we find the center of the camera in world coordinates, given by C = −R>T . We then
convert C back to geographic coordinates (latitude, longitude, and altitude), and express the rotation
matrix R in terms of heading, tilt, and roll.

Once a scene is calibrated, we allow the user to move the virtual camera to match the parameters of
the actual camera. Some example calibrated scenes are shown in Figure 2.

This linear camera model is a commonly-used approximation of how many real-world cameras take
images. However, it does not model barrel or pincushion distortion, which is present in some cam-
eras. This simple model could therefore lead to inaccurate correspondences in some cases. We opted to
keep the simpler camera model because it provides an effective approximation to a real camera, while
keeping the required number of user-submitted correspondences to a minimum. This has not been a
significant source of error.

As an implementation detail, we first convert the user’s latitude, longitude, and altitude into a Carte-
sian coordinate system by representing each point as meters east, north, and up of some arbitrarily-
chosen origin point, and this new coordinate is passed into the calibration procedure as (X,Y, Z). This
assumes that the ground is locally linear around the origin point, and since the altitudes of the cameras
we work with are well above the altitudes where we might experience distortions due to the curvature
of the Earth, this is a safe assumption in practice.

4.2 Robust Geocalibration

In informal observation, we notice that novice users are typically experienced at dragging 2D points
across an image, but generating high-quality 3D corresponding points remains a challenge (see Sec-
tion 5.3 for our observations and attempts to alleviate these difficulties). Furthermore, the building
geometry provided within Google Earth is itself provided by arbitrary Internet users. Although sub-
missions to Google Earth are monitored, there are still a large quantity of buildings in Google Earth
that do not accurately portray their real-life counterparts. Therefore, the set of correspondences gen-
erated with the web interface may be of relatively poor quality.

In response to this issue, we propose a calibration procedure that is robust in the presence of these
kinds of outliers. The system of linear equations shown in Equation 1 can be solved using linear least
squares, which is done in previous work [Abrams et al. 2010; Abrams and Pless 2010]. Although least
squares is a popular tool for many data- fitting problems, it is notoriously fickle in the presence of out-
liers. A small percentage of outlying points can corrupt the entire calibration routine, even if the rest
of the correspondences are accurate. This brittleness emerges from the squared error; any outlier will
accrue a large error that dominates the rest of the optimization, and least squares solutions typically
fit solutions that accrue smaller errors everywhere, rather than large errors at a few sparse locations.

A common solution is to apply RANSAC, which attempts to isolate inliers and outliers during the
fitting step. However, these methods work best when the number of data points far exceed the number
ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 0, No. 0, Article 0, Publication date: June 2012.
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Webcam image and polygons Oriented camera view Estimated location and calibration

Fig. 2. A selection of webcams and the polygons users have added to scenes (left column), the view from the positioned and
oriented camera in Google Earth (center column), and the calculated location and orientation of the camera in the context of the
scene (right column). The views in the center column have not been altered from the default calibrated camera view.
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of points required for any fitting step (in our case, six). An ideal solution would take advantage of all
(potentially noisy) data points to minimize the constraints on how many points a user must submit.

The `1 norm, or the sum of absolute values, is a robust estimator when we expect some portion of the
data to be corrupt. Because the absolute error measures the magnitude of the error rather than the
magnitude of the squared error, the resulting errors from outliers are on the same order of magnitude
as the inliers. Therefore, `1 methods support solutions that give large errors to a few data points, so
long as the errors themselves are sparse. Furthermore, in contrast to RANSAC, we can incorporate all
data points, yet maintain robustness properties.

We incorporate the `1 penalty into the optimization in Equation 4:

M∗ = argmin
M

|A vec(M)− b|`1 . (7)

By denoting Ai and bi the ith row of A and b, we define ti = |Ai vec(M)− bi|. Then, the optimization
Equation 7 is equivalent to the following constrained optimization:

argmin
M,t

n∑
i=1

ti (8)

s. t. −ti ≤ Ai vec(M)− bi ≤ ti
Finally, we express Equation 8 as a canonical linear program:

argmin
M,t

[
011

12n

]> [
vec(M)

t

]
(9)

s. t.
[
A −I2n
−A −I2n

] [
vec(M)

t

]
≤
[
b
−b

]
Where 0k, 1k, and Ik define the k-element 0 vector, 1 vector, and k × k identity matrix, respectively.
This formulation is then solved using standard linear programming algorithms.

