
Image Spaces and Video Trajectories: Using Isomap to Explore

Video Sequences

Robert Pless
Department of Computer Science and Engineering,

Washington University in St. Louis,
pless@cse.wustl.edu

Abstract

Dimensionality reduction techniques seek to represent
a set of images as a set of points in a low dimensional
space. Here we explore a video representation that
considers a video as two parts – a space of possible
images and a trajectory through that space. The non-
linear dimensionality reduction technique of Isomap,
gives, for many interesting scenes, a very low dimen-
sional representation of the space of possible images.
Analysis of the shape of the video trajectory through
these image spaces gives new tools for video analy-
sis. Experiments with natural video sequences illus-
trate methods for the very different tasts of classifying
video clips and temporal super-resolution.

1 Introduction

Faster computation and more memory have opened
up new avenues of research in image and video analy-
sis. One method that strays particularly far from the
classical bottom-up or geometric approach to com-
puter vision is “image similarity based image analy-
sis”. This is a family of techniques which considers
the image as a whole as the fundamental atom of anal-
ysis. A collection of related images defines an image
space, and the subject of this paper is an exploration
of the image spaces formed by video sequences.

All m×n pixel images exist in the mn-dimensional
space where each dimension is the intensity at a par-
ticular pixel. However, considering a set of images as
a set of points in this space does not give natural tools
for image understanding or analysis. Dimensionality
reduction algorithms seek to map each image to a
point in a lower dimensional space, as a tool for anal-
ysis or image compression.

This contribution here is to illustrate a tech-

Figure 1: A frame from a short video clip of Charlie
Chaplin in a skit where his hat lifts from his head three
times, and he fixes it once. This paper considers the prob-
lem of creating “video trajectories” — a representation of
changes in a video sequence, based upon the non-linear
dimensionality reduction technique called Isomap.

nique for video representation using the (relatively)
new non-linear dimensionality reduction technique
of Isomap [13]. This representation considers video
as: (1) a collection of unordered images which (via
Isomap) define an image space, and (2) an ordering
of these images which specifies a trajectory through
that image space. Figure 1 gives an illustration of
the goal, to transform a short video clip into a trajec-
tory. The algorithm is essentially a straight forward
extension of Isomap to the domain of time-sequenced
imagery. What is new is: (a) the demonstration that
this gives a useful representation, (b) a description of
the algorithmic choices required to implement this al-
gorithm on different video data sets, and (c) the illus-
tration of two preliminary, but quite different, sample
applications that show the benefits of this approach.

These methods work best when there exists a two
or three dimensional underlying parameterization of

1



Figure 2: Examples of image spaces defined by non-linear dimensionality reduction of large image sets. In
all three cases, the algorithm input is an un-organized set of images. (left) The original isomap algorithm
gives a qualitative organization of images of gestures into axes of wrist rotation and finger extension [13].
(middle) This method can be modified to give quantitative pose-estimates for (object rotation angle and
camera elevation angle) for thousands of images of an object, with a mean error on the order of 3◦ [7]. (right)
The MDS algorithm has also been modified to embed images in cyclic dimensions [6].

the data set. For instance, a video of a (perfectly
tracked and centered) bird flying consistently across
the sky can be parameterized by the phase of the pe-
riodic action (“where are the birds wings are in the
flap-cycle”), and the relative orientation of the bird
and the camera. It may seem that few scenes are de-
fined by so few parameters, but a great deal of video
data is taken in highly limited, stylized, or unchang-
ing environments — many surveillance videos or short
clips of movies (within one scene) fit this model quite
well.

2 Background

A classical dimensionality reduction technique for
a set of images is Principle Component Analysis
(PCA) [5]. For any desired dimension k, PCA rep-
resents each image in the set as a weighted sum of
k basis images, and these basis images are chosen to
minimize the total (sum of the squared intensity) dif-
ference between each image and its reconstruction.
PCA is an ideal dimensionality reduction technique
because there is a natural function mapping an image
to a point in the space (projection onto the basis im-
ages), and a natural function mapping points in the
space to images (weighted sum of the basis images).
Independent Component Analysis (ICA) [4] uses dif-
ferent techniques to find the set of basis images, but
still uses projection and linear combination to map
between images and the low-dimensional points rep-

resentations of images.

