
A System for Rapid Interactive Training of
Object Detectors

No Author Given

No Institute Given

Abstract. Machine learning approaches have become the de-facto stan-
dard for creating object detectors (such as face and pedestrian detectors)
which are robust to lighting, viewpoint, and pose. Generating su�ciently
large labeled data sets to support accurate training is often the most chal-
lenging problem. To address this, the active learning paradigm suggests
interactive user input, creating an initial classifier based on a few samples
and refining that classifier by identifying errors and re-training. In this
paper we seek to maximize the e�ciency of the user input; minimizing
the number of labels the user must provide and minimizing the accuracy
with which the user must identify the object. We propose, implement,
and test a system that allows an untrained user to create high-quality
classifiers in minutes for many di↵erent types of objects in arbitrary
scenes.

1 Introduction

For many vision applications, it is important to have detectors for specific object
classes. In recent years, the simultaneous development of large data sets and
advances in machine learning algorithms have made it possible to make visual
object detectors quite robust, for example, face detection is e�cient and robust
enough to be built into many modern digital cameras. In fact, machine learning
techniques are often more accurate than hand-coded algorithms for many object
detection problems, if su�cient training data is available. However as pointed
out in [1], the hand annotation of training data is often the most time consuming
part of the process of creating an accurate detector.

We believe there are two key challenges to overcome to make interactive
training a near real time process:

1. The feature set and learning algorithms must be e�cient to compute so that
a user can complete the classifier training in one sitting.

2. User labeling should be “simple,” ideally requiring just one click (rather than
outlining an object), and it should accommodate several pixel errors in the
click.

Our contributions in this paper are the integration tools to address each of
these challenges. We describe a workflow and system that makes it possible to
generate an e↵ective classifier in just a few minutes. This comprises three contri-
butions, first the integration of histogram of oriented Gaussian (HoG) features

Robert Pless
Authors copy, as accepted and appeared in ISVC, 2009. Authors: Nathaniel Roman and Robert Pless

Robert Pless

2 No Author Given

and an incrementally trained SVM (Support Vector Machine) classifier. Second,
a method to locally correct the positions of an object designated by a user click,
and an experimental analysis of classifier performance with and without the click
correction. Third, a characterization of the reduction in number of labeled sam-
ples required to train a classifier using the iterative approach versus standard
single-shot classifier training. Finally, we present empirical results from classi-
fiers that our system has developed for video data from YouTube, and archived
webcam data from the “Archive of Many Outdoor Scenes” data set [2].

2 Related Work

The recent enthusiasm for the use of machine learning algorithms for object de-
tection is perhaps spearheaded by Viola-Jones face and pedestrian detectors [3].
This work considers a very large feature space of Haar-like features, and uses
AdaBoost to select a small set of discriminative features. The training set size
is typically quite large with tens to hundreds of thousands of examples of the
object and the same or more negative examples. There have been many papers
exploring object detection with a variety of feature spaces, learning algorithms,
and objects to be detected; a few examples showing the variation of approaches
to pedestrian detection include using histogram of oriented gradients as a feature
and linear SVM as the classifier [4], using Haar features with support vector ma-
chines [5] and local receptive fields similar to Gabor filters with neural networks
as a classifier [6].

Previous research has directly considered iterative algorithms for incremen-
tally training object detectors, creating incremental algorithms for boosting [7],
and integrating this with a tracking algorithm, using the tracking results to
maintain an up-to-date object classifier despite appearance changes [8].

Another approach uses stereo imagery from an aerial platform to detect
false positives (whose depth is not consistent with targets of interest) which
are feed back into the classifier as negative updates, substantially improving
performance [9].

Other current work focuses on users cooperating with an algorithm to per-
form tasks. One exemplar of this cooperation is in the “Livewire” or “Intelligent
Scissors” segmentation algorithms [10, 11]. In these, a user clicks on a point to
define a graph minimization problem to easily define complex boundaries. These
algorithms are successful because there is immediate feedback allowing the user
to click a few extra points in order to create the desired boundary. Another field
where iterative feedback between users and algorithm parameters are applied to
computer vision is in Content Based Image Retrieval, where a few iterations of
user queries and refinements continues to give state of the art results (a compre-
hensive review is [12]).