4.3 Geointegration of Pan-Tilt-Zoom Cameras

Here, we extend the results in the previous sections to handle calibration of popular pan-tilt-zoom
(PTZ) cameras. These cameras are useful for surveillance applications, because they can view a large
portion of its surrounding geographic region, but zoom in to focus on regions of interest.

With dynamic cameras, geographic context is especially important. Even if a PTZ camera has been
placed near easily-recognizable landmarks, arbitrary users can easily rotate and zoom the camera into
geographically uninteresting locations. Therefore, understanding the geographic position and orienta-
tion of any view in the camera’s range is critical in attempting to understand the geometric foundations
of the scene.

Each camera used in this work advertises its internal pan, tilt, and zoom values through a web
interface in terms of three integers, with upper and lower bounds1. The goal of the calibration step is
therefore to apply geographic meaning to these numbers, by inferring the geographic orientation and
focal lengths from an arbitrary (pan, tilt, zoom) triplet.

Here, we describe a camera model that responds to variations in rotation and focal length, and show
how we calibrate such a camera given a set of correspondences. As before in Equation 1, we assume
that some 3D point (Xi, Yi, Zi) projects onto an image point (xi, yi) through a 3× 4 matrix M . However,

1In particular, we used the LiveApplet series of cameras, although our approach is appropriate to any camera for which the
internal state is readily available.
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since this matrix is dependent on the camera’s rotation and zoom, we now represent this relationship
as:  xiwyiw

w

 =M(pi, ti, zi)


Xi

Yi
Zi

1

 , (10)

whereM(pi, ti, zi) is a function of the pan, tilt, and zoom of the camera at the time the image was taken.
Here, we assume that pi and ti are between 0 and 1, and that zi is between zmin and zmax, the given
bounds. In other words, zmin and zmax are the zoom values at its largest and smallest focal lengths
(fully zoomed in and fully zoomed out), respectively. Then, we can represent M(pi, ti, zi) as a function
of the matrices K(zi) and R(pi, ti), the intrinsic camera matrix and the camera’s rotation matrix for
correspondence i:

Mi(pi, ti, zi) = K(zi)[Ri(pi, ti)|T ]. (11)
Notice that, because the position of the camera never changes, the translation vector T is constant
across all images.

Let (x0, y0) be the principal point of the image (assumed to be half the width and height of the image),
and let the focal length of the camera be a function of zoom, f(zi). This focal function therefore maps
otherwise arbitrary zoom values into real-world focal lengths. Then, we estimate the intrinsic matrix
as

K(zi) =

 f(zi) 0 x0
0 f(zi) y0
0 0 1

 . (12)

Previous work [Abrams and Pless 2010] assumed that the focal function was linear and bounded by
some unknown minimum and maximum focal lengths. Although the linear model works well for many
zoom levels, we noted that there is a dramatic nonlinear change in focal length when the camera is
almost fully zoomed in. Measuring the apparent size of several objects in the scene with respect to the
zoom parameter suggests that, for the cameras we model, the focal function is an unknown scaling and
translation of f(z) = 1

z :

f(zi) =
α

zi − β
+ γ, (13)

where α, β, and γ are unknowns.
However, due to the singularity when z is close to β, a small change in parameters could have a

large change in f(z). Therefore, we instead parameterize this function in terms of the unknown focal
lengths fa, fb, and fc at three key zoom levels: f(zmin) = fa, f(zh) = fb, and f(zmax) = fc, where
zh = zmin+zmax

2 . Representing f(zi) in terms of these three values is much less sensitive to small
changes in the parameter space, and each variable has a well-defined semantic meaning. Given any
fa, fb, and fc triplet, we find the corresponding α, β, and γ parameters through the following closed-
form solution:

d = zh(fc − fa) + zmax(fa − fb) + zmin(fb − fc) (14)

β =
zhzmax(fb − fc) + zhzmin(fa − fb) + zmaxzmin(fc − fa)

−d
(15)

γ =
zh(fbfc − fafb) + zmax(fafc − fbfc) + zmin(fafb − fafc)

d
(16)

α = fbzh − zhγ − fbβ + βγ (17)
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These α, β, and γ values then define the focal function as in Equation 13.
Then, we define the rotation of the camera as a function of the current pan pi and tilt ti, as well

as the rotational offsets p0, t0, r0, which define the default pan, tilt, and roll of the camera in radians
(when pi = ti = 0). Finally, we introduce two unknown scale parameters sp and st which convert the
[0, 1] scale into radians (i.e., field of view of the camera over all pan and tilt angles).

