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Abstract

Recently developed statistical methods for background
subtraction have made increasingly complicated environ-
ments amenable to automated analysis. Here we illustrate
results for spatio-temporal background modeling, anomaly
detection, shape description, and object localization on rel-
evant parts of the PETS2005 data set. The results are ana-
lyzed both to distinguish between difficulties caused by dif-
ferent challenges within the data set, especially dropped
frames, recovery time from camera motions, and what can
be extracted with very weak assumptions about object ap-
pearance.

1 Introduction

Automated surveillance algorithms are most useful if the
conditions under which they are effective are well under-
stood. Comparing different algorithms for real-world scene
analysis is challenging because different applications as-
sume different constraints or prior assumptions on the en-
vironment. The performance of an algorithm then depends
on the implementation, the choice of representations, and
whether or not the environment being imaged fits the as-
sumptions implicit in the algorithm. Since the current set
of environments amenable to automated analysis is small,
there is value in new algorithms demonstrating capabilities
on new data sets in new environments. The PETS data sets
serve to highlight specific environmental conditions and al-
low comparative analysis.

The 2005 PETS data sets [1] contain surveillance video
of coastal regions. The video is comprised of jpeg com-
pressed frames whose background includes shore, waves,
and sky, and whose foreground may include small and large
objects on water. The data is challenging in several re-
spects: (a) the view is not stationary, but pans-tilts-zooms to
new locations requiring the analysis of background motion
to adapt to new situations, (b) the images are significantly
compressed, noisy, and the video includes dropped frames,

and (c) in some scenes the objects to be detected are quite
small.

A collection of statistical techniques that fall under the
rubric of spatio-temporal video analysis have recently been
proposed for the analysis of video data. These techniques
capture spatio-temporal statistics of the video and identify
pixels or regions that do not fit this statistical model. These
techniques have been applied globally, using PCA decom-
position of the image sequence to create a set of basis func-
tions to reconstruct the background [13], but it is not clear
that relevant surveillance scenes with natural background
motions are well modeled with a small set of linear basis
functions.

The opposite end of the spatio-temporal analysis spec-
trum includes models that are local at each pixel, represent-
ing either the intensity and variance at each pixel [9], or
the local optic flow and its variance [7]. These models suf-
fer, respectively, from the inability to identify anomalous
objects at locations with large intensity changes caused by
consistent motions, and the classical challenges with com-
puting optic flow in real environments.

Our approach, VAnDaL (Video Anomaly Detection and
Localization) is to model the joint distribution of spatio-
temporal derivative values at each pixel; these measure-
ments are well defined in each frame, the distribution cap-
tures the statistics of consistent motions at a pixel, and em-
pirical evaluation has in the past indicated much better per-
formance in many different environments over pixel based
intensity models [8]. Furthermore, recent work shows that
these local models at each pixel can be cleanly clustered to
capture consistent motion patterns across the entire scene
in, for example, traffic scenes with different global motion
pattern [12].

This paper explicitly studies two questions. The first
is: How effective are spatio-temporal derivative models in
capturing the statistics of the background water motion in
the PETS2005 database? In particular, what is the effect
of dropped frames and how does the time over which the
model is accumulated affect the model?

Robust image derivative measurements are estimated us-
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ing filters of large support, so when objects are detected,
their position may not be accurately identified. This leads
to the second question: Given an approximate model of an
unknown object in a scene with a complicated background,
are there natural statistical techniques to improve the accu-
racy of the object position estimate and to define a more
specific figure-ground segmentation? Our main results are
the following:

• First, dropped frames in a video have a significant im-
pact on the performance of local spatio-temporal back-
ground models. Automatically detecting the dropped
frames and discarding corrupted temporal derivatives
results in good models of the background, at the cost of
missing anomalous objects appearing in frames before
and after the dropped frames. If the temporal deriva-
tives are rescaled to account for the dropped frames,
then the specificity of the background model recovers
partially, and does not miss the analysis of any of the
frames present.