To the best of out knowledge the only work done on including people in an
online training loop is the Seville system, created by Abramson and Freund [1].
Their iterative approach focuses the human’s e↵orts on labeling data that are
initially mis-classified. Such data points are likely to be near the final decision

Lecture Notes in Computer Science 3

boundary and therefore are most useful in training. However, this promising sys-
tem still required 4 hours of human time in hand-labeling data, and a wall-clock
time of 30 hours (mostly taken by iterations of the boosted learning algorithm)
to train a pedestrian classifier to be e↵ective on video data from a moving car.
While this dramatically improves upon the weeks or months of time that have
gone into making standard training data sets, it does not allow a user to quickly
make a new detector.

3 Near Real Time Interactive Object Detector Training

Fig. 1. The workflow for inter-
active training of an object clas-
sifier. The bold terms and dot-
ted lines show our contributions
beyond previous work [1], using
the (much) faster to train SVM
classifier, and a “click correc-
tion” allowing users to click ap-
proximate locations reduces the
total time to create a classifier
from 30 hours to several min-
utes.

In order to further speed up the process of
object detector training, this work focuses on
integrating faster learning algorithms, with
tools that make the user interaction more ef-
fective. In particular, the goal is to minimize
the time that the user spends waiting for the
detector to be retrained, and to allow the user
to specify an object with a single click that
need not be accurate at the pixel scale. To
that end, we have created a system that meets
these goals. In this section we describe the al-
gorithmic choices that we have made to sup-
port such a workflow.

Figure 1 illustrates the workflow for the
interactive object detector. This workflow be-
gins with a user selecting positive examples
of the object he or she wishes to detect, by
clicking on them. The remainder of the im-
age is then randomly sampled 1500 times to
initialize a negative example set. Once this
is finished the system advances some number
of frames in the input video and begins the
training and object detection phase, which is
described in detail in Section 3.1. After the
objects in the new video frame are detected,
the system enters the interactive phase. In this
phase the user corrects mistakes made by the
detector, by indicating incorrect or missing
detections (each requiring a single click). Fig-
ure 2 shows a screenshot of the GUI after the
user has completed this process. False nega-
tives are then added to the positive example
set, and false positives are added to the negative example set. When finished
with the interactive phase, the user clicks a button on the GUI and the video is
once again advanced, the training and object detection phase occurs, and finally

4 No Author Given

Fig. 2. A screenshot of the user interface after one iteration of training on the peachtree
tra�c video. The user has marked some detections as false positives (red). The user
marked two false negatives (green). The correct detections are marked in blue.

the system returns to the interactive phase. In this way the user can iteratively
guide the training of the detector and refine its decision surface, until satisfied
with the detector’s performance.

3.1 Object Detection

Unlike o✏ine learning, interactive training has a human in the loop. This ne-
cessitates that the features and training algorithm used in the detector must be
extremely fast.

For detection we use a Histogram of Oriented Gradients (HoG) feature de-
scriptor. To compute the feature an image box is divided into 4⇥ 4 blocks, and
for each block an image gradient direction histogram was created with 10 an-
gular bins. For the car detection data featured in the results section, the image
box is 24 ⇥ 24 pixels. Since these features are used in a scene-specific detector,
it is unnecessary to normalize the feature vector. An advantage of the HoG fea-
ture descriptor is that it divides an image patch into axis-aligned rectangular
blocks. This allows gradient magnitudes in blocks to be summed in constant time
by precomputing the integral of the image gradient for the entire video frame.
Note that while we used the HoG feature descriptor in our system, any reason-
able method of creating a feature descriptor vector from a image box could be
substituted into the system in place of HoG.