R(pi, ti) = zxz(−(sppi + p0), stti + t0, r0)

where zxz(u, v, w) is the standard 3 × 3 rotation matrix that rotates u radians around the Z axis, v
radians around the X axis, and w radians around the new Z axis. As u increases, the rotation moves
counterclockwise around the Z axis. Therefore, we negate the u term in order to move the camera
clockwise as pi increases (i.e., as the camera pans from left to right). This rotation scheme is common
among GIS applications.

The last calibration unknown is T as
[
Tx Ty Tz

]>, the unknown but constant position of the cam-
era.

For any PTZ camera, the focal function f (and, in our case, the values fa, fb, and fc), the rotational
offsets p0, t0, r0, the rotational scales sp, st, and the position of the camera, Tx, Ty, Tz define a set of
projective matrices. From this definition of the camera, we can find the projection matrix for any pan,
tilt, or zoom value in the camera’s range.

Given a geocalibrated camera for which we know the projection matrix M , we solve for the potential
points Q that project onto (x, y):  xw −m4

yw −m8

w − 1

 =

m1 m2 m3

m5 m6 m7

m9 m10 m11

Q (18)

where w is an arbitrary homogenous scaling factor.
Then, to compute the error of some assignment of the unknown values f , p0, t0, r0, sp, st, Tx, Ty, Tz,

we first compute the projection matrix M(pi, ti, zi) as given by Equation 11, for any correspondence i.
Then, we find some ray ~Qi that goes from the camera center through the ground truth image coordinate
(xi, yi) as in Equation 18. If the camera is placed correctly, the ray ~Qi should be exactly the ray ~Ri that
passes through the camera center and (Xi, Yi, Zi). We normalize both ~Qi and ~Ri and compute the
angular difference error for correspondence i as follows:

Ei = 1− ~Ri · ~Qi. (19)

This error measures the angle between the two vectors, and we combine this error for all corresponding
points to create the complete cost function, which we minimize over all our parameters:

argmin
f,p0,t0,r0,sp,st,Tx,Ty,Tz

n∑
i=1

Eiwi (20)

where wi is a per-correspondence weight that more strictly enforces the angular error term for larger
zooms:

wi =
zi − zmax

zmin − zmax
+ 0.1.

Notice that this definition of error depends on M(pi, ti, zi), and hence, every value that contributes to
the position, orientation, and focal length of the camera. The total error for some prospective solution
is then the sum of all Ei.
ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 0, No. 0, Article 0, Publication date: June 2012.



Web-Accessible Geographic Integration and Calibration of Webcams • 0:11

(a) l2 method (b) `1 method (c) l2 method (d) `1 method

Reprojection error
(% of maximum image dimension)

Camera position error
(meters)

Fig. 3. Experiments to validate the robustness of the proposed calibration method. In each case, the proposed `1 method is
more robust to outliers, both in magnitude and quantity.

Another way to measure the error of some assignment of the unknowns is to instead compute the
reprojection error for each point. In our formulation, we found that the reprojection error results in
a much more difficult optimization, because the reprojection error can easily cause unbounded error
terms which dominate the optimization; if a point projects outside the image frame, it can accrue an
arbitrarily large error. However, because we use an angular error, we effectively bound how much error
any one point can contribute (i.e., each error term is between 0 and 2).

Given a set of PTZ correspondences (xi, yi, Xi, Yi, Zi, pi, ti, zi), we solve for the camera’s position,
default orientation, and focal lengths using the simplex method with the angular difference error. We
initialize the position of the camera as the mean of all 3D points, the rotational offsets p0 = t0 = r0 = 0,
the rotational scales sp = 320◦, st = 120◦ (numbers advertised by the camera manufacturers), and the
focal parameters as (fa, fb, fc) = (12.5, 2.5, 1.25) times the width of the image.

After calibration, the set of unknowns defines a projective camera matrix M for any PTZ state
(pi, ti, zi). In later sections, we show how this formulation allows seamless integration of live webcam
imagery from PTZ cameras into geographic information systems.

5. EVALUATION

In this section, we show quantitative and qualitative measures of accuracy for the proposed methods.