• Second, local spatio-temporal background models can
effectively accommodate applications that require dif-
ferent time scales of adaptation. Furthermore, they can
be fielded effectively on cameras which pan, tilt, and
zoom, as they can rapidly adapt to the new background
when the camera stops at a new viewing direction.

• Third, simple EM style algorithms can refine the
spatio-temporal anomaly detection results, to provide
a very accurate object position, shape, and orientation,
and appearance without strong priors on object appear-
ance.

The next section provides a brief introduction to the
spatio-temporal background modeling methods used, fol-
lowed by results illustrating the quality of the background
model for different scenes using different time-decay con-
stants, and in conditions with and without dropped frames.
The following section considers the problem of more accu-
rately localizing the anomalous object.

2 Spatio-Temporal Background Modeling

This section gives the mathematical framework for one
method of spatio-temporal background modeling. The
method works by keeping a model, at each pixel, of the
joint distribution of thex, y, t derivatives of intensity. The
method described has been implemented in a real time sys-
tem that runs on an 800 MHz laptop for image resolutions
up to 640 by 480, using openCV and the Intel Image Pro-
cessing Library.

2.1 Spatio-Temporal Structure Tensor Field

Let ∇I(~p, t) = (Ix(~p, t), Iy(~p, t), It(~p, t))T be the
spatio-temporal derivatives of the image intensityI(~p, t) at
pixel ~p and timet. At each pixel, the structure tensor,Σ, is
defined as

Σ(~p) =
1
f

f∑
t=1

∇I(~p, t)∇I(~p, t)T

wheref is the number of frames in the sequence and~p is
omitted after this for clarity’s sake.

To focus on scene motion, the measurements are filtered,
only considering measurements that come from motion in
the scene, that is, measurements for which|It| > k, so
that the model only considers the spatio-temporal deriva-
tives with significant temporal change (in the experimen-
tal section, we choosek = 10, requiring that a pixel in-
tensity change by 10 grayscale values (out of 255) for the
derivative measurements to be testbed by or incorporated
into the model). Furthermore, we assume the mean of∇I
to be zero (which doesnot imply the motion is 0). Under
this assumption,Σ defines a Gaussian distributionN (0,Σ).
Anomalous measurements can then be detected by compar-
ing the Mahalanobis distance,∇IT Σ−1∇I to a preselected
threshold [8]. For anomaly detection, then, this is a two part
model, that classifies a pixel as belonging to the background
if either (a)It < 10, or (b)∇IT Σ−1∇I < threshold. This
threshold needs to be set to accommodate application spe-
cific trade-offs between allowable false positive and false
negative rates.

The structure tensor is related to optic flow. If a pixel
always views the same optic flowu, v, then all derivative
measurements exactly fit the optic flow constraint equation:
Ixu + Iyv + It = 0 [5], and the structure tensor has rank≤
2. Its third eigenvector is a homogeneous representation of
the total least squares estimate of the optic flow [3, 6, 11].

Under the assumption of stationarity,Σ can be estimated
online as the sample mean of∇I∇IT . For non-stationary
distributions, the model can be allowed to drift by instead
assigning a constant weight,α ∈ [0, 1], to each new mea-
surement:

Σt = (1− α)Σt−1 + α∇I∇IT .

This update method causes the influence of a given mea-
surement onΣ to decay exponentially, with decay con-
stant −1

ln(1−α) . Section 2.2 investigates the effect of spe-
cific choices the forgetting factor,α. The results in the fol-
lowing section mostly focus on the statistics of the spatio-
temporal structure tensor. This has been used to detect
anomalies in the video by comparing the Mahalanobis dis-
tance,∇IT Σ−1∇I to a preselected threshold [8].
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Figure 1. Plots of the determinant of Σ accu-
mulated over time with different decay fac-
tors (starting from the top left, corresponding
to zod5a, zog6, zod7a, zod9). The x-axis is
the frame number, and the y-axis is the mean,
over the whole image, of det Σ.

