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Abstract

We consider the problem of camera pose estimation for
a scenario where the camera may have continuous and un-
known changes in its focal length. Understanding frame by
frame changes in camera focal length is vital to accurately
estimating camera pose and vital to accurately rendering
virtual objects in a scene with the correct perspective. How-
ever, most approaches to camera calibration require geo-
metric constraints from many frames or the observation of
a 3D calibration object — both of which may not be feasi-
ble in augmented reality settings. This paper introduces a
calibration object based on a flat lenticular array that cre-
ates a color coded light-field whose observed color changes
depending on the angle from which it is viewed. We derive
an approach to estimate the focal length of the camera and
the relative pose of an object from a single image. We char-
acterize the performance of camera calibration across var-
ious focal lengths and camera models, and we demonstrate
the advantages of the focal length estimation in rendering a
virtual object in a video with constant zooming.

1. Introduction
Camera calibration is often the first step for Computer

Vision and Augmented Reality (AR) applications because
it defines how the scene is projected onto an image by the
camera. Calibration characterizes the photometric and ge-
ometric properties of the camera, that define, respectively,
how the pixels of the camera report color and intensity of
the scene, and where scene elements appear on the image.

Typically, camera calibration techniques are based on
images of a recognizable object at different views. Con-
straints on the camera geometry are created by finding 3D
points on the object and corresponding them to 2D image
points. When it is necessary to calibrate the intrinsic cam-
era parameters such as the camera focal length, it is often
necessary to user either multiple images of a planar object,
or an object with substantial 3D extent. This is because the
image of a single flat object may look similar in an image

Figure 1. A calibration object made from 3 lenticular arrays. Each
lenticular array has an observed color that changes depending on
its viewing angle. (Left) When viewed from reasonably far away,
the arrays have relatively consistent colors because they are being
viewed from approximately the same angle. (Right) A wide an-
gle view from much closer has significant color variation because
the direction from the camera to different parts of the object varies
substantially. This paper uses this color variation to derive strong
geometric constraints for simultaneous, single-image pose estima-
tion and camera calibration.

taken from a wide angle camera near the object or a more
zoomed in camera far away.

This creates a challenge for augmented reality applica-
tions that are required to work with dynamic scenes and
changing camera parameters such as a movie shot that re-
quires camera zooming. This paper offers a new approach
to geometric calibration of a camera that requires a single
image of a calibration object that may lie within a larger
scene. The calibration object that we propose is shown in
Figure 1.

This calibration object is based on several lenticular ar-
rays. A lenticular array is a sheet of plastic which is com-
prised of many tiny parallel cylindrical lenses. Figure 2 de-
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Figure 2. (Top Left) The side view of a lenticular array shows how
parallel light rays are focused onto the back focal plane. (Top
Right) Interleaving different hues behind each lens makes a lentic-
ular pattern whose apparent hue depends on the viewing angle.At
the scale of the whole lenticular array, this means that the perspec-
tive of a camera with a wider field of view will see many different
colors (Bottom Left), while a camera with a narrow field of view
will only see a few hues (Bottom Right).

picts how these lenses focus parallel rays of light onto an
interleaved pattern on the back of the lenticular array. As
a result, for different viewpoints, the lenticular array has
different appearances. In the case of children’s toys, differ-
ent frames of an animation are interleaved, and thus create
the appearance of an animation as the lenticular array is ro-
tated [14]. Some modern TVs use lenticular arrays to show
different images to different viewer directions in order to
create a 3D effect without the need for extra equipment like
special glasses [12, 8].

We construct a lenticular pattern inspired by [17], based
on a pattern of interleaved colors. This creates an apparent
hue dependent on the relative incident angle of light rays
viewing the lenticular array. For a perspective camera view-
ing a planar surface, pixels may have differing viewing an-
gle and therefore will measure a different hue. Therefore as
seen in the bottom row of Figure 2, a camera with a wide
field of view would see many different hues, while a cam-
era with a narrow field of view would see fewer hues. This
fundamental relationship between a color-coded lenticular
array and a camera provides a novel geometric constraint to
calibrate a camera.