5.1 Robustness of `1 calibration method

Here we report on experiments that describe the sensitivity of the `1 calibration method to corrupted
points. In each of the experiments listed, we corrupt some percentage of the input correspondences and
estimate calibration parameters with least squares and the proposed method. For these experiments,
we corrupt a correspondence by adding uniform noise to its 3D location.

We first describe a quantitative measure to estimate the sensitivity of calibration methods to larger
and more prevalent corruptions. In this section, we explore two different variables of corruption: the
corruption magnitude (the amount of uniform noise we apply to the corrupted points’ 3D locations, in
meters) and the corruption prevalence (the percentage of points which we randomly sample to corrupt).
Furthermore, we use two metrics for calibration quality: the reprojection error and camera position
error.

The reprojection error measures how well the computed projection deformation conforms to the set
of (uncorrupted) input points; for any point (Xi, Yi, Zi), we use Equation 1 to determine the location
of the projected image point (x′i, y

′
i). The reprojection error is thus the Euclidean distance between

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 0, No. 0, Article 0, Publication date: June 2012.



0:12 • A. Abrams and R. Pless

(x′i, y
′
i) and (xi, yi), the ground truth input point. Finally, for fair comparison across cameras of differing

resolutions, we normalize the reprojection error by the maximum image dimension.
The camera position error measures how far the estimated camera location is from the hand-labeled

ground truth camera location, in meters. Although camera position is not the only product of calibra-
tion, measuring error with respect to relative position provides a high-level interpretation for calibra-
tion quality.

Finally, for any set of corrupted points, we calibrate the camera using the proposed `1 method and
the least-squares method. For any particular corruption magnitude, corruption percent, error metric,
and calibration method, we report the median error with respect to twelve scenes across five trials.

Figure 3 shows the results of this experiment. In all cases, the proposed method is more robust to
outliers than the least squares method; even under a small amount of corruption, the least squares
method returns erroneous results.

Another method to evaluate the quality of a calibration is through qualitative examination of the
resulting camera geometry. Each geocalibration corresponds to a full 3D camera frustum. This repre-
sentation of the camera shows the camera’s location, orientation, and focal length (i.e., its zoom level).
When a camera is mis-calibrated, the resulting camera frustum is malformed or in some impossible
configuration (such as inside a building or underneath the ground). Thus, examining the deformations
to this frustum gives a rough estimate of how the various methods react in the presence of outliers.

Figure 4 shows some example calibration results before and after the addition of outliers. Qual-
itatively, the least squares calibration technique is fairly fickle in the presence of outliers, while `1
methods give more robust results.

5.2 Evaluation of Pan-Tilt-Zoom Calibration

Here, we describe the quality and robustness of the PTZ calibration model with respect to varying
amounts of corruption. Similar to the previous quantitative experiment, we progressively corrupt more
and more correspondences by varying magnitudes, and report the average calibration error of the
uncorrupted points (in this case, the angular error term used in PTZ optimization) and camera position
error. Figure 5 shows our results. Although the PTZ model is not built explicitly for robustness, we
found that the proposed method is still robust to large corruptions in the data, a proxy for real-world
miscalibrations generated by novice or malicious users. For small amounts of corruption, the PTZ
calibration method reliably uncovers the ground truth camera position to within 10 meters, with an
average angular error less than 1.3 degrees.

5.3 User Evaluation

Here, we briefly discuss our experiences in working with an arbitrary userbase, some common mis-
takes, and our efforts in improving our interface to avoid these errors.

If a user has a problem annotating a scene, it is usually due to inexperience in manipulating 3D
points with a 2D mouse. Initially, we found that users would ignore the part of the interface dealing
with 3D interaction, submitting “correspondences” between the image and the default location of the
3D points. We alleviated this problem by validating that a user had at least clicked on some of the
points before submitting their correspondences.

In a similar vein, we found that in previous iterations of our interface, users would become confused
as to what the next step was. We introduced an interactive tutorial for our system that explicitly tells
a user what steps are required in order to successfully calibrate a camera. In these tutorials, certain
areas of the interface are highlighted in order to focus the user’s gaze on the elements of interest.