Defining a threshold allows the covariance matrix to be
used as a classifier to determine if a current x,y,t derivative
triple is background or foreground. For a given threshold,
τ , all measurements lying inside the equi-probability ellip-
soid,ε = {∇I : ∇IT Σ−1∇I = τ}, will be judged to come
from the background distribution. The volume of this el-
lipsoid is 4

3πτ
3
2 |Σ| 12 . Suppose the foreground distribution

is taken to be uniform over a regionV ⊂ R3 containing
ε. Then the probability of misclassifying a measurement

generated by an anomalous object is4πτ
3
2 |Σ|

1
2

3×volume(V ) , giving

P (false negative) ∝
√

detΣ. Because the probability of
misclassifying a background pixel is related todetΣ, this
value serves as a summary statistic, which can be used to
evaluate the likelihood that foreground pixels will be inac-
curately classified as background model, without consider-
ing a specific threshold.

2.2 Results

This section considers the variation in the background
model specificity as a function of the time constants used in
the creation of the model, the data in the scene, and dropped
frames. We give a brief description of methods to explore
each source of variation and discuss the findings one by one.

Time decay constantsAn important free variable in defin-
ing the behavior of the spatio-temporal structure tensor is
the decay factor. This factor defines the effective time win-
dow used to generate the current model. For a time constant,

c, the influence of a given measurement fromt-frames ear-
lier falls asexp(−t/c). The data at the output is 63% deter-
mined by the pastc frames. For different time constants, we
are interested in the specificity of the background models.
We consider the determinant of the covariance matrix as an
indicator of this specificity.

Figure 1 shows the effect of different choices of time
constants on the convergence of the model. The spike near
frame 600 is caused by a man walking across the screen
in a way that violates the background model. In practice,
measurements judged to come from foreground objects can
be excluded from the model.
Discussion.Several interesting features come to light; first
the rate of convergence to a background model depends on
both the decay rate and the scene. Second, even at steady
state, the determinant ofΣ is smaller for a time constant of
5 but roughly equal for time constants of 10 and 20, indicat-
ing the background model distribution is non-stationary for
very short image sequences.

Data dependenceThe effectiveness of the background
model also depends on the characteristics of the scene.
Since the spatio-temporal background models we consider
are local, the effectiveness depends upon the local scene
appearance. Figure 2 attempts to characterize the specici-
ficity of the background models for difference image re-
gions. These maps are made as thedet Σ value of the pixels
over the whole video, using a time constant of 100. The
evolution of the the model over two specific pixels is shown
in Figure 3.
Discussion.These image maps indicate several important
properties of the spatio-temporal background model.

The zod5 image has a largerdetΣ in the image center on
the water than the surrounding water areas. This is caused
by the higher contrast in that part of the video; insofar as
this image contrast variation is due to the camera, the con-
trast would also be higher in this area for anomalous objects,
so the actual sensitivity to objects (as opposed to sensitivity
to image derivatives not fitting the model) may be approx-
imately constant. The bright spot at the waterline is due to
variations caused by significant compression artifacts that
change the appearance of the bright white signpost. The
bright edge shown on the bottom right corner is due to small
camera motions and a very high contrast edge in the scene.

The zod6 video illustrates two features. First, on the wa-
ter, the model is less specific in the areas near the camera
where the largest and most varied wave motion appears.
Additionally, thedetΣ score is large in the sky region —
this region sees large and varied motion at the beginning
of the sequence as the camera pans past a large ship, after
which there is no variation in the area so the background
model is not updated.

The zod7a video consists of many different camera views
and the camera pans to keep a boat approximately in the
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zod5a zod6

zod7a zod9

Figure 2. Plots of the determinant of Σ at each
pixel. Bright white corresponds to det Σ ≥
2.55× 105.

field of view. Effective analysis of this video probably re-
quires algorithms to explicitly detect camera motion to reset
the background background model at each new static view-
ing direction.