The contributions of this paper are:

• an extension of the constraints derived in [17] to allow
lenticular patterns to constrain the camera focal length,

• an approach to correct manufacturing problems of
alignment and stretching that make relationship be-

tween color and angle vary across a lenticular array,
and

• experimentation with a physical instantiation of a pro-
totype calibration object, showing calibration accuracy
in different settings and a complete end-to-end aug-
mented reality demonstration with a variable zoom
video.

2. Related Work
Geometric camera calibration is a well studied problem,

and geometric constraints relating correspondences, camera
motion and camera calibration are well understood [7, 19,
18], including the development of popular toolboxes [24, 2].
Perhaps the most common approach to camera calibration is
Zhang’s method based on taking many pictures of a grid of
known size [25]. The method simultaneously solves for the
pose of the grid in each frame and the camera parameters
that are consistent across many frames.

Calibrating a camera with a single image is possible by
imaging calibration objects with known 3D geometry, for
example with 2 orthogonal planes [18]. Other methods use
known shapes such as 1D lines [13] and 2 co-planar cir-
cles [4] or images of man-made objects such as buildings
in a city and exploit vanishing lines [6, 1, 5] or low-rank
textures [26] as a source of calibration constraints. With
many images from a variety of viewpoints, more standard
structure from motion approaches can be used, and these
have been specialized for the case of unknown focal lengths
in various ways, including understanding the minimal con-
straint sets [3], extensions to uses features such as line seg-
ments and right angles to provide stronger geometric con-
straints [10], and a linearization of the EPnP problem [11] to
speed up the estimation of pose for the uncalibrated camera
case [15].

In Augmented Reality (AR), one seeks to render digital
content on top of a video feed of a scene to digitally enhance
the physical world. In order to properly project digital el-
ements into the video feed, the relative pose of the digital
element and the camera must be known, and the camera
calibration must be known.

Calibration methods which require multiple images of an
object in different poses or calibration objects with substan-
tial variation in all 3 dimensions may not be appropriate for
all applications. To our knowledge, the only papers to study
this problem in the context of an augmented reality applica-
tion are the recent work of Taketomi, et al. [20, 21]. They
use a KLT tracker to find many points in the scene and use
a Structure from Motion formulation to solve for 3D scene
points, and the camera position, rotation and focal length
in every frame, regularizing all camera parameters to vary
smoothly throughout the video. Then, a fiducial marker pat-
tern is located in each frame, and an object is rendered in a
position defined by that fiducial marker, with a perspective



that depends on the estimated camera focal length.
In contrast to these existing approaches, our approaches

calibrates every image independently using a flat calibration
object. This object is based on a lenticular pattern. Lenticu-
lar arrays and their 2D counter-part, microlens arrays, give
geometric constraints on the incident angle of light rays
viewing the arrays. Previous research has used color coded
microlens arrays as “light field probes” for Schlieren pho-
tography [22], imaged reflections of these arrays to support
the reconstruction of surface geometry of transparent ob-
jects [23], and for the reconstruction of the refractive index
of gases [9]. Large lenticular arrays have been used to esti-
mate object rotation [17] with correspondences, while very
small lenticular arrays were used as fiducial markers to es-
timate the pose of an object [16].

Our work addresses the problem of joint intrinsic and
extrinsic camera calibration needed in AR applications
where cameras may change their zoom to keep track of
an object. Such an approach is necessary to integrate AR
with new commercial systems such as Soloshot (http:
//soloshot.com) that sell Pan-Tilt-Zoom cameras that
automatically track a radio tag, but which do not have en-
coders on their zoom lenses that tag imagery with the zoom
level.

The next section introduces our calibration object that is
suitable for such applications, We then derive the geometric
constraints this object offers and evaluate the performance
both quantitatively and qualitatively.

3. AR Calibration Object

Our calibration object is inspired by the lenticular array
used to estimate object rotation [17]; we adopt their notation
in our discussion here. Three lenticular arrays are mounted
perpendicular to each other on a plane, where the 2 flank-
ing arrays have the same orientation, but orthogonal to the
middle array. These arrays are orthogonal so that any ro-
tation of the calibration object creates a change; when the
object is oriented as shown on the left of Figure 1, rota-
tion around the horizontal axis causes the two edge arrays to
change color, while rotating around the vertical axis causes
the central part to change color. Small black strips are added
to make it easier to distinguish the 3 arrays when they are
oriented so that their colors are similar.