When a user adds points to a brand new camera, the camera position is unknown and so by default,
we place the locations of the 3D points across the globe. In the first iteration of the interface, we
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Example image l2, no outliers `1, no outliers l2, with outliers `1, with outliers

Fig. 4. Each row shows an example image of the camera, and the results from both the least squares approach (l2) and the
robust calibration method (`1) in the absence and presence of outliers. The proposed algorithm consistently returns more robust
calibrations than traditional methods. In the fourth row, the least squares approach placed the camera kilometers away from
the ground truth location and is not shown.

(a) (b)

Fig. 5. Quantitative Evalutation of the proposed PTZ calibration algorithm in the presence of large corruptions.

provided a “Center Points” button that would recenter the 3D points on the current virtual camera
view, so that once a user had moved the Google Earth camera to the real-world camera’s location, he

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 0, No. 0, Article 0, Publication date: June 2012.



0:14 • A. Abrams and R. Pless

Scene ID Total Time (minutes) Interface Time Clicks Correspondences
Final Calibration
Error (degrees)

1 49 32m 46s 435 36 1.9
2 47 33m 12s 509 35 8.7
3 39 28m 17s 432 35 3.2
6 21 20m 31s 267 37 1.2
8 25 24m 06s 342 35 0.1

Fig. 6. Statistics of novice users using the interface.

or she could relocate the positions of the 3D points without having to manually drag them from their
default location. However, we noted that untrained users were unclear about the purpose of the 3D
correspondences, and wouldn’t even click the button. We changed the behavior so that the 3D points
were always in the center of the virtual camera’s view as the user geolocates the camera. This follow-
the-user behavior stops when a user moves the first point. After adding this element to the interface,
we found that users were more aware of the 3D aspect and had a stronger idea of the goal.

In practice, the user-provided registration process for is approachable to novice users. As an informal
test of the ability for users to use our interface, we took a convenience sample of 4 novice users as they
registered points to 5 scenes. We gave each user access to the PTZ registration interface, where the
camera had been previously geolocated (but the scene was otherwise unlabeled). We gave each user
a short tutorial on how to use the interface, and asked each user to submit at least 35 registrations.
During this time, we measured several factors: How long the user spent from the end of the tutorial
session until all 35 registrations were submitted (total time), how long the user spent during each reg-
istration step (interface time), the number of times the user clicked on the interface, the final number
of correspondences added to the scene, and final calibration error. Figure 6 shows the results of this
informal study.

While monitoring the users, we noticed a few errors. In one test, the user admitted to accidentally
creating misregistrations by incorrectly placing several 3D markers on the wrong side of a 3D building,
which adversely affected the results of the calibration step. Some scenes have little to no GIS-provided
building geometry. In these cases, users sometimes mistakenly registered the roof of a building in 2D
to the footprint of the building in 3D. In the cases where the user did not make these mistakes, the
resulting calibration quality is good enough to create superimposed images in a geographic setting, as
in Figure 7.

6. INTEGRATING IMAGERY INTO GEOGRAPHIC INFORMATION SYSTEMS

In this section, we describe some potential applications that take advantage of geocalibrated cameras.

6.1 Automatic Scene Completion

In order to texture the scene a static camera covers, we require the user to mark off sections of an
image and register them to the 3D environment. However, once a camera is accurately calibrated,
the transformation that maps the 3D structures and terrain in a scene to an image is known. If the
geometry of the scene is also provided (in our case, through the buildings and ground altitude provided
by Google Earth), then the mapping for the rest of the scene can be automatically completed.

To automatically generate a scene, we follow these steps.

(1) Generate image annotated with 3D geotags for each pixel.
(2) Triangulate set of georeferenced 3D points.
(3) Remove triangles that cover depth discontinuities.
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(a) (b) (c)

Fig. 7. A series of superimposed camera views and camera frusta generated entirely by correspondences from novice users. The
user in (c) had mistakenly selected 3D points on the ground plane, and thus the calibration is incorrect.

(a) (b)

Fig. 8. Some results from automatically-generated scenes. Notice how the depth discontinuities in (a) are preserved, where the
mesh is outlined with a violet border. (b) shows the Google Earth view before and after updating the texture with a webcam
image from automatically-generated scene. If created by hand, the mesh in (b) would require tens of thousands of perfectly-
aligned correspondences.

(4) Texture the mesh using camera calibration.

Given the fully geocalibrated camera for which we know the projection matrix M , we can solve for
the potential points Q that project onto (x, y) by Equation 18. From here, we use GIS-provided methods
to find the intersection of this ray into the scene’s geometry. We repeat this process for every (x, y) to
generate a full depth map.