The zod9 video is much like the zod5a video, with the
same pattern of of higher contrast in the middle of the im-
age. The largedetΣ values along the horizon line are
caused by compression artifacts at this high contrast edge.

Dropped FramesFinally, we consider the effects of tem-
poral discontinuities; dropped frames in the video se-
quence. These have the potential to significantly affect
spatio-temporal methods, because the difference between
consecutive frames is no longer an estimate of the temporal
derivatives. Figure 4 shows the meandet Σ in three cases,
(a) when the algorithm ignores the fact that some frames are
missing (just analyzes the video as is), (b) when the algo-
rithm ignores all derivative estimates corrupted by missing
data, and (c) when the algorithm rescales the estimated tem-
poral derivative to account for the missing frame.

Discussion.The effect of temporal discontinuities on con-
vergence of the mean ofdet Σ. The red (middle) line shows
results with discontinuities removed. Note the qualitative
difference in convergence behavior, as well as the doubling

(a) video

(b) Pixel 1

(c) Pixel 2

Figure 3. Plots of the determinant of Σ over
time for two particular pixels in the video
zod5a. Axes are labeled as in Figure 1. The
larger magnitude derivatives at pixel 1 lead to
a more stable model.
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(a) Determinant ofΣ

(b) Without Discontinuities (c) With Discontinuities

Figure 4. The effect of temporal discontinu-
ities on convergence of the mean of det Σ.
The red line (the middle of the three lines)
shows results with discontinuities removed.
(b) and (c) show the effect on anomaly detec-
tion, pixels where the Mahalanobis distance
exceeds 15 are marked. More of the object
is marked when discontinuities are removed
from the model.

of P (false negative) in the steady state. (b) and (c) show
the effect on anomaly detection. In each, pixels where the
Mahalanobis distance exceeds 15 are marked. The lower
left corner of (c) shows the failure to mark the shoulder of a
passing person because of the weaker model.

2.3 Lessons Learned

Real world applications demand robustness to video. Al-
though spatio-temporal methods are affected by noisy data,
they may still be effective despite temporal discontinuities
and dropped frames (zod5aand zod9), gross quantization
artifacts (zod9), and interlacing artifacts in fast moving se-
quences (zod6aandzod7).

The next section considers what might be a subsequent
step in a complete surveillance system, the analysis of a
large set of image regions identified as being anomalous.

3 Localization and appearance modeling

The results of background subtraction often comprise
an incomplete and inaccurate segmentation of the figure or
object from the background. This is especially true with
spatio-temporal background models that use filters with
large support to make robust image measurements. More
accurate isolation of the object position and refinement of
object appearance would facilitate higher level object recog-
nition. This section considers the following problem:

Problem: Given a sequence of images, and
a sequence of approximate locations of an ob-
ject within each image, find a generalized object
model and the exact object location and orienta-
tion in each frame.

We consider this problem in the context of thezod6video
data set. A representative collection of images of the zodiac
and the immediately surrounding area is shown in Figure 5.

Figure 5. Six frames approximately centered
of the zodiac boat.

Given that there is no explicit model for the object be-
ing tracked and each frame only contains low-quality, low-
resolution representations of the object, we make the fol-
lowing assumptions to make this problem tractable for the
PETS zodiac boat data set zod6. First, we assume that the
background intensity (the intensity of the water) is drawn
from a stationary distribution. Second, we assume that the
shape of the foreground object is a rigid 2D shape that may
translate and rotate. Third we assume that the intensity of
the foreground object (the boat) is drawn from a different
distribution than the background (the water). We feel that
these, or similar, assumptions may apply to a broad category
of detection and isolation problems in surveillance.

