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Abstract

The computation of optical flow from itmage deriva-
tiwes is biased in regions of non uniform gradient dis-
tributions. A least-squares or total least squares ap-
proach to computing optic flow from image derivatives
even in regions of consistent flow can lead to a sys-
tematic bias dependent upon the direction of the optic
flow, the distribution of the gradient directions, and
the distribution of the image noise. The bias a consis-
tent underestimation of length and a directional error.
Similar results hold for various methods of computing
optical flow in the spatiotemporal frequency domain.
The predicted bias in the optical flow is consistent with
psychophysical evidence of human judgment of the ve-
locity of moving plaids, and provides an explanation of
the OQuchi tllusion. Correction of the bias requires ac-
curate estimates of the noise distribution; the failure
of the human visual system to make these corrections
tllustrates both the difficulty of the task and the feasi-
bility of using this distorted optic flow or undistorted
normal flow in tasks requiring higher lever processing.

1 Introduction

The perception of motion by visual means plays an
important role for many living organisms. The first
stage of many visual algorithms consists of computing
optic flow — the projection of the 3D motion vectors
of the scene point onto the image. Two broad classi-
fications encompass approaches to the computation of
the optic flow: methods that seek to match particular
points, and methods that consider the spatio-temporal
image intensity function and compute gradients or fre-
quency responses to estimate the flow. This paper con-
centrates on the second method, explicitly delineating
the effect of an error model on optic flow computed
from gradient measurements. We will argue at the end
of section 2 that similar results hold for computations
in frequency space.

Gradient-based approaches assume that image in-
tensity does not change over a small time interval. De-
noting the image intensity by E, its spatial temporal
derivatives by F;, F,, F, and the velocity of an image
point in the z and y directions by u and v, the following

constraint is obtained:
Eu+ Eyv+ E; =0 (1)

This equation, called the optical flow constraint equa-
tion [6], defines the component of flow in the direction
of the spatial gradient (E;, Ey)—the normal flow. The
gradients at a single image point do not allow a solution
for both components of the optic flow — deriving the
optical flow requires combining the gradient measure-
ments or normal flow vectors in a small region of the
image. The combination of flow vectors, however, con-
stitutes an intricate computational problem. The 2D
image measurements are determined by the 3D motion
of the scene relative to the observer and by the depth
of the scene in view. Small regions of the image may
contain projections from 3D scene points at different
depths or undergoing different motions.

As is well known, the result is that computational
problems arise at the locations of flow discontinuities,
which are due to objects at different depths or dif-
ferently moving scene elements. Within small image
patches arising from coherently moving, smooth parts
of the scene, the optical flow field is well approximated
by parametric models which are constant, linear or
quadratic in the image coordinates. At the locations
of discontinuities, however, this parameterization fails,
and combining image measurements across discontinu-
ities may give very erroneous optical flow estimates. To
avoid smoothing over boundaries, knowledge of where
the discontinuities are seems to be necessary, but this
is difficult to obtain from local image measurements.
The problem has been attacked with various methods:
searching for filters which conform to boundaries [13]
or boundary preserving regularization [4, 10].

What 1s less known — and the subject of this pa-
per — is that even within regions of constant flow, the
computation of optical flow from noisy gradient mea-
surements has a systematic bias dependent upon the
gradient distribution of the image region.

The estimation and interpretation of optical flow
from a statistical point of view has received attention
previously in the computational literature [1, 2, 3, 11,
14, 16]. Most closely related to this paper are the stud-
ies of Nagel and Haag [7, 8], who investigate and at-



tempt to compensate for the bias in a gradient based
technique; however, they interpret the bias only with
respect to the underestimation of the length of the flow,
and do not discuss the effects on its direction due to
the distribution of the image gradients.