In most images of outdoor scenes, there can be large depth discontinuities between two adjacent
pixels, where the geometry of the scene abruptly changes (such as the edge of a building). Although
the pixels themselves are very close, the locations of their corresponding 3D points can be drastically
different. A simple triangulation of the scene therefore results in triangles with very long edges, where
a triangle crosses a depth discontinuity boundary. However, if the background of an image has a co-
hesive structure (such as a mountain), then it is expected for two adjacent pixels in an image to be
somewhat far away, even if there is no depth discontinuity. In other words, the further away an object
is, the 3D distance of two adjacent pixels on that object should inherently increase. To prune only the
triangles with high depth discontinuity, we score as the length of its longest edge divided by the mean
depth of its vertices, and cull away the triangles with large scores (see [Abrams et al. 2010] for details).
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(a) (b) (c)

Fig. 9. (a) A webcam image which has been calibrated through the web service. (b) A user-provided selection from the image.
(c) Two views of the 3D locations of the selection, determined automatically by the calibration-assisted registration process.

Thus, through a web interface, a user can provide a small set of correspondences (at least twelve)
between an image and the geographic scene from which the system will automatically perform camera
calibration. Given known scene geometry (provided by GIS applications), this calibration provides the
transformation required to retexture a large and complicated scene, such as the skyline in Figure 8(a).
In the previous system, users would have to provide a large number of correspondences related to the
complexity of the scene geometry. This is particularly useful for scenes in which the geometry of the
scene is not planar. For example, Figure 8(b) shows a scene in which the side of a mountain range has
been mapped with a live texture. If this scene were to have been created manually, the user would
have had to create several thousand correspondences by hand.

6.2 Calibration-assisted 3D point locations

As mentioned earlier, during informal observation of users, we have found that registering points in
a 3D geographic space is challenging for novice users, who may be inexperienced with manipulating
objects in a 3D environment. While a user may be used to moving 2D objects around the screen (as
they must do when specifying correspondences on a webcam image), moving 3D points with 2D mouse
controls is challenging.

Once the camera is calibrated, we allow users to take advantage of the geometry in the scene to aid
the 3D point manipulation process. As users drag a 2D point around the calibrated webcam image, the
corresponding 3D point moves to its most likely 3D location, effectively eliminating user manipulation
for the 3D case. This calibration-assisted interface solves both the issue of manipulating objects in a
3D environment and creating contextually-significant meshes in the foreground of webcam images.

For any calibrated camera, the relationship between 3D world coordinates and image coordinates is
known. Any 2D image point (x, y) in the image has an associated ray in space (defined by Equation 18),
so we intersect that ray with the 3D scene geometry and place the corresponding 3D geographic point
there. However, this assumes that the initial calibration has been done correctly and the underlying
geometry of the scene is consistent with the webcam image. We allow the user to adjust the geoloca-
tions of the 3D points if either of those assumptions fail. Figure 9 illustrates how calibration-assisted
registration offers an intuitive, accurate alternative for novice users to create live textured meshes of
a scene.

6.3 Integrating Historical Imagery

In addition to viewing the current webcam stream in a 3D environment, we allow users to navigate
historical webcam archives to view the scene from weeks, months, or years ago. In our work, we use
the Archive of Many Outdoor Scenes, a collection of over 100 million images taken periodically from
from tens of thousands of publicly available webcams [Jacobs et al. 2007].
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(a) (b) (c)

Fig. 10. Each pixel in the summary image (a) is the average color of one webcam image taken sometime during 2009 (or red
when the image could not be downloaded at that time). Vertical changes in the image are due to variations over a single day,
while horizontal changes are due to seasonal variations over the year. When the user clicks on the pixels circled in blue and red,
the interface updates its textures to (b) and (c), respectively.

To navigate a year’s worth of webcam imagery, we use a summary image visualization, which de-
scribes variations across a year’s worth of archived images [Jacobs et al. 2009]. Here, each pixel in the
summary corresponds to a single image taken during that year, and as a user clicks on various parts
of the summary image, the image corresponding to the click point is loaded and embedded into the 3D
geometry. In this way, a user can quickly navigate historical webcam imagery. Figure 10 describes the
historical interface.