However, many natural sets of images are not well
represented by a linear combination of few basis im-
ages. Even image sets that can be indexed by a sin-
gle parameter (many instances of a clock pendulum,
for instance) may require many basis images to re-
construct the images with reasonable accuracy. Fur-
thermore, the simple structure of such an image set
may not be obvious from the set of coefficient weights
which define each image.

In this paper we consider a different set of methods
for dimensionality reduction. These methods do not
rely on linear combinations of basis images and do
not have natural functions which map between im-
ages and points in the abstract representation space.
However, they find low-dimensional structures which
correspond to natural parameterizations of the im-
age set. These dimensionality reduction techniques
first find images which are similar to each other, and
then seek to discover a global structure by solving a
system which combines these similarity constraints.
Two methods of this form were recently proposed,
LLE [8] and Isomap. This work concentrates on
the Isomap approach, which is briefly defined in Sec-
tion 3. Isomap is successful in automatically finding
parameterizations for many image sets, including the
perceptual organization of gesture images, and quan-
titative pose estimates for images of an unknown ob-
ject (see Figure 2). The analysis of the image set after
is has been parameterized using Isomap is simplified

2



because the parameterization often has the same di-
mension as underlying data set.

When an image set arises from a video sequence,
there is additional information available in the order
of the images. One application of video analysis has
been to find patterns in scenes with consistent but
non-periodic motions such as waving grass, streams,
smoke [3, 12]. These approaches can both be charac-
terized as a two step process. First use PCA to define
a low dimensional image representation based upon
several hundred frames of a video sequence. Second,
consider the video as a set of points in that space,
look at the trajectory of the image sequence, and
find methods for extending that trajectory through
time. For some types of dynamic textures, this gives
very natural and believable continuations of a video
sequence, but new video images are often blurry be-
cause they are fundamentally a weighted sum of im-
ages in the original set.

There is related work which uses similarity mea-
sures in the context of video imagery. Embedding a
set of images with MDS into a 2D space and then
using K-means to find a set of exemplar images has
been used as a video summarization technique [11].
Video Textures [10] considers the video as a linear
structure and seeks to find similar images in different
parts of video sequence. Similar images serve as good
looping points to extend video clips indefinitely with-
out a perceptual break. Additionally, the analysis of
periodicity in a video sequence has been used to dis-
tinguish between videos of human walking motions,
running dogs, and vehicular motions [2].

3 Isomap and MDS

In this section we give a brief overview of the mathe-
matics behind Isomap and MDS. A complete descrip-
tion is available in the original articles [13], and longer
tutorials on these methods and MDS in general give
more specific implementation details [1].
Multi-Dimensional Scaling:
Input: D = n× n matrix of all squared pairwise dis-
tances
Output: Point coordinates which best approximate
pairwise distances.
Method: Solve an eigenvalue problem with a ma-
trix easily created from D. This produces the best
k-dimensional point set for any dimension k. This is
“best” is the following sense: let Dk be the distance
matrix defined by the k-dimensional point set com-

puted from MDS. MDS returns a k-dimensional point
set that minimizes the Frobenius norm of D−Dk (i.e.,
of all possible k-D point sets, MDS returns on whose
distance matrix is closest to D, measured by sum of
the squares of the element differences).
Isomap
Input: an n× n matrix pairwise distances with some
(perhaps most) distances unknown.
Output: Point coordinates such that the pairwise
distances are best approximated.
Method: Define a graph whose vertices are the set
of points, and whose edges are the known pairwise
distances. Compute all-pairs shortest path distances
in this graph, which defines a distance between every
pair of nodes. Use MDS to find point coordinates
which satisfy these (now complete) distance con-
straints.

4 Image Similarity Based
Video Analysis

A video is an ordered set of images. If a set of im-
ages has an associated image space, the video can be
represented as a trajectory through that space. The
shape of the image space and the form of the tra-
jectory provide new tools for the automatic analysis
of video imagery. The following algorithm generates
a video trajectory, and is graphically illustrated in
Figure 3. Implicit in the algorithm are a collection
of choices. These choices are required to specialize
the algorithm for a particular application. These are
marked with a label [*], and are discussed after the
algorithm.

