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Abstract

Fundamental discoveries do not necessarily rely on ex-
ploring new landscapes but on employing new eyes—thus
indicatedMarcel Proust, and the wisdom of his metaphor re-
garding the power of new eyes is strongly reflected in ancient
Greek mythology. Recall Argus, the hundred-eyed guardian
of Hera, the goddess of Olympus, who alone defeated a
whole army of Cyclopes, one-eyed giants. Similar ideas ap-
pear in this paper which shows how to use existing cameras
in various ways to create new cameras—new ways to see
the world. Autonomous or semi-autonomous intelligent sys-
tems, in order to function appropriately, need to create mod-
els of their environment, i.e., models of space-time. These
are descriptions of objects and scenes and descriptions of
changes of space over time, that is, events and actions. De-
spite the large amount of research on this problem, as a
community we are still far from developing robust descrip-
tions of a system’s spatiotemporal environment using video
input (image sequences). Undoubtedly, some progress has
been made regarding the understanding of estimating the
structure of visual space, but it has not led to solutions to
specific applications. There is, however, an alternative ap-
proach which is in line with today’s “zeitgeist.” The vision
of artificial systems can be enhanced by providing them with
new eyes. If conventional video cameras are put together in
various configurations, new sensors can be constructed that
have much more power and the way they “see” the world
makes it much easier to solve problems of vision. This re-
search is motivated by examining the wide variety of eye de-
sign in the biological world and obtaining inspiration for an
ensemble of computational studies that relate how a system
sees to what that system does (i.e., relating perception to ac-
tion). This, coupled with the geometry of multiple views that
has flourished in terms of theoretical results in the past few
years, points to new ways of constructing powerful imag-
ing devices which suit particular tasks in robotics, visual-

ization, video processing, virtual reality and various com-
puter vision applications, better than conventional cameras.
This paper presents a new sensor that we built using com-
mon video cameras and shows its superiority with regard to
developing models of space from long video sequences.

1. Introduction: Models of space-time

Technological advances make it possible to arrange video
cameras in some space, connect them with a high-speed net-
work and collect synchronized video. Such developments
open new avenues in many areas, making it possible to ad-
dress, for the first time, a variety of applications in surveil-
lance and monitoring, graphics and visualization, robotics
and augmented reality. But as the need for applications
grows, there does not yet exist a clear idea on how to put to-
gether many cameras for solving a variety of problems. That
is, the mathematics of multiple-view vision is not yet un-
derstood in a way that relates the configuration of the cam-
era network to the task under consideration. Existing ap-
proaches treat almost all problems as multiple stereo prob-
lems, thus missing important information hidden in the mul-
tiple videos. The goal of this paper is to provide the first
steps in filling the gap described above. We consider a multi-
camera network as a new eye and we perform a comparative
analysis of these new eyes with traditional video cameras.
To achieve this we concentrate here on developing models
of space. The exposition is such that it motivates the new
eyes, by first describing the problems of developing models
of shape using a common video camera and pointing out in-
herent difficulties.

Images, for a standard pinhole camera, are formed by
central projection on a plane (Figure 1a). The focal length is�

and the coordinate system �����	� is attached to the cam-
era, with � being the optical axis, perpendicular to the image
plane.
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Image points are represented as vectors ��� � �����	��
���
,

where � and � are the image coordinates of the point in the
coordinate system ���� , with ���� � � , ���� ��� and � the in-
tersection of the axis � � with the image plane, and

�
is the

focal length in pixels. A scene point � is projected onto the
image point ��� 
 ������ (1)

where �� is the unit vector in the direction of the � axis.
In general, when a scene is viewed from two positions,

there are two concepts of interest: (a) The 3D transforma-
tion relating the two viewpoints. This is a rigid motion trans-
formation, consisting of a translation and a rotation (six de-
grees of freedom). When the viewpoints are close together,
this transformation is modeled by the 3D motion of the eye
(or camera). (b) The 2D transformation relating the pixels
in the two images, i.e., a transformation that given a point in
the first image maps it onto its corresponding one in the sec-
ond image (that is, these two points are the projections of the
same scene point). When the viewpoints are close together,
this transformation amounts to a vector field denoting the
velocity of each pixel, called an image motion field. Perfect
knowledge of both transformations described above leads to
perfect knowledge of models of space. Since knowing ex-
actly how the two viewpoints and the images are related pro-
vides the exact position of each scene point in space. Thus,
a key to the basic problem of building models of space is the
recovery of the two transformations described before and
any difficulty in building such models can be traced to the
difficulty of estimating these two transformations. What are
the limitations in achieving this task?