This presentation proceeds in section 2 by intro-
ducing a noise model and analyzing the effect of this
noise in the computation of the optic flow. Several
psychophysical experiments are given where human
perceptual judgments are affected as predicted in our
model of the bias. Section 3 discusses the inherent sta-
tistical difficulties in correcting the bias. We conclude
by discussing the implications of these unavoidable un-
certainties in optic flow computation.

2 Analysis of Optical Flow Estimation

We analyze the estimation of optical flow from lo-
cal measurements of derivatives of the image intensity
using a least square minimization, and assume that
the flow is constant within the region of the gradient
measurements. That is, as input we consider a set of
measured spatial and temporal gradient measurements
(Es,, Ey,, Ey,) which are compounded of the actual val-
ues (Ey,, Ey,, Ey,) and noise (ng,, ny,, n,):

Exl = Exl + Ny,
EAyl = Ey, +ny,
Et = FEi +ny;

with
and E; = Ey, (2)

Image gradients are related to image velocity by the
optical flow constraint equation (1). If the optical flow
u = (u, v) is constant within the region considered, it is
described by the over-determined system of equations

Solving (3) by standard least squares estimation for
the flow u yields

o~ =1 .
u=—(ETE,) ETE, (4)

As a noise model we consider zero-mean noise in the
local image derivatives, independent at different image
locations, but with possible dependencies between the
spatial and temporal derivatives at each point. The
second moments of such noise are simply described
through a covariance matrix, with one remark. As the

model should provide measurements which are sym-
metric with respect to reflections along the coordinate
axes, we assume the noise component due to correla-
tion between the spatial and temporal derivatives de-
pends on the signs of the derivatives. If one of the
derivatives is positive and the other is negative, as in
the first quadrant, we assume positive correlation; oth-
erwise, we require sign change.

To obtain a more compressed notation, we also as-
sume that two spatial components of the noise are
equal. This may be an oversimplification for real sys-
tems, but it does not affect the analysis. Thus, the
variances and covariances of the noise components are

E(ng,,ny;,ne;) = (0,0,0)
BE(ng, ny.ni) = (07,07,0f)
E(ngny,) = 0
E(ng,ny,) = og = —sgn(Ey, Ey,) - 05
E(ny,ny) = oy = —sgn(Ey, Ey,) 04

In the absence of errors in the spatial gradient mea-
surements E,, standard least squares methods give an
unbiased estimator. The expected value E(u), ob-
tained from (4) corresponds to the true optical flow
ug.

However, errors in this measurement matrix can
lead to a bias such that the expected value of the es-
timated flow @ = E(u) is no longer the true optical
flow. The form of this bias is apparent in the second-
order Taylor expansion of the expected value of the
least squares solution as a function of the variance and
covariance of the noise in the measurement matrices.
According to the noise model, the first-order terms van-
ish, and the only non-zero terms that remain in the
expansion at zero noise (n = 0) are

u = Uy
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where M = ESTES and b = ESTEt

Algebraic manipulation of the above derivative leads
to an expression for 1 that can be written as a sum of
three components: the true optical flow ug, a compo-
nent which is due to the variance in the spatial deriva-
tive noise only (which we refer to as variant noise),
and a component which originates from the covariance



terms of the noise in the temporal and spatial mea-
surements (which we refer to as covariant noise). The
dominant factors are

u= 110—[(1 (Z M_1u0> _ZI\/’?lM—l [Sgn(axt,)]

sgn(ayt,)
(5)
with M = ETE;, computed from the real spatial
derivatives uncorrupted by noise, and constants K =
o? and