1. Define a distance measure between pairs of im-
ages, f : I × I −→ R. [1]

2. Define a threshold function to determine which
image distances to ignore. Let θ(i, j) = 0 if the
image distance between image i and image j is
to be ignored, and 1 otherwise. [2]

3. Define a sparse matrix M whose i,j entry is
f(imagei, imagej) if θ(i, j) = 1 and undefined
otherwise.

4. Embed the sparse distance matrix M using
Isomap. Choose the appropriate dimension for
the embedding. [3]

3



Figure 3: An illustrated outline of the procedure for
creating a video trajectory. (top) Consider the in-
put video as a set of images. (middle) compute the
distance between each pair of images, and use MDS
to embed the images as a point set in a low dimen-
sional space. (bottom) Draw a spline curve connect-
ing the points in the order the corresponding images
appeared in the original video.

5. Draw a spline curve connecting the points in the
order the images were in the original video.

6. Use the video trajectory representation for spe-
cific applications. [4]

This general framework is used for the construction
of the video trajectories for all the examples shown
in Section 4. Steps one through four define the im-
age space intrinsic to the set of images in the video.
Step five uses the ordering of the images to define the
path that the video sequence takes through the image
space.

To specialize this framework for particular applica-
tions, it is necessary to specify the choices of distance
measure, threshold, and embedded dimension. Prop-
erties of each of these choices are discussed in turn.

0. Pre-processing. Before a distance measure
between images is computed, it is often useful to
pre-process the images. Often, application specific
pre-processing can greatly reduce the underlying di-
mensionality of the input set. In the “bird” experi-
ments discussed later, the initial images are of a bird
against a constant background. The center of mass
of the non-background pixels was calculated and the
image was cropped to a constant sized box around
this point. Then, the image differences are calcu-
lated between between images of a cropped and cen-
tered bird. Without this pre-processing, the param-
eterization of the bird scene requires two additional
parameters. This would force the algorithm to em-
bed the points in a higher dimension and require far
more input data. For the Fountain clip used in Fig-
ure 4(right) and the Chaplin clip in Figure 5, no pre-
processing was necessary.

1. Distance Measure. The first choice that
needs to be made is the image distance measure. This
function is initially applied to every pair of images
and returns a distance between these images Surpris-
ingly, the exact distance measure used often affects
the final result very little. This is because in the next
stage we disregard all but the smallest distance mea-
sures. The power of a method like Isomap derives
in a large part from the (graph) structure of which
images are similar rather than the actual similarity
measures themselves. Image distance measures that
we have used successfully include normalized cross-
correlation, correlation of edge-maps, naive distance
measures such as sum of squared pixel differences, so-
phisticated general distance measures such as “Earth-
Movers Distance” [9], and distance measures designed
for specific applications.

4



Figure 4: Video Trajectories have characteristic forms for different types of video imagery. (Left) The video
trajectory of a sequence viewing only the pendulum of a clock. (Middle) A camera panning to view a bird
in flight. (Right) A fountain sequence used in the dynamic textures work [12]

2. Threshold. The distance measure is a function
defined on all pairs of images. Especially for images,
distance measures are only reliable when the images
are very similar — the reason that Isomap is a good
procedure for embedding images is that it only needs
a sparse set of distance measures. There are several
option in how to choose which image distances to
keep. One is for each image, to keep the distances
to the k-closest neighbors1. Another options is to
specify a threshold and choose to use all distances
lower than that threshold.

3. Embedding Dimension. The Isomap embed-
ding proceeds by first completing the distance matrix
M and then using MDS to embed this matrix and find
points. For an images set with n images, the MDS
algorithm can embed the images into an arbitrary di-
mension k, for 1 ≤ k ≤ n. For each dimension there
is a residual error — this error is the difference be-
tween the distances specified in the sparse distance
matrix and the distances between those point pairs
after they have been embedded.

4. Applications. Once the images have been em-
bedded in a low dimensional space, the order of the
images defines a path through this space. Together,
the image space and the trajectory define useful infor-
mation about the sequence, although how this trajec-
tory is interpretted is application dependent. In the
next section, we illustrate some preliminary results in
this direction.

1It is possible for image i to be one of the k-closest neighbors
to image j, but image j not to be one of the k-closest neighbors
of image i. To keep our sparse matrix symmetric, we include
both.