2. Inherent limitations: Image motion and 3D
motion

If � is an image point ��� � � � ��� , the projection of the mo-
tion vector  � on the gradient ! at this point is the well known
normal flow "$# , with

"$#%�  �&�'!)( (2)

where ! is a unit vector at an image point denoting the ori-
entation of the gradient at that point. The normal flow is a
robust measurement from a moving image and can be com-
puted locally and in parallel. To compute then the values of
the flow, one would need to utilize the normal flow values
along with additional constraints.

All approaches start with the normal flow measurements
and then fit some parametric model for the flow or employ
a regularization scheme. In both cases there are problems
because of the unknown location of depth discontinuities.
If we knew where the discontinuities are, estimating flow
would be easy, but to know where the discontinuities are we

need first to find 3D motion and use it to find depth—but to
do that we need to know the values of the flow! The whole
problem is clearly a chicken/egg problem.

There exists an additional reason causing incorrect flow
estimates that only recently was understood [9], and is re-
lated to the image texture. It has to do with the statistical
difficulty of integrating local, 1D motion signals into 2D im-
age velocity measurements. Any procedure for estimating
image motion has to start with normal flow measurements,
that is, the image motion component perpendicular to local
edges. It has been shown [9] that when these local mea-
surements are combined in a neighborhood to produce im-
age motion, an estimate of flow is obtained which is biased.
The estimated value depends on the distribution of image
gradients, the actual flow and the error in the normal flow.
This is strikingly observed in the Ouchi illusion (Figure 2).
The pattern in Figure 2 has the surprising property that small
motions can cause illusory relative motion between the in-
set and background regions.1 The reason for this illusion
is that for the particular spatial gradient distributions of the
Ouchi pattern, the bias in the estimation of flow is highly
pronounced, giving rise to a large difference in the veloc-
ity estimates in the two regions. Situations like this occur
too often in real imagery (neighboring textures of different
orientation). Thus, there are two basic problems with the es-
timation of correspondence, i.e., the motion field. One is ge-
ometric, related to scene discontinuities, and the other is sta-
tistical, related to how the image texture looks.

Regarding 3D motion estimation, there exists a verita-
ble cornucopia of techniques for finding 3D motion from a
video sequence. Almost all techniques are based on the so-
called epipolar constraint, which shows how the motion of
image points is related to 3D rigid motion and the scene.
This constraint, at each image point � , is written as ��*,+%� � ��.-�)/�01+2� � �43 [3].

One is interested in the estimates of translation 5* and ro-
tation 50 which best satisfy the epipolar constraint at every
point � according to some criteria of deviation. Usually the
Euclidean norm is considered leading to the minimization of
function.

687:9 � ;%;
< =�>�?A@CBED 5*&+F�G8�H�  �I/ 50J+K� ��L'MON � (3)

The reason for the large amount of literature is that the prob-
lem is very difficult. One main reason for this has to do with
the apparent confusion between translation and rotation in
the motion field. This is easy to understand at an intuitive
level. If we look straight ahead at a shallow scene, whether
we rotate around our vertical axis or translate parallel to the

1The effect can be attained with small retinal motions or a slight jiggling
of the paperand is robust over large changes in the patterns, frequenciesand
boundary shapes.
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Figure 1. Image formation on the plane (a) and on the sphere (b).
The system moves with a rigid motion with translational velocity* and rotational velocity 0 . Scene points � project onto image
points � and the 3D velocity  � of a scene point is observed in
the image as image velocity  � .

