
Abstract

In this paper we consider the analysis of thousands of un-
organized, low resolution images of an object. With very
low resolution images, standard computer vision tech-

niques offinding corresponding points and solving for im-
age warping parameters or 3D geometry may fail. Two re-
cent techniques in statistical pattern recognition, locally
linear embedding (LLE) and Isomap, give a mechanism
for finding the structure underlying point sets for which

comparisons or distances are only meaningful between
nearby points. We explore these methods to simultane-
ously compute camera position and object pose for thou-
sands of images using nothing but a global similarity mea-
sure between images.

1 Introduction

Surveillance applications may produce many low resolu-
tion images of a single object. With very low resolution
images taken from unknown viewpoints, standard com-
puter vision algorithms do not have a good handle to be-
gin the image understanding process. Here, we study a
problem where we have thousands of pictures of an ob-
ject, parameterized by an unknown camera viewing angle
and object rotation. Given enough images so that every
image has similar images taken from nearby viewpoints,
is it possible to extract that camera position and object
pose for all the images?

One popular tool that could give an approach to this
problem is called multi-dimensional scaling (MDS) [2].
Explained more in the next section, this technique is a
method for creating an embedding of a point set that re-
spects the set of all pairwise distances. Naively applying
this to image data requires a meaningful measure of dis-
tance between all pairs of images. For images taken from
very similar viewpoints, almost any distance metric be-
tween images will be small. For image taken from dis-
similar viewpoints, almost any image distance metric is
likely to be uncorrelated with the actual distance between
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camera viewpoints. Therefore embedding the images in a
parameter space using MDS directly is not satisfactory.

Fortunately, two recent papers give tools to allow a
MDS like solution for situations when only a local sim-
ilarity measure is required[3, 6]. Each of these tools takes
as input local relationships between input data points.
Each outputs coordinates for the data points that best sat-
isfy the given relationships. Unlike principal component
analysis, these coordinates do not have to correspond to a
linear subspace of the space in which the original point set
lies - If the point set lies in a low dimensional non-linear
manifold (like a spiral jelly roll), the coordinates specify
point locations within that manifold.

The work presented here is an initial exploration into
the use of LLE and Isomap in the analysis of image data.
We explore different image distance metrics and give two
mechanisms which use outside knowledge to force the pa-
rameters of the embedded point set to conform to parame-
ters of interest in the world. In particular, an experiment in
section 4 uses 1,800 images of an object and embeds the

Figure 1: We consider the problem of organizing an un-
ordered set of small images (left). Using Isomap or LLE,
it is possible to automatically organize the pictures into a
low dimensional parameter space, in this case a 2 dimen-
sional space (right). The subject of this paper is to modify
or extend these techniques in order to extract metric prop-
erties of camera angle and object pose.
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images into a space parameterized by the angle of eleva-
tion of the camera and the angle of rotation of the object.

Related to this work is [5], who does a similar dimen-
sionality reduction by comparing a large set of images to
a set of templates. Comparing the images to the templates
avoids the need to compare all pairs of images, and gives a
method to find a low dimensional Euclidean embedding of
the image set, suitable for content based indexing. How-
ever, this still requires that a distance metric be valid for
every pair of template and image, instead of a measure
that need only be valid for very similar images.

2 MDS, LLE and Isomap
In this section we give a minimal overview of the mathe-
matics behind LLE and Isomap, the subsequent sections
give modifications to these procedures which to force
the embedding to have physically meaningful parame-
ters. A complete description is available in the original
articles [3, 6], and longer tutorials on these methods and
MDS in general give more specific implementation de-
tails [4, 2].

•

	

Multi-Dimensional Scaling
Input: D = n x n matrix of all squared pairwise dis-
tances
Output: Point coordinates which best approximate
pairwise distances.
Method: Solve an eigenvalue problem with a matrix
easily created from D

•

	

Isomap
Input: an n x n matrix pairwise distances with some
(perhaps most) distances unknown.
Output: Point coordinates such that the pairwise dis-
tances are best approximated.
Method: Define a graph whose vertices are the set
of points, and whose edges are the known pairwise
distances. Compute all-pairs shortest path distances
in this graph, which defines a distance between ev-
ery pair of nodes. Use MDS to find point coordi-
nates which satisfy these (now complete) distance
constraints.

•

	

LLE
Input: A n x n weight matrix W which expresses
each point as a weighted sum of other points (proba-
bly neighbors).
Output: Point coordinates best fitting the local con-
straints
Method: Solve an Eigenvalue problem to find rea-
sonable point coordinates X such that WX = X.

Both Isomap and LLE output a set of point coordinates.
In the subsequent section, we explore techniques to allow
those point coordinates to have a physical meaning.

3 Constrained Embeddings
Extra knowledge is required to transform the embed-
ded point set into one that expresses metric information.

There are two categories of external knowledge that can
be brought to bear on the embedding process. The first
method is to enforce absolute knowledge of the desired

parameter location for one or a small set of the points.
The second is to enforce global properties of the embed-

ding, for instance the knowledge that the data set comes
from an even sampling of the desired parameterization.
The form of global constraints which are appropriate is
highly application dependent, and we discuss techniques
used in our experiment within the experimental section.