4.1 Implementation and Results

For a video sequence with 200 images, a matlab im-
plementation for this complete procedure takes ap-
proximately 4 minutes to execute on a 800 MHz lap-
top. Most of this time is spent in the initial compu-
tation of all pairs of image distances. The form of the
resulting trajectory depends upon the input video se-
quence, and there are a number of patterns that often
occur in the trajectory. Examples of actual trajecto-
ries created from a variety of real video sequences
are illustrated in Figure 4. The “bird” videos used a
pre-processing step as described in the previous sec-
tion, and all videos used sum-of-squared differences
of pixel intensity as the distance measure (always be-
tween images of identical size). The distances cho-
sen as acceptable and included in the sparse distance
matrix as an input to Isomap were the 10 smallest
distance for each point. The computed trajectories
fall into five natural categories:

Cyclic Completely repetitive video sequences have
trajectories which are embedded as ellipses in a two-
dimensional space. Images which are separated arbi-
trarily in time may be identical because the scene in
view is changing in a periodic manner.

Helical A periodic action being viewed by a mov-
ing camera is characterized by similarity between lo-
cal images separated by the period of the action, but
a drift over time in appearance of the object even in
the same phase. This leads to a helical structure in
the trajectory. Both the helical and the cyclic trajec-
tories can be detected based upon a Fourier analysis
of the distance matrix (for example, see [2]).

Knotted Dynamic textures (fountains, smoke,
flames, and natural motions of trees in the wind) are

5



characterized by a non-periodic sampling from a lim-
ited image space.

Linear Videos which are smoothly changing but
not repetitive (such as a slow pan across a landscape)
tend to have a linear structure because frames from
different parts of the video are rarely judged to be
similar.

Combinations Video sequences may have smooth
transformations between pieces that fit cleanly into
the one of the above categories.

4.2 Sample Application: Video Seg-
mentation

The video trajectory is a low dimension description
of the video sequence. For many sequences, this form
of this trajectory highlights important transitions in
the scene or deviations from the normal scene ap-
pearance. Figure 5 shows video trajectories and their
interpretation for two different video sequences.

The first clip is of an isolated bird flying, then glid-
ing. The transition between these different dynamic
activities is clearly visible in the trajectory. This tra-
jectory can be broken into periodic regions (shown in
the thinner, red line) and non-periodic regions (shown
in the yellow, thicker line). The transition point ex-
actly segments the clip into when the bird is flying
and when the bird is gliding.

The second clip is a more complicated scene, part
of a clip with Charlie Chaplin in a skit where his hat
comes up several times and he moves his arm to ad-
just it once. This trajectory was created with exactly
the same code as the trajectories created of the bird
videos. The trajectory has four major features that
exactly correspond to the four events in the video
clip, the hat coming up (three times), and Chaplin
raising his left arm to adjust this hat (once). This
video clip and its trajectory is included in the video
supplement to this submission.

4.3 Sample Application: Temporal
Super-Resolution

For video sequences where similar images occur at dif-
ferent times (the cyclic, helical, or knotted cases listed
above), the video trajectory can be used to intelli-
gently interpolate between consecutive images. The
trajectory is represented by a spline curve fit through
the points corresponding to the images in the video.
In order to create a higher frame rate video, it is nec-
essary to create images between subsequent images

Figure 5: Video Interpretation. (Top) A clip of an
isolated bird flying, then gliding. The transition be-
tween these different dynamic activities is clearly vis-
ible in the trajectory. (Bottom) The Charlie Chaplin
video discussed in the first figure. The three parts of
the clip where his has comes up are clearly defines,
as is the long period when he uses his left arm to
readjust his hat. Please see video included with this
submission. The segmentation of the top trajectory
is automatically determined based on a threshold of
the curvature of the spline curve. The labelling of
points on the lower trajectory was provided by the
author.

6



Figure 6: Image resampling: An expanded view of
the trajectory shown in Figure 3. Shown are the
points corresponding to each original frame, with
two consecutive frames labelled, and the intermediate
points along the spline. A smooth transition between
consecutive images is made by choosing the images
whose embedded points are closest to the intermedi-
ate points along the spline.

in the original video.
Consecutive frames are connected by a continuous

path through the image space. Intermediate points
on this path correspond to images that smoothly in-
terpolate between frames. A weakness of Isomap (rel-
ative to PCA, for instance) is that there is no function
which maps points in image space to images. Instead
it is necessary to search to find the image whose point
in image space is closest to the intermediate point.
For this to be effective, it requires that the original
video sequence provide a relatively dense sampling
of the image space. Figure 6 shows an example of
two consecutive frames from a video trajectory, in-
termediate points on that trajectory, and the frames
from elsewhere in the video which are closest to the
intermediate frames.