Lecture Notes in Computer Science 5

As a classifier we use a linear SVM, trained with the Sequential Minimal
Optimization (SMO) algorithm, implemented in MATLAB [13].

Detection is performed by sliding a window over the current frame of the
video. For each image window a HoG feature is calculated and evaluated by the
SVM, which outputs a single detector score for each image window. This process
can be greatly sped up by precomputing the image gradient bins for the entire
image and by processing these windows in parallel. Boxes indicating the location
of detections are superimposed on the image for all windows that have a score
above a threshold selected by the user.

Slightly o↵set boxes from an image are likely to have very similar HoG fea-
tures. In order to avoid overwhelming the user with many detections of a single
object, we used non-maxima suppression on the detections.

3.2 User Interaction

In our approach, the training of the SVM classifier is done iteratively, starting
with just a few labeled examples, and allowing the user to correct mistakes. In
this section we detail the user interaction itself, including an automatic way to
“correct” a user click with respect to the current SVM classifier, which further
increases the e�ciency of the human interaction.

A user corrects the detection results with two tools: mark false positive and
mark false negative. To mark a false positive the user selects that tool and then
clicks inside of a detection rectangle. The rectangle is recolored red to indicate
that it has been marked. To mark a false negative the user clicks on the object
missed by the detector. A green detection rectangle is drawn around the object.
The system will make slight corrections to the location of the user’s click. This
process is described in Section 3.3.

3.3 User Click Correction

It is very unlikely that a user will click the exact same place on cars when marking
missed detections. Therefore if the system were to simply add a positive example
to the training set based only on the point where the user clicked, it is likely
that the decision surface of the SVM will move to accept many di↵erent o↵sets
of image boxes relative to true car locations. To correct this in our system, when
the user clicks a false negative, the SVM score is computed for all boxes within 2
pixels of the original click, and the box with the maximum score is added to the
positive training set. In this way, the SVM self-reinforces a correct click position.

4 Experimental Analysis

In this section we characterize the performance of an interactively trained clas-
sifier. We measure classification performance using a performance curve, and we
explore performance as a function of the number of user-clicked points, accuracy
of point clicking, and various choices of what data should be incrementally added
to the SVM training set.

6 No Author Given

4.1 Quantitative Evaluation of Active Learning

In this experiment, we aim to quantify the improvement of the classifier when
using incrementally chosen examples versus random examples. We compare the
incrementally trained classifier to a standard classifier over many trials to char-
acterize the performance distributions over di↵erent random samples. This ex-
periment is performed using positive examples from the MIT pedestrian data
set [14] and negative examples drawn randomly from natural images known not
to contain humans.

The training data includes 200 positive examples of pedestrians, and a very
large set of non-pedestrians. To create the baseline classifier, we randomly sample
9 positive examples and 18 negative examples, and compute the classification
error over a fixed testing set of 419 positive examples and 725 negative examples,
choosing a threshold that minimizes total mis-classifications. Performing 500
trials of this form gives the distribution of total mis-classifications shown in blue
in Figure 3.

Fig. 3. Even with small sample sizes, it-
erative training of an SVM classifier no-
ticeably outperforms batch training on
the MIT pedestrian dataset.

In comparison, the incremental
classifier was trained as follows:

1. Randomly select 3 pedestrian im-
ages and 6 non-pedestrian images
as initial training data, and train
the SVM classifier.

2. Classify all remaining training-set
images, randomly select 3 mis-
classified positive examples and 6
mis-classified negative examples,
and retrain the classifier.

3. Again classify all remaining train-

ing images, randomly select 3 mis-
classified positive examples and 6
mis-classified negative examples,
and retrain the classifier.

4. Using this SVM classifier, compute
classification results on the same
test set as used by the baseline
classifier.

This classifier is evaluated over 500 random trials (encompassing di↵erent
initial images and di↵erent random choices from the mis-classified images). Fig-
ure 3 shows the distribution of total mis-classifications in red, illustrating that
even at low sample sizes, there is a noticeable improvement in the performance
of the incrementally trained classifier.