6.4 Visualizing PTZ geocalibrations

To texture the scene in the static case (as in Figure 8(b)), it is assumed that the orientation of the
camera is known. In the PTZ case, the camera can change its rotation and zoom, which will make any
texture coordinates no longer valid. Therefore, any attempt to texture the scene with static texture
coordinates will be met with failure when the camera moves, since the texture won’t be addressing the
same geographic regions across different orientations.

For PTZ scenes, we opted to use a textured rectangular polygon that intersects the camera frus-
tum as the camera rotates and zooms. If the GIS application’s virtual camera is placed in the same
geolocation as the physical camera, then this gives the effect of the live webcam image retexturing a
large field of view in the scene. As the physical camera rotates and zooms, the virtual frustum changes
accordingly, matching the webcam image to a geospatial context. A similar approach was demo-ed
by [Agüera y Arcas 2010], which superimposes live images from a mobile phone onto street-level maps
applications (although their demo and georegistration process has not been released to the public as of
this writing). Figure 11 shows an example PTZ camera geointegrated into Google Earth, showing live
updates of the estimated view frusta, and the image texture shown in proper geographic context.

6.5 Geographic camera control

The proposed PTZ calibration method discussed takes as input a (pan, tilt, zoom) triplet, advertised by
the physical camera, and returns a geocalibration that reflects the camera’s current geographic state.
However, given a geocalibrated pan-tilt-zoom camera, it’s feasible to solve the inverse problem: given
some geographic point of interest, provide a (pan,tilt,zoom) state that places that point in the center of
the resulting image. Such an interface would be useful for surveillance applications where specifying
a geographic point is more intuitive than specifying the pan, tilt, and zoom parameters by hand.

Given some query point of interest (X,Y, Z) and a desired zoom level z, we solve for the camera pan
and tilt (p, t) that minimizes the reprojection error from the query point to the center of the resulting
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Webcam Image Overhead View with Frustum Superimposed Image

Fig. 11. A series of webcam images taken from a PTZ camera (left column), oriented camera frusta, shown in pink (center
column), and the current webcam image superimposed on the virtual camera within Google Earth (right column). Through this
interface, the camera frustum and superimposed image change as the physical camera rotates and zooms.
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Fig. 12. Examples of a geographically-aware PTZ interface. (Top row) A user drags the orange query point around the virtual 3D
environment. We find the optimal pan and tilt values that orients the camera toward the query point and (bottom row) remotely
control the physical camera to match those orientation parameters. In each example, the camera is controlled entirely by the
manipulation of the orange point in Google Earth.

image. Defining x(p, t), y(p, t) as:  x(p, t)wy(p, t)w
w

 =M(p, t, z)


X
Y
Z
1

 , (21)

we solve for the best pan and tilt as:

p∗, t∗ = argmin
p,t

(x(p, t)− x0)2 + (y(p, t)− y0)2, (22)

where (x0, y0) is the center of the image. Since the number of variables is small and the objective
function has a closed form, a simple grid search over p, t is efficient and accurate. Finally, in the same
way that we can query for the camera’s internal state, we can set the camera’s state through a set of
web API calls, which remotely controls the physical camera to match the optimal pan and tilt values.

This simple optimization results in an interface where a user can drop a pin that defines an (X,Y, Z)
location, and the camera automatically rotates so that the query location is in the frame of the resulting
image. So, a user only needs to manipulate the location of a 3D point to change the camera’s position.
In our interface, we set z to be proportional to distance from the camera center to the (X,Y, Z) point,
so that the camera zooms in on distant query points and zooms out on close points. Figure 12 shows an
example of the interface.

7. CONCLUSIONS

In this article, we describe our efforts to create a publicly-accessible tool for arbitrary internet users
to provide the correspondences necessary to geocalibrate a webcam. By providing geographic context
to cameras we interpret their images more deeply and treat them as more than “just another sensor”,
which has immediate applications to surveillance and environmental monitoring. Because we decen-
tralize our server and push image processing tasks to the end user, we are able to maintain a scalable
service with minimal computational overhead. We offer a robust geocalibration method that is robust
in the presence of large errors caused by naive users, and a dynamic pan-tilt-zoom calibration method
that can handle changes in camera orientation and zoom. These methods work well, even in the pres-
ence of large corruptions in the data. Finally, this work supports a variety of tools that take advantage
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of geographic reference, such as embedding live textures into 3D GIS and controlling a dynamic PTZ
camera through geographic constraints.
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