9
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Both constants are independent of the gradient distri-
bution, so the effect of the gradient distribution on the
bias of the computed flow can be interpreted through
its effect on the matrix M~!. In the case of a uniform
distribution of image gradients in the region where flow
is computed, M (and therefore M~1) is a multiple
of the identity matrix, leading to a bias solely in the
length of the computed optical flow. Both the variant
term and the covariant term lead to underestimation of
the length. In a region where there is a unique gradient
vector, M will be of rank 1; this is the aperture prob-
lem. In the general case, the bias can be understood
by analyzing the eigenvectors of M. As M is a real,
symmetric matrix, its two eigenvectors are orthogonal
to each other with the direction of the eigenvector cor-
responding to the larger eigenvalue dominated by the
major direction of the gradient measurements. M™!
has the same eigenvectors as M and inverse eigenval-
ues. Thus, the eigenvector corresponding to the larger
eigenvalue of M~! has a direction dominated by the
normal to the major orientation of the image gradi-
ents, and the product of M~! with any vector is most
strongly influenced by this orientation. This affects the
variant term, leading to underestimation of the magni-
tude of the optical flow and a bias in its direction to-
ward the major direction of the gradients. The covari-
ant term in most cases also leads to an underestimation
in the length and its influence on the direction can be
either way, toward or away from the major direction of
the gradients, depending on the gradient distribution.

Explicit analysis of a pattern with a simple gradi-
ent distribution demonstrates the bias. Figure 1 shows
a variant of a pattern created by Hajime Ouchi [9]; a
pattern with inset and background regions containing
different and non-uniform gradient distributions. The
“bricks” used to make up the figure are 4 times longer
than they are wide, leading to a gradient distribution
in a small region with four times as many normal flow
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measurements in one direction as the other. For such a
gradient distribution the bias can be understood rather
easily. The eigenvectors of M are in the directions of
the two gradient measurements, with the larger eigen-
value corresponding to the larger number of gradients.
Figure 2 shows the relationship between the optic flow
bias and the angle between the optic flow and the dom-
inant gradient direction. These plots are based upon
the exact second-order Taylor expansion.

As ug = (0,1), the variant term in (5) leads to the
bias in length shown by the curve in figure 2b, which
has its minimum at 0 and maximum at x/2 (that is,
when uyg is aligned with the major gradient direction).
The error in angle is greatest for w/4 (that is, when
ug is exactly between the two eigenvectors of M~1)
and it is zero for 0 and #/2 (Figure 2¢). Overall, this
means the bias due to the variant term is largest when
the major gradient direction is normal to the flow and
is nearly eliminated when it is aligned with the flow;
that is, in the Ouchi pattern, when the long edge of the
block is perpendicular to the motion. The bias is al-
ways negative in length and toward the major gradient
direction.

The covariant term is constant for 6 € [0, /2], and
is a bias that is negative in length and usually towards
the direction with fewer gradients. Figure 2(d,e) com-
bine both bias terms to show the expected length and
direction of the optic flow computation for different 6.

This provides an explanation for the effect seen in
the Ouchi Illusion, the different perceived motion in the
inset and surround regions. Because the central region
and the surrounding region have different gradient dis-
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Figure 2: (a) 16 measurements are in the direction
making angle § with the z axis and 4 measurements
are in the direction 6 + 7/2. The optical flow is along
the positive y axis and of length 1. (b) Expected error
in length of variant term. (c) Expected error in angle
due to variant term measured in radians between the
expected flow and the actual flow. (d, ¢) Expected
length of computed optic flow and expected angular
error. Derivative measurements are corrupted by noise
with distributions: o, = oy = 0.15 and o, = 0.1 - 0?.

tributions, any real, constant optic flow for the entire
pattern is biased in different ways when 1t is estimated
from local measurements. This error in the computed
flow is shown in figure 3; diagonal motions of the page
lead to optic flow estimates whose direction differ in
the different regions, and more vertical or horizontal
motions lead to biases largely in the length of the esti-
mated flow. A collection of psychophysical studies on
the perception of moving plaids have also found con-
sistent biases in human judgments of pattern velocity.
Experimental plaids are the sum of two sinusoidal grat-
ings of different orientations and frequencies. Motion
of this plaid pattern can be interpreted as independent
motion, with each grating moving perpendicular to its
orientation, or coherent, motion of the entire pattern.
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Figure 3: The residual regional motion vector field.
The vectors shown are the difference between the true
motion and the calculated motion. One block i1s drawn
to show the relative orientations of the inset and the
surround. The dimensions of the block give the rela-
tive number of vertical and horizontal gradient mea-
surements. The line from the center is the direction of
the true motion. The noise 1s Gaussian and the spatial
gradient magnitude is 1. On the left, o, = o4 = 0.1
and there is no covariance; on the right o5 = oy = 0.2
and o5 = 0.2 0,2,