4.2 Experimental Setup with Real World Data

The testing data for the tra�c video is taken from the Peachtree dataset (avail-
able at http://ngsim.fhwa.dot.gov/). A screenshot of this video is shown in Fig-

Lecture Notes in Computer Science 7

ure 2. The testing data includes 50 frames of video, each 10 seconds apart, taken
from a section of the video that does not overlap with the portion used for the
incremental training. Ground truth was created by hand. Cars that were mostly
occluded and other types of vehicles such as trucks and buses were not labeled
as cars. The testing data contained 601 labeled cars.

The training was performed by a user utilizing our system on the training
portion of the peachtree video and was stopped after 20 iterations.

4.3 Experimental Study of “Click Correction”

a

Fig. 4. The click correction substan-
tially improves performance, by remov-
ing the variability in the object class due
to small position errors.

In order to evaluate the e↵ect of click
correction a user trained a car detec-
tor on the peachtree data as described
above twice—once with “click correc-
tion” enabled, once with it disabled.
Figure 4 shows a performance curve
comparing the performance of the two
detectors after five iterations of train-
ing. Note that at a false positives per
true positive rate of 0.1 the detector
without click correction had a true
positive rate of 0.51, while the detec-
tor with click correction had a true
positive rate of 0.75.

The e↵ect of click correction di-
minishes as the number of training it-
erations increases. However due to the improved performance during early rounds
of training, click correction allows a user to train a detector with significantly
fewer clicks.

4.4 Overall Results and User Time to Create Classifier

In this section we show the performance of the object detector trained iter-
atively using our system on the tra�c video. We also compare this with the
performance of a detector trained non-iteratively. Positive examples for the non-
iteratively trained detector were obtained by manually labeling the location of
all cars in the same frames of the peachtree video that the iterative training was
performed on. Negative examples were obtained by randomly sampling boxes
that did not contain cars in these frames. Figure 5 shows the performance of the
iteratively trained detector for di↵erent numbers of training iterations, as well
as the performance of the non-iteratively trained detector.

Figure 5 demonstrates that as more iterations of training are performed the
performance of the object detector increases. Note that the iteratively trained
detector outperforms the non-iterative detector after only 10 training iterations.
Also note that the legend shows the number of positive and negative examples
included in the training of each of these detectors. With six times as many

8 No Author Given

Fig. 5. Creating a detector for cars in a surveillance scenario, the performance of an
iterative classifier rapidly matches batch training with much larger training sets.

positive examples and nearly ten times as many negative examples as the 20-
iteration detector, the non-iterative detector still fails to perform as well. We
hypothesize that this is because the non-iterative detector never received the
right negative examples—those required to fine tune the decision boundary, even
though overall it had many more negative examples.

Training the 20-iteration detector only required a total of 72 clicks by the
user (17 initial cars, 17 false negatives, 38 false positives, 1500 of the negative
examples are generated randomly). On the other hand, to label all of the cars
for the non-iterative detector the user had to click on 231 cars. This saves the
user a significant amount of time. It takes a user who is experienced with the
system seven minutes of wall-clock time to train the 20-iteration car detector on
the tra�c video.

5 Discussion and Conclusions

This work aims to explore the premise that interactive training of an object
detector requires much less hand-labeling of data than standard batch training.
Careful choices of image feature, learning algorithm, and minimal image pro-
cessing to correct some variance in the user’s click location reduces the overall
wall-clock time of training a detector to be minutes instead of the 30 hours pre-
viously reported. This opens up the possibility of using a trained object detector
in a wider variety of arbitrary and niche uses.