An example of the frames chosen between two
frames from the original sequence of a bird flying
is shown in Figure 7. These frames are contrasted
against an alternative method of interpolating be-
tween images which consists of a weighted average of
the original frames. The video files included with this
submission give several examples of long sequences of
video that are smoothly interpreted with 5, 10, and
20 images inserted between each original image.

This re-sampling algorithm may duplicate images
— applying the interpolation algorithm to a linear
trajectory (a non-repetitive video) simply uses the
original images multiple times, if that original frame
is the closest to the interpolating points. A hybrid
algorithm which uses image re-sampling when possi-
ble and image morphing otherwise may give better
performance in general.

5 Conclusion and Future work

A video defines an image space and the trajectory
through that image space. This trajectory depends
on the pattern of similarity between images, and anal-
ysis of this trajectory is new tool for video manipu-
lation. This tool applies to natural imagery of non-
rigid motions, does not require a prior model of ob-
ject shape, and takes advantage of the increased com-
putational power and memory resources available in
modern computers.

Future work should concentrate on two fronts.
First, the algorithm begins by computing a similarity
measure between every pair of images. The Isomap
procedure uses only the image similarity measure-
ments which are most similar, so it is not necessary to
compute all pairs of image distances. Second, there
are significant differences between the dimensionality
reduction techniques of Isomap and LLE, these differ-
ences may affect their applicability to video analysis
tasks.

Included Video. Included with this paper is a
zip file containing two videos. The first is a long
sequence of the temporal-super-resolution algorithm
applied to a flying bird, adding 19 images between
each original image. This right of this side-by-side
video shows an alternative method of adding frames
by smoothing blurring between frames of the original
sequence. The second file show the Charlie Chaplin
video side by side with the video trajectory, with a
marker that shows the position of the current frame
in the trajectory.

References

[1] Ingwer Borg and Patrick Groenen. Modern Mul-
tidimensional Scaling: Theory and Applications.
Springer-Verlag, 1997.

[2] R. Cutler and L. Davis. Robust real-time peri-
odic motion detection, analysis and applications.

7



Figure 7: Temporal Super-Resolution: From a sequence of a bird flying, the following shows 19 images
inserted between two frames of the original sequence using the process described in Figure 6 (some original
images are inserted multiple times). This is contrasted with a smooth blurring between the original images
(the bottom layer).

IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, pages 781–796, August 2000.

[3] Andrew Fitzgibbon. Stochastic rigidity: Image
registration for nowhere-static scenes. In Proc.
International Conference on Computer Vision,
pages 662–670, 2001.

[4] A Hyvrinen, J Karhunen, and E Oja. Indepen-
dent Component Analysis. John Wiley and Sons,
2001.

[5] I T Jolliffe. Principal Component Analysis.
Springer-Verlag, 1986.

[6] Robert Pless and Ian Simon. Embedding images
in non-flat spaces. In Conference on Imaging
Science Systems and Technology, pages 182–188,
2002.

[7] Robert Pless and Ian Simon. Using thousands
of images of an object. In CVPRIP, 2002.

[8] Sam T Roweis and Lawrence K Saul. Nonlinear
dimensionality reduction by locally linear em-
bedding. Science, 2000.

[9] Yossi Rubner, Carlo Tomasi, and Leonidas J.
Guibas. A metric for distributions with applica-
tions to image databases. In Proc. International
Conference on Computer Vision, pages 59–66,
1998.

[10] Arno Schdl, Richard Szeliski, David Salesin, and
Irfan Essa. Video textures. In Proceedings of
SIGGRAPH, pages 489–498, 2000.

[11] Haim Schweitzer. Computing content-plots for
video. In Proc. European Conference on Com-
puter Vision, pages 491–501, 2002.

[12] S Soatto, G Doretto, and Y N Wu. Dynamic
textures. In ICCV, pages 439–446, 1998.

[13] Joshua B Tenenbaum, Vin de Silva, and John C
Langford. A global geometric framework for
nonlinear dimensionality reduction. Science,
290(5500):2319–2323, 2000.

8