3.1 Related Work

This problem falls between the classifications of seg-
mentation, tracking, and modeling of texture and shape.
There is a collection of work that studies related problems.
Representative papers include the blobworld approach us-
ing EM to segment regions of individual images based on
texture and color, and discovering potential objects or im-
age regions useful in image retrieval [2]. For tracking, an
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online formulation uses EM to segment cars in aerial video,
with a primary goal of improving tracking in multi-object
scenes [10]. Our problem differs from these works in that
(a) unlike the first paper, we segment the object based on
many frames instead of just one, and (b) unlike the second
paper, our goal is to optimize the appearance model of an
object that is visible over hundreds of frames.

3.2 Refining Localization

In this section, we formalize the problem and describe
our procedure to iteratively refine the appearance and loca-
tion of tracked objects in a scene.

Given a set of imagesI = {I1, I2, . . . , IN} and ap-
proximate locations of an object in the corresponding image
X̂ = {x̂1, x̂2, . . . , x̂N}, find the exact object location,X =
{x1, x2, . . . , xN} and orientationΘ = {θ1, θ2, . . . , θN} in
each frame.

In our problem domain we consider the object to be a
2D rigid object, parameterized, in framei, by positionxi

and rotationθi, although our approach allows more gen-
eral transformation models. Note that we do not have a
prior model of the appearance or shape of the boat. We
assume the intensity of each pixel on the object is drawn
from a Gaussian distribution and the intensity of pixels in
the background are also drawn from a different Gaussian
distribution.

We can now describe this as a learning problem,
where we observe the pixel intensities and the fore-
ground/background segmentation in each frame is the hid-
den data. Therefore, using an iterative-updating method
such as the Expectation-Maximization (EM) algorithm [4]
is a natural choice. The framework of the algorithm is the
following is shown in Algorithm 1, which we elaborate on
in this section.

The goal of this algorithm is to estimate the segmenta-
tion and the texture of the foreground. This information is
captured in the image template,M . Figure 6 shows a sam-
ple template for the boat in the zod6 dataset. The choice
of initialization of the template affects the tendency of this
EM algorithm to converge to local maxima. The template
can be randomly initialized or domain-specific knowledge
can be used to bootstrap the process. In the case of the
zodiac dataset, we initialize the template with a rectangle
drawn around the region detected by the spatio-temporal
background model. The size of this rectangle was chosen
by hand in the experiment, but we assume no knowledge of
the shape of the boat within the rectangle. Figure 8 shows
the refinement of the template over the course of the EM
algorithm, and the first image shows the template used for
initialization in Algorithm 1.

Lines 5-8 describe the estimation steps of our algorithm.
For each region of interest in a frame, we estimate the po-

Algorithm 1 EM Localization(I, X̂ )
1: Initialization:
2: For each imageIj ∈ I create a set of equal-sized

regions of interestIROI = {IROI
1 , IROI

2 , . . . , IROI
N }

around the approximate locationŝxj ∈ X̂
3: Create an image maskM which contains fore-

ground/background segmentation and image texture
values for foreground pixels.

4: repeat
5: Estimation Step:
6: for all IROI

j ∈ IROI do
7: Using image maskM , estimate the location,xj ,

and appearance,θj , of the object inIROI
j

8: end for
9: Maximization Step:

10: Warp each imageIROI
j ∈ IROI to align the putative

foreground pixels
11: Recalculate the image mask,M , to maximize the

likelihood ofX andΘ, givenIROI .
12: until image mask,M , converges

sition and appearance of the object using the template as
a filter. Given our assumption that the shape of the fore-
ground is constant up to a rigid transformation in the image,
we convolve the template with the frame through a range a
rotations to find the location of highest response.

In order to maximize the likelihood that the positions,
X , and appearances,Θ, estimated in line 7 represent the
foreground pixels given the images,IROI , we construct a
transformed stack (T-stack). The T-stack has sizeh ∗w ∗N
whereh andw are the height and width, respectively, of the
region of interest andN is the number of images. For each
region of interest,IROI

j ∈ IROI , we create a corresponding
image in the T-stack through translation by(x̂j − xj) and
rotation by−θj . The T-stack registers every image such
that the pixels falling within the template — the putative
foreground pixels — are aligned along the3rd dimension.
Figure 7 shows two example regions of interest, a binary
image mask defining the valid template region, and the re-
sult of warping these two images so that they are aligned in
the T-stack.