Calibrating a Color Coded Lenticular Array The rela-
tionship of the apparent viewing angle to the observed color
depends on the relative angle of the lenticular array, in par-
ticular the rotation around the axis of the lenticular lenses.
The relationship between this rotation and observed color is
captured in the Hue Response Function (HRF), which is a
1-to-1 relationship for incident angles of up to ⇡ 40 degrees
(after which the colors repeat).

Figure 3. (Left) an image of the calibration object taken with a very
long lens, observing all parts of the calibration array with a nearly
orthographic imaging geometry. The observed color differences
indicate the the hue for a given viewing direction is not consistent.
(Right) The observed hue measured at the two yellow circles as
the calibration object is rotated, showing a consistent bias.

For a lenticular array created as described in [17], we
found that the hue response function varies across the array.
We demonstrate this in Figure 3, which shows a picture of
the calibration object taken from far away with a very long
focal length length lens, giving a field of view in this picture
of 1 degree. Therefore the color difference observed at the
two highlighted circles is substantial. When measuring this
color difference as the calibration array rotates, we see a
consistent shift. We believe this is due to the challenges
of manufacturing and printing the color coded pattern that
sits behind each lenticular lens. For this lenticular array
that has 2 lenticular lenses per millimeter, if the backplane
is stretched 0.1mm extra over the course of this array, this
would cause the observed color shift.

To address this challenge, while still employing standard
manufacturing processes for lenticular arrays, we explicitly
calibrate the HRF, the function that relates hue to orienta-
tion, at regular intervals in the local reference frame of the
arrays. We use the corners of the rectangular lenticular ar-
rays as anchor points, and for each image compute a homog-
raphy mapping the observed lenticular patterns to a canoni-
cal coordinate system. The process is illustrated in Figure 4.
This calibration object is placed on a controlled rotation
mount and rotated through 1 degree increments. For each
calibration point, we record the angle at which that calibra-
tion point is viewed (which may vary across the calibration
grid because of perspective effects), and the measured hue
for that angle. The result of this is a curve like those shown
in Figure 3 for each of the calibration points. This process
is repeated separately for the center and each of the two side
lenticular arrays that make up the calibration object.

The next section derives how images of this calibration
object can exploit the measured colors for additional ge-
ometric cues to the pose of the calibration object and the
focal length of the camera. When converting the observa-

http://soloshot.com
http://soloshot.com


Figure 4. To take hue measurements for calibration and estimation,
we employ the following strategy: With the original image (left),
we identify anchor points, shown as blue points, at the corners of
the lenticular array. These points are used to learn a homography
(center) where we then take local measurements evenly across the
array, shown as green crosses. (Right) a simplified image of the
hue recorded at each calibration point.

tions of the object into geometric constraints, we again find
the corners of the array to compute the homography, and
sample the colors at these same grid locations.

4. Calibration Constraints
In this section we derive the calibration constraints that

arise from observing the lenticular calibration object. We
follow the presentation of [17] which solved for rotation
given known calibration. They derive the geometric con-
straint that says that a ray observing a particular color must
lie in a plane, and they represent that plane by it’s surface
normal nhue. The overall constraints for the imaging ge-
ometry start with a pixel ~p that observes the lenticular array.
In the coordinate system of the camera, a pixel ~p captures
light traveling along a ray r that depends on the calibration
matrix K as:

~r = K

�1
p (1)

In the coordinate system of the lenticular pattern, this ray
has direction RK

�1
p, and it must satisfy the constraint

(RK

�1
p) · ~nhue = 0.

This can be written as (RK

�1
p)>~nhue = 0,

which is equivalent to: p

>
K

�1>
R

>
~nhue = 0.

Collecting terms, we write: p

>(K�1>
R

>)~nhue = 0,
and re-write as: p

>(RK

�1)>~nhue = 0.