Figure 2. A pattern similar to
one by Ouchi.

scene, the motionfield at the center of the image is very simi-
lar in the two cases. Thus, for example, translation along the� axis is confused with rotation around the � axis. The basic
understanding of this confusion has attracted few investiga-
tors over the years [2, 3]. In [6, 8] a geometrical statistical
analysis of the problem has been conducted. On the basis
of (3) the expected value of

6�7 9
has been formulated as a

five-dimensional function of the motion parameters (two di-
mensions for * ��� * � and three for 0 ). Independent of specific
estimators the topographic structure of the surface defined
by this function explains the behavior of 3D-motion estima-
tion. Intuitivelyspeaking, it turns out that the minima of this
function lie in a valley. This is a cause for inherent instabil-
ity because, in a real situation, any point on that valley or flat
area could serve as the minimum, thus introducing errors in
the computation.

In particular, the result obtained can be formulated as
follows: Denote the five unknown motion parameters as����� � ��� � (direction of translation) and ��� �	����
 � (rotation).
Then, no matter how 3D motion is estimated from the motion
field, the expected solution will contain errors �E� �� � � �� � ,����� ��� � �	
 � � that satisfy two constraints:

(a) The orthogonality constraint:
� ������ � ���

� �
� �

(b) The line constraint:
���� � � ��� �� ��

In addition, we must also have

 � ��� . The result states

that the solution contains errors that are mingled and cre-
ate a confusion between rotation and translation that can-
not be cleared up, with the exception of the rotation around

the optical axis (



). The errors may be small or large, but
their expected value will always satisfy the above condi-
tions. Although the 3D-motion estimation approaches de-
scribed above may provide answers that could be sufficient
for various navigation tasks, they cannot be used for deriv-
ing object models because the depth � that is computed will
be distorted [1].

3. Looking at the world

We are interested in space and action descriptions that
can be extracted from visual data. This requires that there
exists an eye or device imaging the scene. All along we took
it for granted that our basic device was a camera-type eye,
that is, a common video camera whose basic principle is the
pinhole model, but there was no particular reason to make
this assumption.

An examination of the design of eyes in the biological
world reveals a very wide variety. The mechanisms organ-
isms have evolved for collecting photons and forming im-
ages that they use to perform various actions in their en-
vironment depend on a number of factors. Chief among
these are the individual organism’s computational capacity
and the tasks that the organism performs. Michael Land, a
prominent British zoologist and the world’s foremost expert
on the science of eyes, has provided a landscape of eye evo-
lution. Considering evolution as a mountain, with the lower
hills representing the earlier steps in the evolutionary ladder,
and the highest peaks representing the later stages of evo-
lution, the situation is pictured in Figure 3 [4]. It has been
estimated that eyes have evolved no fewer than forty times,
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independently, in diverse parts of the animal kingdom. In
some cases, these eyes use radically different principles and
the “eye landscape” of Figure 3 shows nine basic types of
eyes. Eyes low in the hierarchy (such as the nautilus’ pin-
hole eye or the marine snail eye) make very crude images of
the world, but at higher levels of evolution we find differ-
ent types of compound eyes and camera-type eyes (like the
ones we use) such as the corneal eyes of land vertebrates and
fish eyes.

COMPOUND EYES CAMERA-TYPE EYES

Corneal eyes of land vertebrates

Superposition eyes

Neural
superposition Apposition Spiders Fish eyes

Tapetum ridge

Limulus
Cephalopod
lens eyes

Intermediates Mirror
eyes

Debris-copepods
Vitreous
mass eyes

Proto-compound eyes
Nautilus Reflecting

pigment cupsNear pinholes
Pigment cup eyes

Mere Photoreceptors

Figure 3. Michael Land’s landscape of eye
evolution.

Inspiration for our work has come from the compound
eyes of insects which are particularly intriguing, especially
in view of the fact that insects compute excellently 3D mo-
tion. Their lives depend on their ability to fly with precision
through cluttered environments, avoid obstacles and land on
demand on surfaces oriented in various ways. In addition,
they perform these tasks with minimal memory and compu-
tational capacity, much less than an average personal com-
puter of today. Could it be possible that much of their suc-
cess emanates from the special construction of their eyes?2

4. New eyes

Why is it that biological systems that need to fly and thus
require good estimates of 3D motion (insects, birds) have