Surprisingly, humans can perceive a coherent pattern
motion which does not correspond to the veridical pat-
tern motion — for plaid patterns with gratings of differ-
ent frequencies, the perceived coherent pattern motion
is biased towards the direction perpendicular to the ori-
entation of the grating with higher frequency [12]. This
effect increases with frequency difference, as predicted
in our model since a higher frequency pattern gives a
larger set of easily measurable image gradients. If the
difference in component frequencies is too large, the
relative motion directions too different, or the pattern
contrast too low, the components are perceived to move
independently — these conditions serve to maximize
the flow bias. The difference in estimates from very
biased gradient based flow techniques and blob track-
ing techniques may be used by higher level processes
in the visual cortex to segment the scene motion. Such
an analysis predicts human coherence judgements for
plaid patterns and the “false segmentation” perceived
in the reduced Ouchi stimulus(introduced in [5]).
This analysis was founded upon the assumption
that the intensity function, F, is constant for corre-
sponding image points in successive images: % = 0.
To have a differentiable function, typically E is con-
volved with a linear operator, G, giving GE(z,y,t) =
[ [[G(a,b,e)E(x+a,y+b,t+c)dadbde, if we assume
that the linear operator is independent of position. All
derivative based image methods either implicitly or ex-
plicitly do such pre-processing. To compare frequency
and image gradient based techniques for this prob-



lem, we consider the Fourier transform of %; which is
convolution by a set of exponential filters. By Parce-
val’s Theorem, the quadratic norm is preserved under
Fourier Transforms: if ||f||§ = [ [ [ f(z,y,t)*dadydt
and F is an operator computing the Fourier trans-
form of a function, then ||f||, = [|F f||5. Thus, a least
squares formulation in image space is equivalent to a

least squares formulation in frequency space.

3 Correcting the Bias?

In the statistics literature the model we used to de-
scribe the estimation of flow is referred to as the clas-
sical “Errors-In-Variable” (EIV) model. Tt is usually
expressed in the notation Ax = b with A = Ay + A
and b = by 4+ éb where Ay and bg are the true but
unobservable variables (in our case the actual spatial
and temporal derivatives E;,, Ey,, Ey, at points i), §A
and &b are the measurement errors, A and b are the
corresponding observable variables, and x represents
the unknown parameters to be estimated (in our case
u and v).

It is well known from the literature that estimation
by least squares (LS) generally provides an inconsis-
tent and biased estimate of the true parameter x. The
LS estimator gives an unbiased solution only for the
regression model, that is, when § A is considered to be
zero and the measurements §b are independent, zero
mean and equally distributed. The literature on es-
timation theory also provides a wealth of information
on techniques dealing with the EIV model and how
to compensate for the bias. However, the theoretical
possibilities of correcting the bias is computationally
difficult for realistic visual systems.

Any statistical method of compensating for the bias
requires knowledge of the statistics of the noise. For
the noise model considered in the previous sections,
this means knowledge of the covariance matrix of the
noise vector (ng, n,, ny). If this were available, the bias
in the least squares estimate could be removed. If the
model of constant flow is valid, this can be achieved
with the “Corrected Least Squares” estimator. If a
more complicated model of general smooth flow within
an image patch is necessary, iterative techniques must
be employed.