3.1 Local Constraints

The LLE approach to embedding the point set starts with
a weight matrix W which which expresses each point as a
weighted sum of other points. It then seeks a set of point
coordinates X which respect this weighting:

WX = X

(W - I)X = 0

Requiring that certain points must be embedded in partic-
ular locations requires the solution to a similar problem:

(W'-I)X'=C,

where X' is the remaining unknown point coordinates for
which we are solving, W' is the matrix of relative con-
straints between these points, and C is a matrix encoded
the effect of the location of the fixed points.

Alternatively, the points can be warped after the fact to
force the satisfaction of a particular set of constraints. Dif-
ferent warping functions may be required depending upon
the number of points whose position is fixed. A general
linear transform is an 8 parameter transform allowing any
four points to be fixed. The four embedded points, and
their desired locations, define a linear system which can
be solved to define the transformation for each point:

_ ax+by+c dx+ey+f
W, Y') - ( gx+hy+1' gx+hy+1 )

4 Experiment
The visual object capture system, shown in Figure 2, cap-
tured 1,800 images of the object shown in Figures 1 and 5.
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Figure 2: Object capture system, can take pictures of an
object from any camera angle and object rotation. For
this experiment, we took 1,800 images, sampling 0 and 9
every 3 degrees (data set available upon request, uncom-
pressed pgm format).

These images evenly sample the space of object rotations
(every 3 degrees, over one half a rotation) and camera

viewing angle (every 3 degrees, from horizontal to ver-
tical). The images were sub-sampled to 32 x 64 pixels,
and all pairs of image distance were computed as both
the sum of squares of differences of normalized pixel in-
tensity, and the sum of squares of differences of normal-
ized edge maps. We found that using the edge image gave
qualitatively similar but slightly better and more consis-
tent results that using distances computed from original
images.

For Isomap, the local neighborhood graph of each im-
age consisted of the 8 nearest images, all other distances
were initially unknown and defined during the Isomap
procedure. For LLE, each point was expressed as a
weighted sum of its neighbors using the following algo-
rithm suggested in [4]. Using all pairwise distance be-
tween a point and its eight nearest neighbors, embed these
(nine) points using MDS. Then, express the central point
as a weighted sum of its neighbors, and use these weights
as the input constraints to LLE.

Figure 3 shows the result of the LLE embedding of
all 1800 images. The four points corresponding to the
(known) extremes of camera angles and object rotations
are marked with small circles. In the coordinate system
defined by these four points, the points should be arranged
as a rectilinear grid. This metric structure underlying the
point set is not exhibited by this embedding. Exploring
why this fails is a subject of future work - It may be
better to compute each image directly as a linear combi-
nation of neighbor rather than first computing distances,
then locally embedding, then using that local structure. A
qualitative structure is found, shown in Figure 1 (right);
as one moves in a path through neighboring points in this
embedding, there is a smooth transition between image
viewpoints, but the embedding does not directly capture
the parameters of the object pose.

Figure 3: Locally Linear Embedding: Each image was
expressed as a linear combination of nearby images. The
points were embedded with the additional constraint that
the four comer images lie at fixed positions at the corner
of a square.

Figure 4 (top) shows results using the standard Isomap
procedure. Choosing four extreme points (circled), and
solving for the general linear transform which forces these

four points to have specific coordinates (bottom left) al-
lows one to define meaningful axes to the embedded

space. Finally, the a-priori knowledge that the parame-
ter space was evenly sampled gives a global constraint on
the embedded point set. Using a variant of the thin-plate

spline warping technique [ 1 ] to enforce that the density of
points in every region of the embedded space is approxi-
mately constant gives the final embedding (bottom right).
Evenly sampling this space and choosing the closest im-
age to the sample points gives a graphical depiction of this
embedding (Figure 5).

Finally, since this data set was taken in a laboratory
setting, the actual pose coordinates are known for each
image. Over all 1800 images, the mean error in the em-
bedded 0, 0 coordinates was: 6.98 ° , 2.97°. This numbers
should not be compared directly to other pose estimation
algorithms, and are extremely good, given that they come
from the analysis of 32 x 64 pixel images of an unknown
object.

5 Conclusions and Future Work
The tools of Isomap and LLE give a fascinating new ap-
proach to finding statistical relationships in large point

sets. Applying these techniques to vision applications
holds to promise of solving problems for which there is
currently no good approach. However, the domain of sets
of images is a complicated one. Distances between im-
ages (by any metric) do not have a consistent relationship
to changes in camera position or object pose. Explicitly



Figure 4: At the top is the initial Isomap solution embed-
ding the positions of all 1,800 images. In the bottom left,
this embedding is warped by a general linear transform
so that the four circles points lie in fixed points in the fi-
nal embedding. In the bottom right image, a variant of
thin plate spline enforces the constraint that the parameter
space was evenly sampled. The horizontal axis of this plot
corresponds to the camera angle 0, and the vertical axis is
the object rotation angle 0.

imposing external knowledge during the embedding pro-
cess or warping the embedded coordinates allows approx-
imate pose estimation.

Future work should explore better mechanisms to put
external knowledge into the LLE embedding. Also, dif-
ferent image metrics should be explored; for particular
properties that one wants to extract, direct comparison of
image pixel intensity may be inherently less suitable than
a distance measure based upon optic flow, feature points,
or hierarchical models. Finally, other classical computer
vision questions such as structure from motion and seg-
mentation should be explored in the context of simultane-
ously using thousands of uncalibrated images.
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