Given a pixel location p and a ~nhue, this linear constraint
on K and R. Previous work [17] uses this constraint and
a nonlinear optimization to solve for R given a known K

matrix. In this paper we use a similar optimization to get
an initial estimate for R and K by parameterizing K by it’s
focal length f :

K(f) =

2

4
f 0 x0

0 f y0

0 0 1

3

5 (2)

In K(f), pixels are assumed to be square and x0 and y0 are
assumed to be the center of the image.

Algorithm: For each frame, our algorithm follows these
steps to get an initial estimate of the calibration object pose
and camera focal length:

1. Find the four corners of the lenticular calibration ob-
ject.

2. Solve for the homography to map image coordinates
onto object coordinates.

3. Measure the hue at each grid point on the homography,
and use these hue measurements to solve for an initial
estimate of the rotation and the focal length.

4. Given that rotation and focal length, use the lenticular
marker based constraints introduced in [16] to get an
estimate of the object translation.

The initial estimate is refined by minimizing the follow-
ing cost function:

argmin
⇢,T,f

X

i

�
h(R(⇢), T, f, i)�huei

�2
+�kg(R(⇢), T, f)�pik22

(3)
where the first term penalizes the difference between huei

which is the measured hue at grid-point i (of all lenticu-
lar arrays), and h(R(⇢), T, f, i), the hue predicted for grid
point i when it is projected onto the image based on camera
intrinsic and extrinsic parameters R, T, f , using the HRF
function calibrated for grid-point i. Here, R is parameter-
ized via rodgrigues parameters ⇢. The second term mea-
sures the spatial reprojection error between the location pi

and the predicted location for that grid point g(R, T, F, i)
based on R, T and f . A relative weighting function � was
found emprically to balance hue and position error which
are measured in very different coordinate systems. In all
experiments we show, � was set to 1/4000.

5. Experimental Results

In this section we quantify the ability of our algorithm
and this calibration object to estimate the object pose and
camera focal length. We also explore the sensitivity of parts
of the algorithm to various intermediate processing steps.

The first stage of the algorithm is tracking the corners
of the calibration object. This is a vital step in most AR
pose estimation algorithms, but it has additional importance
in our algorithm because we are modeling the fact that the
HRF that maps color to angle may vary across the calibra-
tion object. Thus, in Section 5.1 we evaluate the sensitivity



Figure 5. To create location specific HRF functions that map mea-
sured hues to angular constraints, we sample hues of a lenticular
array at a local grid of points. The location of these points depends
on localizing the anchor points at the corners of the lenticular ar-
ray. We show the small prediction errors for 8 px permutations of
these anchor points per HRF (top) and per image (bottom).

of the algorithm to errors in corner tracking. Second, Sec-
tion 5.2 explores the accuracy of our approach for estimat-
ing the focal length of the camera and rotation and transla-
tion of the calibration object. We characterize the error us-
ing our physical prototype with different cameras and with
the calibration object oriented in different directions. We
conclude with Section 5.3 with results showing an object
added to a video taken with varying focal length, and com-
pare the realism of the added AR object when there isn’t the
ability to dynamically estimate the focal length.

5.1. Sensitivity to point tracking

Because the lenticular array may not have the same map-
ping from angle to color everywhere, we need to know
where on the calibration pattern we are measuring the color
in order to look up the correct location-specific HRF. There-
fore, this approach may be especially sensitive to estimat-
ing the position of the corners of the calibration object. We
evaluate this by rotating the lenticular array around the ver-
tical axis in one degree increments from �35 to 35 degrees.
For each image, we follow these steps:

1. determine 4 anchor points of the lenticular array,

2. project the lenticular array into the local reference
frame via a homography

3. sample the hue from the grid-points of the local refer-
ence frame image.

For each grid point we compute the angle at which the
point was viewed to the angle predicted by the measured
hue. To estimate the effect of noise in estimating the lentic-
ular array corners, we perturb the anchor points by 8 pixels
in random directions 20 times per image and assess the dif-
ference in angle predicted by the HRFs. We show the scale
of one such perturbation in the supplementary material (Fig-
ure S1).