However, the major problem lies in the acquisition
of the statistics of the noise. The noise parameters are
not intrinsic to the system, but depend on the viewing
situation and the scene in view; in general these statis-
tics can only be considered to be patch-wise constant.
The noise parameters have to be estimated from the
flow estimates within a spatiotemporal neighborhood
by using the model which relates the image deriva-
tives and noise to the flow estimates. With the limited
amount of data within one patch where it 1s reasonable

to consider the statistics constant, it is very difficult to
obtain good estimates. Furthermore, the variance in
the motion estimates turns out to be large with respect
to the bias. For example, in simulations (see Figure 4),
it has been found that for a noise level of 10% (that
is, s = oy = 10% of the value of the spatial gradient
and the length of the flow) the standard deviation is
twice as large as the bias. Thus, correction, even with
an accurate estimate of the bias, would in many cases
lead to a worsening of the solution. In the particular

Figure 4: Expected error in length (solid lines) and
standard deviation (dotted lines) obtained by a Monte
Carlo simulation using Gaussian noise with three dif-
ferent standard deviations: o3 = oy = 0.2,0.1 and 0.05.
The optical flow is (0, 1), the magnitude of the spatial
gradients is 1, and the gradients are distributed with
15 vectors at angle # from the = axis and 5 vectors at
angle 7/2 + 6.

situation of the Ouchi illusion, the 3D motion (either
due to random eye movement or jiggling motion of the
paper) changes rapidly. This makes temporal integra-
tion of measurements very difficult as the system has
only a short time to obtain the noise parameters.

In recent years the nonlinear “Total Least Squares”
estimator has received a lot of attention and has also
been applied to the problem of flow estimation [15, 16].
This estimator has been shown to provide an asymptot-
ically unbiased solution for the EIV model in the case of
white noise, that is, if the noise values are independent
and identically distributed. To whiten the noise, how-
ever, it 1s again necessary to obtain its covariance ma-
trix. Without whitening, total least squares also gives
biased solutions. In particular, if the noise in the spa-
tial derivatives is greater than the temporal derivative
noise; the bias has the same form as the least squares
estimation discussed here. In addition, the variance in
the total least squares solution is much larger than in



ordinary least squares. Total least squares also per-
forms very poorly if outliers are present, and these are
difficult to detect from a few measurements.

4 Conclusion and Implications

The preceding analysis shows the difficulty of ob-
taining accurate optical flow estimates from local im-
age measurements. This analysis considers the effect
of noise when using least squares to compute the op-
tic flow from image derivative measurements. It shows
that in addition to the problems present at flow dis-
continuities, there are significant biases present in the
estimation of flow in regions of constant or smoothly
varying flow. This bias is dependent on the local image
gradient distribution and affects both the direction and
the magnitude of the computed optic flow. The bias
cannot be corrected without accurate knowledge of the
statistics of the noise distribution, information which
is difficult to obtain from local image measurements of
dynamic scenes. For reasonable estimates of the noise,
the model presented explains a set of human percep-
tual errors and illusions.

If one chooses as a goal to find the best possible
estimate of optic flow, there are several possibilities.
Using data from larger image regions allows more accu-
rate statistical noise sampling, but requires knowledge
of the location of flow discontinuities. An iterative or
feedback process can approximate the image velocity
initially to find bounds on flow values or qualitative de-
scriptions of local flow fields. Using this to create a par-
tial three-dimensional shape model permits estimation
of flow boundaries allowing subsequent flow estimation
to use data from larger image regions and further im-
prove the knowledge of the scene structure. This simul-
taneous estimation of the scene structure and motion
holds the best promise for accurate measurements.

However, even with the best computations, it can-
not be guaranteed that optical flow will always be ac-
curately estimated — this must be taken into account
when performing visual tasks. Many tasks do not re-
quire scene reconstructions or dense optical flow fields.
Normal flow measurements, or optic flow bounds which
can be accurately defined can allow the generation of
less powerful shape representations sufficient for many
tasks — representations describing the qualitative shape
of scene patches or depth ordering of scene elements.
Robust, qualitative descriptions may be best able to
avoid statistical biases from measurement noise.
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