In order to update the template, we now consider each
pixel in the template model and the vector of all T-stack
values at that pixel (some pixels may not currently not be
part of the template if they were judged to not be fore-
ground in a previous iteration; we consider these pixels in
this step as well). For each vector we calculate the mean
and maximum a posteriori (MAP) estimate. To segment
each vector as foreground versus background we return to
our assumption that the background, while dynamic, is reg-
ular and drawn from a stationary distribution. Moreover, we
assume the foreground pixels are drawn from a distinct dis-
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tribution. We employ well-known Gaussian mixture model
clustering techniques to assign each vector to one of the two
distributions and create the binary segmentation mask. To
build the most likely texture model for the image template,
we use the MAP estimate of intensity values from the vec-
tors in the T-stack in the corresponding foreground pixels of
the image template. Figure 6 shows an example of textured
image template.

This iterative procedure refines the image template un-
til convergence. That is, the procedure terminates when the
classification of T-stack vectors does not change for consec-
utive iterations. We then return the final estimate of the im-
age mask,M , which represents our belief of the appearance
of the tracked object, and the positions, X, and appearances,
Θ, of the object in each frame.

3.3 Results

Figure 8 shows the convergence of the model over 8 iter-
ations of the algorithm, when using the longest subsequence
(about 600 frames) where the camera was static. The image
template was initialized using a small rectangle around the
boat in the 300th frame. The convergence is quite rapid.

One question to ask is how many frames are necessary
for this learning approach to solve for both the shape and
appearance of the boat. To address this question, we ran the
EM-algorithm on 5, 25, 75, 200, and the entire 640 frame
subsequence. The computed template on which the algo-
rithm converged is shown in Figure 9. The algorithm uses
very weak priors on object appearance and therefore re-
quires many frames to converge — even using a 200 frame
subsequence there are pixels far from the boat that appear
in the final template.

Using the template derived from the 600 images, the
computed rotation and orientation fits, to visual inspection,
exactly on the boat in every frame (justifying the assump-
tion that the object is well modeled by a rigid motion within
the image). The position and is captured to an accuracy at
least as good as the provided ground truth data, and there
is no orientation provided in the ground truth. A video se-
quence shows the results of this tracking and is available on
request.

4 Conclusions

This report provides a performance characterization for
a collection of spatio-temporal background modeling tools
for the PETS2005 coastal data set. We consider both spatio-
temporal model of dynamic background appearance, and
the subsequent, more specific isolation and localization of
independent objects. Our conclusions may be summarized
as follows:

• Local spatio-temporal models are effective for current
surveillance video, in spite of significant compression
artifacts, noise, and frequent pan-tilt-zoom operation
of the camera.

• The affect of the current environment on the specificity
of the model can be characterized and displayed do de-
termine if the algorithm is likely to be effective (see
Figure 2).

• Local Spatio-temporal background models can accom-
modate dropped frames, although performance de-
grades significantly if the algorithm does not explic-
itly check for this condition and correct the temporal
derivatives.

• Finally simple EM type algorithms using very weak
assumptions about object appearance can refine the
spatio-temporal anomaly detection results, to provide
a very accurate object position, shape, and orientation,
and appearance.
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Figure 6. A textured image template for the
zodiac boat image dataset.

Figure 7. Top row shows example regions of
interest. The middle row shows a binary im-
age mask where the white pixels represent
the foreground. Bottom row shows the result
of warping the top row so that the pixels of
the image template fit the texture model of
the boat.

Figure 8. These images show the refinement
of the image template as the EM algorithm
converges.

Figure 9. The final template on which the EM
algorithm converges, for video clips of 5, 25,
75, 200, and 640 frames. Note that even 200
frames includes pixels that are not on the real
object, arguing the developing these models
over very long image sequences (when avail-
able) is important.
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