Figure 5 shows results. The top shows a box and whisker
plot showing the distributions of errors in estimating the an-
gle for each of the 100 grid points where the HRF was cal-
culated. The box in each columns shows the 25th and 75th
percentiles of the distribution. This experiment shows that
modeling the HRF at each location of the lenticular array
leads to nearly all angular measurements being within 0.5
degrees of the true incident angle.

We also evaluate if the errors in estimating angle from
hue depend on the angle at which the calibration object
is observed. Figure 5 computes the distribution of errors
across the entire array for each image angle. Again the error
is consistently small, even though these statistics are com-
puted using anchor points that are substantially perturbed.

We believe that an error of 0.25� is near the limit of a
simple geometric constraint based on hue measured at one
pixel. The lenticular array shows colors across the hue spec-
trum over a range of about 40�, so 0.25� is less than 1% of
the range of angles that are viewed. Reliably measuring the
hue of pixels in 8-bit RGB images to better than 1% preci-
sion is also challenging. In Section B of the supplementary
material, we explore the color precision of an 8-bit RGB
camera and subsequently the angular precision when view-
ing a lenticular array.

5.2. Pose and Focal Length Estimation

In a laboratory setting, we assess the performance of ro-
tation, translation, and focal length estimation across dif-
ferent viewpoints. On a motorized stage we rotate the
calibration object in increments of 5 degrees from �25
to 25 degrees around the vertical axis and take images at
each increment. We calibrate the ground truth camera fo-
cal length with the MATLAB 2014a implementation of
Zhang’s method [25].

Figure 6 shows the rotation estimation performance per
image in the left column as well as in summary in the right
column. We show rotation error for each local axis as the
angular difference of our estimate to the true rotation. The
estimates from our initialization algorithm is shown in the
top row and show errors at the scale of a few degrees. The



Figure 6. We compare the rotation estimations our method gets
initially and after refinement. In the left column, we see the rota-
tion error per local axes for each image as the calibration object
is rotated, while in the right column we see the summary statis-
tics. Although we start with good rotation estimates, the refine-
ment process still gives improvement.

Figure 7. We report the focal length estimations for different ori-
entations of the calibration object per image (on the left) and in
summary (on the right). The initial estimations (top) start with
considerable error in focal length estimation. After reprojection
refinement, however, the results are improved significantly achiev-
ing a median of less than 5% error.

bottom of this plot shows results after minimizing the repro-
jection error as defined in Equation 3, when we get rotation
estimates with a median error of 1 degree.

Figure 7 quantifies error in the focal length estimation,
and Figure 8 quantifies error in the translation estimation.
Both the initialization and refinement results shown strong
correlations between the focal length error and the transla-
tion error. The refinement step reduces the error of both to a
median error of about 4%. The correlation in error between
the focal length and the translation arises from the ambigu-
ity that an object can appear bigger either by moving closer
to the camera or by the camera changing its focal length. In
the AR demo shown later, we see that a 4% error does not
appear to lead to a perceptually noticeable error in rendering

Figure 8. We present the per image (left column) and summary
performance statistics (right column) for initial translation esti-
mation (top) and refined translation estimation (bottom). In these
plots, we show the distance error for each axis. The overwhelming
majority of error is in the Z-axis, which is the depth of the cam-
era. The z-axis translation errors reflect errors in estimating focal
length.

the correct perspective of the object.
Figure 9 shows quantitative results for focal length esti-

mation from single images of the calibration object taken at
different orientations and different focal lengths. For each
image, we show the results that visualize rotation by render-
ing the local coordinate system on top of the original image.
The image title shows the ground truth focal length, our es-
timated focal length, and the percent error. We include im-
ages from cell phone cameras, as well as a DSLR camera.
The first two images are from an iPhone 5 and a Galaxy S6
with focal lengths of 5 and 5.8 mm. The images following
those are from a Nikon D90 at focal lengths of 18, 49, 90,
115, and 185 mm.

Focal length estimates are relatively accurate for shorter
focal lengths. Very long focal lengths correspond to imag-
ing geometries with a smaller field of view. For small fields
of view, small errors in estimating angular constraints may
lead to larger errors in estimating focal length. To ground
this, we show the impact of mis-estimating the field of view
by 0.25� degrees on the estimate of the focal length.