2Compound eyes exist in several varieties, and can be classified in two
categories, the apposition and superposition ones. The apposition eye is
built as a dense cluster of long, straight tubes radiating out in all directions
as from the roof of a dome. Each tube is like a gun sight which sees only
a small part of the world in its own direct line of fire. Thus, rays coming
from other parts of the wall are prevented by the walls of the tube and the
backing of the dome from hitting the back of the tube where the photocells
are (Figure 4). In practice, each of the little tube eyes called ommatidia, is
a bit more than a tube. It has its own private lens and its own private retina
of about half a dozen photocells. The ommatidium works like a long, poor
quality, camera eye. Superposition compound eyes, on the other hand, do
not trap rays in tubes. They allow rays that pass through the lens of one
ommatidium to be picked up by a neighboring ommatidium’s photocells.
There is an empty, transparent zone shared by all ommatidia. The lenses of
all ommatidia conspire to form a single image on a shared retina which is
put together from the light-sensitive cells of all the ommatidia.

Figure 4. (Adapted from [4].) Example of the
principle of the apposition compound eye,
forming the image of a dolphin. The arrows
don’t represent rays (which would be bent by
the lenses) but mappings from the points of
the object in view (a dolphin) to points in the
bottoms of the tubes.

panoramic vision implemented either as a compound eye or
by placing camera-type eyes on opposite sides of the head?
This is a fascinating question that has remained open since
the time of the pioneer investigator, Sigmund Exner, at the
beginning of this century. The obvious answer is, of course,
that flying systems should perceive the whole space around
them—thus panoramic vision emerged. There is, however,
a deeper mathematical reason and it has to with the ability of
a system to estimate 3D motion when it analyzes panoramic
images, as shown in this section. Put simply, a spherical
eye (360 degree field of view) is superior to a planar eye
(restricted field) with regard to 3D motion estimation. Re-
call from Section 2 that, given a sequence of images, 3D
motion is estimated by minimizing function

6
that repre-

sents deviation from the epipolar constraint. It was shown
that in the case of images captured by a planar eye (e.g., a
common video camera), this function has a special topog-
raphy which is such that the errors in the motion are min-
gled, causing confusion between rotationand translationand
thus producing a wrong result. If, however, the field of view
goes to 360 degrees, the topography of the surface drasti-
cally changes with the minimum clearly standing out in most
cases. Panoramic vision is modeled by projecting onto a
sphere, with the sphere’s center as the center of projection
(Figure 1b). In this case, the image � of any point � is�2���

��
�
� , with � being the norm of � (the range), and the

image motion is

 �&� �
� � � � ����*8� � � � � * � � 0 +F�&� �

� �	��
 ��* � / �	
��� ��0 � (
(4)

The function
6 7:9

representing deviation from the epipolar
constraint on the sphere has the exact same form as in the
plane for our nomenclature. We integrate over the range �
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within an interval bounded by � = < � and � = >�� and obtain

687:9 �
�����	�;����
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 @

��� � + � � + * �
� � ��0 ��+F� ���

� D 5* +K� G�� M N�� N �
where

�
refers to a surface element. Due to the sphere’s

symmetry, for each point � on the sphere, there exists a
point with coordinates �I� . Since � � 
 ��� � � �	��
 ���)� � and� 
 � � ��� � � � �	
��� �	�)� � , when the integrand is expanded the
product terms integrated over the sphere vanish. Thus

687:9 �
�����	�;� ��
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/ D ��0 ��+K� � � D 5* +2� G G M � N�� N �
(a) Assuming that translation 5* has been estimated, the 0 �
that minimizes

6 7 9
is 0 � � � , since the resulting function is

non-negative quadratic in 0 � (minimum at zero). The differ-
ence between sphere and plane is already clear. In the spher-
ical case, as shown here, if an error in the translation is made
we do not need to compensate for it by making an error in
the rotation ��0 �8� � � , while in the planar case we need to
compensate to ensure that the orthogonalityconstraint is sat-
isfied!

(b) Assuming that rotation has been estimated with an er-
ror 0 � , what is the translation 5* that minimizes

6 7 9
? Since

� is assumed to be uniformly distributed, integrating over �
does not alter the form of the error in the optimization. Thus,6 7 9

consists of the sum of two terms:� � ��� ; ;���� @ 
 @KDHD * + 5* G �'� G M N�� and

 �  � ; ;���� @ 
 @ D ��0 ��+ � � � D 5* +K�GHG M�N�� �
where

� � �  �
are multiplicative factors depending only on

� = < � and � =�>!� . For angles between * � 5* and 5* � 0 � in the
range of 0 to " ��# ,

�
and

 
are monotonic functions.

