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Abstract

A key problem in widely distributed camera networks is
geolocating the cameras. This paper considers three sce-
narios for camera localization: localizing a camera in an
unknown environment, adding a new camera in a region
with many other cameras, and localizing a camera by find-
ing correlations with satellite imagery. We find that simple
summary statistics (the time course of principal component
coefficients) are sufficient to geolocate cameras without de-
termining correspondences between cameras or explicitly
reasoning about weather in the scene. We present results
from a database of images from 538 cameras collected over
the course of a year. We find that for cameras that remain
stationary and for which we have accurate image times-
tamps, we can localize most cameras to within 50 miles of
the known location. In addition, we demonstrate the use of
a distributed camera network in the construction a map of
weather conditions.

1. Introduction
A global network of tens of thousands of outdoor net-

worked cameras currently exists. Individuals and groups
mount cameras for surveillance, for observing weather and
particulate matter, and for viewing the natural beauty of
scenic locations. Linking these cameras to the world wide
web is a cheap and flexible method for individual camera
owners to view images and to share these images with a
wide audience. These cameras form a large, and growing,
free global imaging network. Accurate localization of un-
known cameras is an important first step in using this net-
work of webcameras. We address the localization problem
and demonstrate the use of this network to construct a map
of weather conditions.

This paper explores the following localization problem:
Given static cameras that are widely distributed in a nat-
ural environment with no known landmarks, no ability to
affect the environment, and perhaps no overlapping sens-
ing areas (“fields of view”), discover the positions of the

Figure 1. It is possible to geolocate an outdoor camera using nat-
ural scene variations, even when no recognizable features are vis-
ible. (left) Example images from three of the 538 static webcam-
eras that have been logged over the last year. (right) Correlation
maps with satellite imagery; a measure of the temporal similarity
of the camera variations to satellite pixel variations is color coded
in red. The cross shows the maximum correlation point, the star
shows the known GPS coordinate.

cameras. The key point in the above problem definition is
that we consider real, natural environments. Sensing data
from natural environments has useful properties for local-
ization. First, variations in natural environments happen at
many time scales, examples include changes due to day-
light, weather patterns, and seasons. Second, because these
phenomena are spatially-localized, over a long period of
time the time-course of these variations is unique to a par-
ticular geographic location.

We present two localization methods that use natural
temporal variations: one based on correlations of cam-
era images to geo-registered satellite images and the other
based on correlations with cameras with known locations.



We find that by using natural temporal variations our meth-
ods gives an accurate estimate of the camera location when
other methods are likely to fail, specifically, it is robust to
imaging distortion and works well even with a limited field
of view.

2. Related Work
Finding the extrinsic calibration (the positions and ori-

entations) of a network of cameras is a precursor to most
applications in geometric vision. This problem has been ex-
tensively studied in the case where there are feature corre-
spondences matching points in images from multiple cam-
eras [12, 5], or matching features in the image to features
computed from a digital elevation map [17, 8, 16].

Within the deployment of more distributed camera net-
works, distributed versions of these geometric calibration
have been proposed and implemented [9, 13]. Various cues
(beside feature correspondences) have been proposed to de-
fine camera topologies or approximate relative camera po-
sitions, based on object tracks [14], or statistical correla-
tion of when objects enter and exit the camera views [18],
both of which allow inference of camera locations when the
camera fields of view do not overlap, although the cameras
must be close enough so that objects appear or disappear
between cameras, and there is a low entropy distribution of
differences between departure times (from one camera) and
arrival times (in another camera).

To our knowledge, the only other work to geolocate a
camera using natural scene variations is based on explicit
measurements of the sun position ([7]), which was followed
by work in computing absolute camera orientation [19].
These techniques require special hardware to ensure the sun
is in the field of view and accurate camera calibration to de-
termine the angle of the sun.

However, the general desire for knowing the geolocation
of a large set of webcameras is highlighted in community
efforts to build such a list, including lists with manually en-
tered locations [4] and estimated locations using IP-address
reverse lookup [1].