5.3. Augmented Reality Application

In a desktop scene, we record video of the calibration
object while moving the camera in a freehand trajectory.
When the camera is moved farther away from the scene and
the calibration object, we digitally zoom to keep the calibra-
tion object as large as possible in the image. For each frame
we estimate the camera focal length, rotation, and transla-



Figure 9. Eight examples of single frame estimation of the focal length and object rotation estimates. The first two images are taken from
an iPhone and Galaxy S6, while the remaining images are taken by a Nikon DSLR camera at different zoom settings.

Figure 10. The focal length error that arises from mis-estimating
the field of view by 0.25� changes as the field of view gets smaller
(and, correspondingly, the focal length gets longer).

tion using the calibration object as detailed in Section 4. In
Figure 11, we compare our estimated focal length with the
ground truth focal length (which we know because this is a
digital zoom) per frame. We can see that the focal length
estimations follow the zooming trajectory well. We empha-
size that our algorithm does not have access to this digital
zoom information.

As a comparison, we consider an AR algorithm that
doesn’t have access to the digital zoom and does not have
the ability to estimate it from image data. When such an
algorithm uses a pre-calibrated focal length which becomes
wrong in part of the video sequence, virtual objects are ren-
dered with incorrect perspective. Figure 12 shows 3 frames
from the video in each column. We render a virtual wire-
frame box to highlight perspective effects. The top row
shows the original images, the center row shows the box
rendering given the estimates made with a dynamic focal
length, and the bottom row shows the box rendering given
the estimates made with a static focal length. The digital

Figure 11. We show the focal length estimates used to render a box
into a video in our AR demonstration. We show how our estimates
follow the focal length changes from zooming.

box has a base the size of the calibration object and is 45mm
deep.

Our scene contains graph paper that is aligned to show
a cartesian coordinate to help the viewer assess perspec-
tive effects. The wire-frame box should appear aligned just
short (10mm or 2 boxes) of the end of the paper grid. In
comparing our method of estimating a dynamic focal length
against estimating a static focal length, we see that the ren-
dered box looks unnaturally too large and with too much
perspective in the case of a static focal length. This holds
true in general for all frames, and we include the entire
video in the supplementary materials.

In the supplementary material, we show an additional
AR video. In this video, we render a 3D model into a video
with free-hand camera zoom.



Figure 12. We show focal length estimation results in 3 frames of a video where we render a box over the calibration object. The original
image (top row) is digitally zoomed to maximize the size of the calibration object in the image. By estimating the focal length dynamically
in each image (middle row) versus estimating a single static focal length (bottom row), we achieve a much more natural rendering that is
the correct relative size and has the right amount of perspective.

6. Discussion

We present an end to end system and physical calibra-
tion object for simultaneous camera focal length estimation
and pose-estimation. This calibration object uses lenticu-
lar arrays that offer geometric constraints based on the ob-
served color, allowing for the estimation of camera focal
length from a single image. In contrast to [3] which suf-
fers from formal ambiguity and thus high error for fronto-
parallel views when using coplanar points [18], our cal-
ibration object based on lenticular arrays is robust for all
viewing angles. The ability to estimate focal length from
a single image is vital for augmented reality applications
from cameras that are zooming as they record a scene.

Our geometric constraints are based on measuring image
colors. Color is notoriously difficult to measure accurately.
Apparent colors may change based on lighting or camera
white balance settings. In this paper we did not address
this issue, but recent work suggests that these effects can be
mitigated by explicitly including a color correction term in
the geometric optimization [16].
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Figure S1. Here we show an example image from the experiment
in Section 5.1.

A. Anchor Point Permutations

In Section 5.1, we explored how the anchor point local-
ization affected HRF prediction accuracy. In that experi-
ment, we randomly moved the 4 anchor points of a lentic-
ular array by 8 pixels in a random direction. Figure S1
shows the anchor points used in calibrating the HRF as blue
crosses and the random perturbation as green crosses.

B. The Minimum Measurable Angle Change

The angular precision resolvable of a lenticular array in
an image is limited by the color sensitivity of the camera
and color precision of color printing. In this section, we
analyze the theoretical angular limits of a system imaging
a lenticular array using an 8-bit RGB camera. The im-
plemented lenticular arrays have their backplane textures
printed at maximum saturation and value. The satura-
tion/value of the lenticular array’s appearance to the camera,
however, is also determined by the amount of light in the
scene and camera properties such as exposure. We explore
how the amount of light affects the angular measurement
precision in this section.