�
at-

tains its minimum when * � 5* and
 

when 5*%$ 0 � . Fix
the distance between * and 5* leading to a certain value

�
,

and change the position of 5* .  
takes its minimum when��*&+ 5* � �'0 � � � , as follows from the cosine theorem. Thus6 7 9

achieves its minimum when 5* lies on the great circle
passing through * and 0 � , with the exact position depend-
ing on

� 0 � � and the scene in view.

(c) For the general case where no information about ro-
tation or translation is available, we study the subspaces
where

6 7 9
changes the least at its absolute minimum, i.e.,

we are again interested in the direction of the smallest sec-
ond derivative at 0. For points defined by this direction we
calculate, using Maple, *8� 5* and 0 � $ * .
5. What if correspondence is not available?

The preceding sections investigated the differences be-
tween camera-type eyes (restricted field of view) and spher-
ical eyes (full field of view) with regard to 3D motion es-
timation, when an estimate of correspondence or flow was
available. One may wonder how this comparative analysis
becomes when correspondence is not available, but all we
have at our disposal is the normal flow. This case is harder
to analyze and we provide here results from proofs that ap-
peared recently [6, 7].

If normal flow is given, the only available constraint is
scalar equation (2), along with the inequality �'& � which
states that since the surface in view is in front of the eye its
depth must be positive. Substituting (4) into (2) and solving
for the estimated depth 5� or range 5� , we obtain for a given
estimate 5* � 50 at each point � :

5� � or 5� � � � � 
 � 5* � � !�  � � � 
 � � � 50 ��� �'! ( (5)

Substituting into (5) the value of  � from (4) gives

5� � or 5� � � � � 
 � 5* � �'!(*)�+-,	.0/!12 . or � 1 � �	
��� � 0 � ��3 �A!
with 0 � � 0 � 50 . This equation shows that for every !
and � a range of values for � (or � ) is obtained which re-
sult in negative estimates of 5� (or 5� ). Thus for each direc-
tion ! , considering all image points � , we obtain a volume in
space corresponding to negative depth estimates. The sum
of all these volumes for all directions is termed the “nega-
tive depth” volume, and calculating 3D motion in this case
amounts to minimizing this volume. Minimization of this
volume provides conditions for the errors in the motion pa-
rameters.

Applying this analysis to the plane and the sphere pro-
vides results that are shown in Table 1 along with a summary
of the epipolar minimization case.

6. Eyes from eyes

The preceding results demonstrate the advantages of
spherical eyes for the process of 3D motion estimation. Ta-
ble 1 lists the eight out of ten cases which lead to clearly de-
fined error configurations. It shows that 3D motion can be
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Table 1. Summary of results
Spherical Eye Camera-type Eye

Epipolar minimization, given op-
tic flow

(a) Given a translational error * � , the
rotational error 0 � ��� .

(b) Without any prior information,* �O� � and 0 � $ * .
(a) For a fixed translational error�E� �� � � �� � , the rotational error� � � ��� � ��
 � � is of the form


 �	� � ,
��� ��� � � �8� �� � � ��

(b) Without any a priori information
about the motion, the errors satisfy
 � � � , � � ��� � � �8� � � � ��� � ,��� � ���,� ��� � � ��� �

Minimization of negative depth
volume, given normal flow

(a) Given a rotational error 0 � , the
translational error * � ��� .

(b) Without any prior information,* � � � and 0 � $ * .
(a) Given a rotational error, the

translational error is of the form
�8� ��� � � �� ����� ��� �

(b) Without any error information, the
errors satisfy


 � � � , � � ��� � �
�8��� � � ��� � , ��� � ���)�4��� � � ��� �

estimated more accurately with spherical eyes. Depending
on the estimation procedure used—and systems might use
different procedures for different tasks—either the transla-
tion or the rotation can be estimated very accurately. For
planar eyes, this is not the case, as for all possible proce-
dures there exists confusion between the translation and ro-
tation. The error configurations also allow systems with in-
ertial sensors to use more efficient estimation procedures. If
a system utilizes a gyrosensor which provides an approxi-
mate estimate of its rotation, it can employ a simple algo-
rithm based on the negative depth constraint for only transla-
tional motion fields to derive its translation and obtain a very
accurate estimate. Such algorithms are much easier to im-
plement than algorithms designed for completely unknown
rigid motions, as they amount to searches in 2D as opposed
to 5D spaces [5]. Similarly, there exist computational ad-
vantages for systems with translational inertial sensors in es-
timating the remaining unknown rotation.