3. Consistent Natural Variations in Outdoor
Scenes

The consistent causes of image variations in static out-
door cameras are the diurnal cycle and the weather. Re-
cently, it was found that even if cameras view different
scenes, there are consistent patterns to how these images
vary over time. In particular, the PCA decomposition of
images from each camera creates image components (which
are scene dependent), and coefficients (whose daily pattern
of variation are nearly independent of the scene) [11]. Cre-
ating a camera localization method based on these coeffi-
cients eliminates any camera-specific feature specification.

The data from each camera can be summarized as a data
matrix I ∈ Rp×T where each column is an image of p pix-
els of the same scene at time t. Singular Value Decom-
position decomposes this matrix as I = UΣV T, where
the columns of U are the principal components and the
columns of V (we use the first three columns for all ex-
periments) are the time-series of principal component coef-
ficients. A large-scale statistical study of images from 538
outdoor scenes [11] finds that the matrix of components U
and singular value matrixΣ are scene dependent but the ma-
trix of coefficients V is much less so. Figure 2 shows coef-
ficient trajectories from several cameras (i.e, three leading
columns of V ) for one day.

In the majority of outdoor cameras the leading principal
component encodes the difference between day and night.
As such, the coefficient trajectory of this component make a
sharp transition at dawn and dusk. Differences in dawn and
dusk time due to geolocation or natural seasonal variation
cause the times of the sharp transitions to change. The sec-
ond and third components have coefficient trajectories that
the indicate difference due to sun position. The scene spe-
cific components highlight appearance changes between the
sun facing east and west, and differences between dawn and
dusk and the middle of the day. The ordering of these com-
ponents is not fixed; this is a problem we address later. The
coefficients of these components are significantly affected
by the weather (e.g., the magnitude of the coefficients is
lower when it is cloudy).

The temporal variations in the PCA coefficients are re-
lated to natural scene variations and are consistent across
many cameras. The remainder of this paper implicitly uses
these variations to geolocate widely-distributed static cam-
eras.

4. Camera Localization

How can we determine the geographic coordinates of a
static camera? Potential solutions depend on what external
information is available, and this explores three scenarios
for camera localization. First, even when there is no other
information, weak camera localization is possible by cor-
relating image variations with a map of solar illumination.
Second, if the camera is in a region with satellite coverage,
localization is possible by seeking the region of the satellite
image that correlates most with the image variations. Third,
when there already exists a network of cameras with known
locations, a position of a new camera can be estimated by
finding the existing cameras with correlated image varia-
tions and interpolating their known location.

Evaluation Dataset All experiments were performed on
a database of over 17 million images captured over the last
year from 538 static outdoor cameras [11] located across
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Figure 2. The principal component coefficients of static images
of outdoor scenes have consistent patterns. This figure shows the
mean image and plots of the first three PCA coefficients for one
day for several camera. The horizontal axis of each plot is the
time of day and the vertical axis is the coefficient value. The co-
efficients for different cameras are similar despite the fact that the
corresponding scenes are very different.

Figure 3. A scatter plot of the locations of cameras used to validate
our algorithms.

the United States (see Figure 3). The cameras in the dataset
were selected by a group of graduate and undergraduate
students and many come from the Weatherbug camera net-
work [2]. We selected the cameras with published latitude
and longitude coordinates (which we assumed to be cor-
rect). Cameras which moved (including rotation or zoom)
during the two testing time frames (April 2006, February
and March of 2007) were rejected from the dataset.

4.1. Absolute Camera Localization

This section describes a method for estimating the lo-
cation of a camera using natural appearance variations and
geo-registered satellite imagery. Using straightforward sta-
tistical techniques we show that this is possible using only
a small number of principal component coefficients of im-
ages from the camera and satellite images taken at the same
time. Since the mapping from satellite image coordinates to

(a)

(b)

Figure 4. Examples of geo-registered images that we use to lo-
calize cameras. (a) A synthetic satellite image in which intensity
corresponds to the amount of sunlight. (b) A visible-light image
from a geostationary satellite.

a global coordinate system is known, the localization prob-
lem reduces to determining which pixel in the satellite im-
age is the most likely location of the camera.