To illustrate this, we have trained object detectors on objects in several videos
from YouTube (after downloading and converting them to AVI). Figure 6 shows
results on new frames (not included in the training set) for detecting sailboats
(“wall-clock” training time, 1.5 minutes), Sony Aibo robots used in the Robocup

Lecture Notes in Computer Science 9

Fig. 6. The overall benefits of this work is the simplicity with which new classifiers can
be made for arbitrary applications. This figure shows example results from classifiers
trained in under 2 minutes on video clips from YouTube (top) and archived webcam
data (bottom).

soccer challenge (“wall-clock” training time, 2 minutes), and airplanes from a
general aviation airport webcam archived in the AMOS database [2].

In the past, learning models for object detection required significant human
e↵ort in creating su�cient training data, so this was done only for high-impact
problem domains (e.g. faces, pedestrians). But the ability to iteratively train a
detector with just a few clicks makes it feasible to train special purpose detectors
for specific objects (e.g. Sony Aibo), or from individual viewpoints. This may
make possible new computer vision applications in surveillance (especially scene
specific surveillance algorithms), biological monitoring (detect the ducks on this
pond), or microscopy (count the number of a particular cell type) applications.

References

1. Y Abramson and Y Freund. Semi-automatic visual learning (seville): a tutorial on
active learning for visual object recognition. Proc. IEEE Conference on Computer
Vision and Pattern Recognition, 1, 2005.

2. Nathan Jacobs, Nathaniel Roman, and Robert Pless. Consistent temporal varia-
tions in many outdoor scenes. In Proc. IEEE Conference on Computer Vision and
Pattern Recognition, pages 1–6, 2007.

3. Paul A. Viola and Michael J. Jones. Rapid object detection using a boosted cascade
of simple features. In Proc. IEEE Conference on Computer Vision and Pattern
Recognition, pages 511–518, 2001.

10 No Author Given

4. N. Dalai and B. Triggs. Histograms of oriented gradients for human detection.
Proc. IEEE Conference on Computer Vision and Pattern Recognition, 1:886–893,
June 2005.

5. Constantine Papageorgiou and Tomaso Poggio. A trainable system for object
detection. International Journal of Computer Vision, 38(1):15–33, 2000.

6. Christian Wöhler and Joachim K. Anlauf. Real-time object recognition on image
sequences with the adaptable time delay neural network algorithm - applications
for autonomous vehicles. Image and Vision Computing, 19(9-10):593–618, 2001.

7. Helmut Grabner and Horst Bischof. On-line boosting and vision. In Proc. IEEE
Conference on Computer Vision and Pattern Recognition, pages 260–267, 2006.

8. Helmut Grabner, Michael Grabner, and Horst Bischof. Real-time tracking via
on-line boosting. In British Machine Vision Conference (BMVC), pages 47–56,
2006.

9. S. Kluckner, G. Pacher, H. Grabner, H. Bischof, and J. Bauer. A 3d teacher for car
detection in aerial images. In Proc. IEEE International Conference on Computer
Vision, pages 1–8, 2007.

10. E. Mortensen, B. Morse, W. Barrett, and J. Udupa. Adaptive boundary detection
using ‘live-wire’ two-dimensional dynamic programming. Proceedings of the IEEE
Conference on Computers in Cardiology 1992, pages 635–638, Oct 1992.

11. Eric N. Mortensen and William A. Barrett. Intelligent scissors for image composi-
tion. In Proc. ACM Conference on Computer Graphics and Interactive Techniques
(SIGGRAPH), pages 191–198, 1995.

12. Xiang Sean Zhou and Thomas S. Huang. Relevance feedback in image retrieval: A
comprehensive review. Multimedia Systems, 8(6):536–544, 2003.

13. G. C. Cawley. MATLAB support vector machine toolbox (v0.55�) [
http://theoval.sys.uea.ac.uk/~gcc/svm/toolbox]. University of East Anglia,
School of Information Systems, Norwich, Norfolk, U.K. NR4 7TJ, 2000.

14. M. Oren, C.P. Papageorgiou, P. Sinha, E. Osuna, and T. Poggio. Pedestrian de-
tection using wavelet templates. In Proc. IEEE Conference on Computer Vision
and Pattern Recognition, pages 193–99, 1997.