Since it turns out that spherical eyes such as the ones of
insects, or, in general, panoramic vision provides much bet-
ter capability for 3D motion estimation, and since our prob-
lem of building accurate space and action descriptions de-
pends on accurate 3D motion computation, it makes sense
to reconsider what the eye for our problem should be. There
are a few ways to create panoramic vision cameras, and the
recent literature is rich in alternative approaches, but there is
a way to take advantage of both the panoramic vision of fly-
ing systems and the high resolution vision of primates. An
eye like the one in Figure 5, assembled from a few video

cameras arranged on the surface of a sphere,3 can easily es-
timate 3D motion since, while it is moving, it is sampling a
spherical motion field!

Figure 5. A compound-like eye composed of
conventional video cameras.

An eye like the one in Figure 5 not only has panoramic
properties, eliminating the rotation/translation confusion,
but it has the unexpected benefit of making it easy to esti-

3Like a compound eye with video cameras replacing ommatidia
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mate image motion with high accuracy. Any two cameras
with overlapping fields of view also provide high-resolution
stereo vision, and this collection of stereo systems makes it
possible to locate a large number of depth discontinuities. It
is well known that, given scene discontinuities, image mo-
tion can be estimated very accurately. As a consequence, the
eye in Figure 5 is very well suited to developing accurate
models of the world.

There is a very large number of ways in which one can
utilize multiple videos like the ones captured by the cam-
eras of the sensor in Figure 5 for recovering 3D structure
and motion. The obvious ones include: (a) treat the flow
fields close to the center of each camera approximately as
parts of a spherical motion field and apply algorithms such
as those in [6]; (b) perform epipolar minimization in each
video while enforcing the constraints relating the motions of
different cameras comprising the sensor. The results of Ta-
ble 1 can serve as a guide for choosing particular algorithmic
procedures, e.g., should rotation or translation be estimated
first, or should all parameters be estimated simultaneously,
depending on whether epipolar or negative depth minimiza-
tion is used, depending on whether inertial sensors are avail-
able, etc.

To summarize, a full visual field provides 3D motionvery
accurately, and thus very good models of the world. Exist-
ing sensors for capturing panoramic images (such as [10])
are not adequate for this problem due to low resolution. One
would need a high-resolutionspherical field of view. As this
is currently technologically impossible, we resort to sam-
pling the whole visual field with high resolution. See, for
example, the sensor in Figure 6 (called the Argus eye), built
in our laboratory, consistingof six cameras looking in differ-
ent directions. If all cameras shared a common nodal point,
then the cameras would sample parts of a sphere. When
this is not true, a calibration is required.4 Knowledge of
the rigid transformations relating the difference camera co-
ordinate systems, allows 3D motionand structure estimation
through the use of all videos.

Figure 6. The Argus eye.

A new algorithm we developed for the eye in Figure 6
is based on the analysis presented in Section 2. Recall that
when 3D motion is estimated using a common video cam-
era, the expected errors � �� � � ��� in translation and � � ��� � ��
 �
in rotation satisfy the orthogonality and line constraints and
the constraint


 � � � . Consider the six videos collected as
the Argus eye moves in some space. Recall that the rota-
tional velocity is the same for all cameras (only the transla-
tion differs). The algorithm proceeds by finding all motion
parameters in each video and keeping only the value of



.

4Due to lack of space, we do not describe the calibration step.

Thus we have the projection of the rotational vector on the
optical axis of each camera. From this, the rotation is com-
puted and subsequently estimation of the translation is easy.
Using the estimated 3D motion the shape of the scene can be
estimated. Remarkable results are obtained and described in
[REF].
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