The set of RGB values corresponding to the hue wheel
for a given saturation/value level lie on a 2d manifold in
RGB space. This manifold represents the set of RGB mea-
surements a camera would take of a lenticular array in any
orientation. In Figure S2, we show two views of these man-
ifolds for various levels of saturation and value. The man-
ifolds create a cycle along the sides of a cube aligned with
RGB space. Interestingly, as the amount of light (saturation
and value) goes down, the set of RGB values corresponding
to the hue wheel gets smaller.

On the left of Figure S3, we show the number of
unique 8-bit RGB triplets for each manifold, or each satura-
tion/value level. The set of 1-to-1 view points of the lentic-
ular array (76 degree range of incident angles) is mapped to
the hue wheel and therefore to the RGB manifold. Thus, our
angular precision is 76 / the number of unique rgb values.
On the right of Figure S3, we show this angular precision
for each level of saturation/value. In the best possible case

Figure S2. The space of hues with a constant saturation and value
lies on a manifold in RGB space. This manifold is along a cycle
around a few edges of a cube. Above we show 2 views of the
same plot to show the shape of the manifolds. As the amount of
light reduces, or the saturation and value of HSV measurements
reduces, the measurable space in RGB gets smaller as well.

Figure S3. As the amount of light in a scene decreases, so too
does the space of possible measurements of the color of a lentic-
ular array. On the left, we show the number of unique RGB mea-
surements for an 8-bit camera. On the right, we show how this
translates to angular precision. An 8-bit camera has a maximum
theoretical precision of 0.05 degrees, but would more realistically
be limited to 0.1 degrees for moderately illuminated scenes.

with maximum saturation and value, an 8-bit RGB camera
is able to resolve the angle of a lenticular array at a pre-
cision of 0.05 degrees. However, at 0.3 saturation/value,
the precision drops to 0.55 degrees. For the experiments
in Section 5.1, we note that the hue measurements have a
mean saturation and value of ⇡ 0.7 and ranged from ⇡ 0.5
to ⇡ 0.9. Therefore, we do not believe that the angular error
of 0.25 degrees induced by moving anchor points is due to
the inherent precision limitations of the 8-bit RGB camera
imagine the lenticular arrays.

The angular precision achievable by a camera can be
greatly improved by moving to a larger color representation.
In Figure S4, we show the same experiment as before, but
for a 12-bit camera. With 16 times more possible values for
a single color channel versus an 8-bit camera, the number
of unique RGB values for the color wheel and the angular
precision both improve by an order of magnitude. There-
fore, in future work, we plan to explore camera calibration
and pose estimation using higher bit precision cameras.



Figure S4. We repeated the experiment depicted in Figure S3, but
for a camera that can capture 12-bit RGB images. As the camera
can now measure color with 16 times more values, we achieve
an order of magnitude more of uniquely measurable hues in RGB
space (left) and therefore an order of magnitude smaller angular
precision.

C. Additional Augmented Reality Video
We demonstrate our approach with a second AR video

where the camera is static with a varying zoom, and the cal-
ibration object is being rotated randomly. In this video the
zoom is achieved via a zoom lens, in contrast to the digi-
tal zoom performed in Section 5.3. In the supplementary
material, we include 2 additional videos. In the first video,
we overlay the wire-mesh of a box to compare dynamic fo-
cal length estimation versus static focal length estimation
(just like in Section 5.3). In the second video, instead of
a box wire-mesh, we overlay a 3D model of a parrot over
the frames of the image. In Figure S5, we show frames of
this video. Just like in the previous results, our dynamic fo-
cal length estimation ensures that the 3D model is rendered
with the correct perspective, no matter the zoom level.



Figure S5. We use our focal length, rotation, and translation estimates to overlay a 3D model of a parrot onto the image. Because we
estimation the focal length at each image, the parrot is rendered with the appropriate perspective despite very different zooms throught the
video.