For a collection of T different time points we find the
satellite images and camera images taken closest to each
time point. The geo-registered satellite images are com-
bined into a matrix of S ∈ Rp×T , where each column is an
image. The camera image data is decomposed using incre-
mental SVD [6] to approximate the first k PCA components
of the camera images. The corresponding coefficients de-
fine the matrix V ∈ RT×k, where each column is the time-
course of one coefficient from the camera we are attempting
to localize.

For a given camera, we compute the correlation score
of each pixel in the satellite image. This score is defined as
the correlation of the individual pixel time-series signal (the
rows of S which encode how that pixel of the satellite varies
through time), and a signal constructed as a projection of
the PCA coefficient matrix V . We construct this projection
as the linear combination of the rows of V T that is closest
to the satellite pixel signal in the least-squares sense. This
score can be computed for all pixels at once as:

diag(S(SV (V TV )−1V T)
T
)

Allowing for the pixel to correlate with a linear combi-
nation of the PCA coefficients provides robustness to the
ordering of these PCA coefficients. Computing this score
for every pixel yields a false-color satellite image in which
pixel intensities correspond to the temporal similarity of the
pixel to the camera. Examples of these images for two types
of satellite images are shown in Figures 1 and 5.

Using a synthetic daylight map. As a baseline for com-
parison we consider the case in which no satellite coverage



Figure 5. The correlation of the first PCA coefficient with pixels
from the synthetic daylight map shown in Figure 4(a). The re-
gion with the highest correlation corresponds to the location of the
camera (white dot).

is available. We use the algorithms described above without
modification on a synthetic daylight map where intensities
correspond to the amount of sunlight (Figure 4(a) shows an
example). These images are generated by thresholding the
solar zenith angle z for a given time and location. Pixels in-
tensities are as follows: black if z > 100, white if z < 90,
and varying linearly between the thresholds. Examples of
correlation maps generated from this dataset are shown in
Figure 5. This method gives very similar results to an algo-
rithm which specifically searches for dawn and dusk in the
image data and uses the length of the day and the dawn time
to calculate position.

Using visible satellite images. We now present results of
localizing cameras using images from the NASA Geosta-
tionary Operational Environmental Satellite [3]. See Figure
4(b) for an example image from the satellite dataset. We
tested on two 300 image datasets from two satellite views:
one of the Maryland area and one of the Pennsylvania area.
We find that by using visible satellite images our algorithm
localizes most cameras within 50 miles of the known loca-
tion. Figure 8 shows a histogram of errors in the predicted
locations. Figure 6 shows the actual position and our es-
timates for cameras in Pennsylvania. The mean localiza-
tion error over all cameras is 44.6 miles; this is skewed by
dramatic errors in a few cameras, dropping the 8 outliers
reduces the mean to 23.78 miles.

4.2. Relative Camera Localization

Global localization, using the methods described above,
depends on the availability of a set of signals with known
mappings to a global coordinate system. In this section we
eliminate this requirement by solving the problem of local-
izing a camera relative to other cameras. One distinct ad-
vantage of this approach is that accuracy is not dependent on
the spatial discretization of the global signal; adding more
cameras would give more accurate localization.

Figure 6. A comparison of the estimated (red crosses) and actual
locations (black stars) for the Pennsylvania areas cameras.

Figure 7. A scatter plot of the canonical correlation and the dis-
tance between a single camera and the 402 remaining cameras.
There is a strong linear relationship between distance and canoni-
cal correlation, especially at small distances.

Our approach is based on the intuition that geographi-
cally close cameras will have similar weather patterns and
hence similar PCA coefficient trajectories (the columns of
the matrix V ). The problem with directly comparing the
PCA coefficients of cameras is that the trajectory patterns
may be permuted or split between several components. To
overcome this difficulty we use canonical correlation analy-
sis (CCA) [10] to solve for linear combinations of the PCA
coefficients of each pair of cameras that maximizes the di-
agonal of the cross-correlation matrix. Specifically it solves
for the projections pi,j , pj,i of the PCA coefficient matrices
Vi and Vj that maximize the correlation ρ between the two
signals

ρ = max corr2(Vipi,j , Vjpj,i).

Figure 7 shows the linear relationship between the largest
canonical correlation and the known distance for many pairs
of nearby cameras. Using this relationship we can predict
the distance given only the canonical correlation.

To determine the absolute location of the camera we as-
sume that the locations of all other cameras are known and
calculate the canonical correlation ρi between the new cam-
era and each localized camera. The estimated location of
the new camera is the ρi weighted average of the known
locations of the three cameras with the highest canonical
correlation.



(a) satellite image-based (Pennsylvania area)

(b) satellite image-based (Maryland area)

(c) relative camera (entire US)

Figure 8. The distribution of errors in location prediction, using
the satellite image based method, for a sets of cameras in the Penn-
sylvania and Maryland areas. (c) The distribution of errors using
the relative localization method for 403 cameras located across the
United States.

We tested the relative localization algorithm on a dataset
of 403 static cameras using images sampled every five min-
utes over a one week period. Locations were estimated sep-
arately for each camera by localizing relative to the remain-
ing cameras. Figure 8(c) shows the absolute error in the
location estimates, the mean error was 91.3 miles. We find
that the accuracy of the estimates is weakly correlated with
the distance to the nearest neighbors, and when neighboring
cameras are geographically close the accuracy is similar to
the satellite correlation algorithm.

5. Generating Satellite Images from Many We-
bcameras

In the previous section we solve for camera locations by
finding the maximum correlation between variation in cam-

era images and variations in pixels of the satellite image.
This leads us to consider the reverse question; could a col-
lection of widely distributed cameras allow us to predict an
unknown satellite image? In this section we demonstrate
the ability to construct visible satellite images.

We take the supervised approach by using regularized
linear regression to learn a mapping from a set of images
from webcameras to a satellite image. Each training exam-
ple consists of a satellite image S(t) and a set of webcamera
images Ic,t taken at the same time t. We first reduce the di-
mensionality of webcamera images Ic,t separately at each
camera using PCA and use the first k PCA coefficients as
predictors (the results shown use k = 3).

To learn the mapping we construct a matrix of satel-
lite images S ∈ Rp×T , where each column is a satel-
lite image. The camera data is summarized as a matrix
of PCA coefficients V ∈ RT×k, where each row contains
the first k PCA coefficients for all cameras for images cap-
tured at given time. We then solve for set of coefficients
F = SV (V TV + λI)−1 (we use λ = .01). Using F we
can predict an unseen satellite image from a set of camera
PCA coefficients V Tt by multiplying by the coefficient ma-
trix FV Tt .

We evaluated this method using a set of 1700 visible
satellite images from four consecutive months and 42 we-
bcameras in the Maryland, Virginia area (the set shown in
Figure 8). We use 1400 of these satellite images to define
the linear regression model. Figure 9 shows that prediction
of satellite images from web camera images is feasible us-
ing these methods.

6. Discussion
This work was in part inspired by the Weather and Illu-

mination Database (WILD) dataset [15], which captured a
long series of high-resolution images of the same scene over
6 months, and reasoned explicitly about weather conditions
and atmospheric optics to create surface normal and depth
estimates of a complicated urban scene. Our results indi-
cate that the time series of PCA coefficients is strongly cor-
related with weather. This is efficient to compute and works
in cases where the scene in view is too close to be notice-
ably affected by diffusion effects (as in Figure 1, bottom).
This doesn’t allow for reasoning about scene structure, but
does offer a convenient method for camera localization.

We admit that a network of cameras which are localized
with an error 24 miles is not likely to be useful for classi-
cal approaches to computing scene structure. Instead, the
algorithms presented in the previous section are intended
to demonstrate that location information is available with-
out finding corresponding points or tracking corresponding
objects. Furthermore, using the geographic information in-
herent in natural scene changes can be done based on image
statistics alone, without creating explicit algorithms to com-



Figure 9. (top) Satellite images from the Washington D.C. area. (bottom) Predicted satellite image using PCA coefficients of webcameras
(located at black dots) for the corresponding time.

pute cloudiness or sun position. Thus, this offers a scalable
solution to organizing the camera resources that continue
to be added to the web. We believe that similar statisti-
cal representations of image variation will find interesting
correlations at longer timescales (such as variations due to
snowfall and tree foliage) and with other signals (such as
wind velocity maps).
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