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Abstract

Satellite imagery of cloud cover is extremely important
for understanding and predicting weather. We demonstrate
how this imagery can be constructed “from the ground up”
without requiring expensive geo-stationary satellites. This
is accomplished through a novel approach to approximate
continental-scale cloud maps using only ground-level im-
agery from publicly-available webcams. We collected a
year’s worth of satellite data and simultaneously-captured,
geo-located outdoor webcam images from 4388 sparsely
distributed cameras across the continental USA. The satel-
lite data is used to train a hierarchical dynamic texture
model of cloud motion alongside 4388 regression models
(one for each camera) to relate ground-level webcam data
to the satellite data at the camera’s location. This novel
application of large-scale computer vision to meteorology
and remote sensing is enabled by a smoothed, hierarchi-
cally regularized dynamic texture model whose system dy-
namics are driven to remain consistent with measurements
from the geo-located webcams. We show that our hierarchi-
cal model is better able to incorporate sparse webcam mea-
surements resulting in more accurate cloud maps in com-
parison to a standard dynamic textures implementation. Fi-
nally, we demonstrate that our model can be successfully
applied to other natural image sequences from the DynTex
database, suggesting a broader applicability of our method.

1. Introduction
Large-scale maps of cloud cover are an integral compo-

nent in weather prediction and analysis. While they are usu-
ally obtained by a small number of expensive government
satellites, recent work [16] has demonstrated the potential
for leveraging geo-located outdoor webcams as an alterna-
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Figure 1: We construct large-scale maps of cloud cover by model-
ing cloud motion through a linear dynamical system that is Kalman
filtered to integrate noisy, sparse measurements acquired from re-
gression models on webcam imagery. Our model is trained on one
year of data from 4388 webcams alongside concurrent satellite im-
agery. Even with significant measurement noise and uncertainty,
our model produces reasonable alternatives to satellite imagery. To
decouple the challenge of modeling cloud dynamics from acquir-
ing cloudiness measurements from webcams, we also synthesize
images using ideal measurements sampled from ground truth data.

tive source of this valuable information. Thus, instead of
obtaining a single view of clouds from above, a vast sys-
tem of ground-based local webcam measurements can be
coordinated to produce a similar global representation, as
shown in Figure 1. While [16] used only spatial interpo-
lation methods to combine local measurements of cloudi-
ness, we demonstrate that the synthesis performance can
be significantly improved by incorporating temporal con-
straints by modeling the regular dynamics of cloud motion.
To demonstrate this, we train our model on one year of data
captured from 4388 webcams every half hour and test on
six months of extrapolated data. To the best of the authors’
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knowledge, this is the largest-scale application of webcam
imagery both in terms of temporal extent and number of
data sources.

The framework of dynamic textures is a family of ap-
proaches commonly used to model image sequences of dy-
namic, real-world phenomena such as flames, smoke, and
waves. However, like clouds, many sequences contain more
complicated variations and are unable to be accurately rep-
resented using ordinary dynamic textures. In this paper, we
introduce an extension that is motivated by the task of mod-
eling complicated cloud motion. We show that our formu-
lation improves representational power while allowing for
larger models with many variables. In addition, our formu-
lation is general and can be applied to a variety of other
difficult sequences with improved modeling performance.

Ordinary dynamic textures rely on a linear basis of ap-
pearance and are well-suited to modeling changes that are
correlated across the extent of an image. However, many
scenes exhibit variations that are only correlated within
smaller spatial neighborhoods. When represented by an
appearance basis across the entire scene, the interactions
within the dynamical model are complex, leading to model
instability, poor predictive performance, and dramatically
larger training data requirements. This is especially promi-
nent in the extensive variation present in large-scale cloud
distributions. To address this issue, we introduce a hierar-
chical model that captures the dynamics of appearance at
different spatial scales. The resulting dynamics are regu-
larized to be consistent with large-scale variations, but in-
dependent of the small-scale variations in non-overlapping
regions. Intuitively, this better models multi-scale correla-
tions including weather fronts that span hundreds of miles
along with smaller, localized clouds. Defining an overall
system requires a large number of variables, but with less in-
teraction between variables and fewer free parameters, over-
fitting and training data requirements are reduced.

The dynamics of this sparse hierarchical structure can
still be expressed as a linear transformation between time
steps. Thus, it can be used as the state transition matrix of
a Kalman filter to allow partial, noisy measurements of a
true state to drive the image synthesis process. In the case
of satellite imagery, these can be attained from regression
on webcam imagery as described in [16]. Furthermore, this
framework allows us to effectively enforce consistency be-
tween neighboring pixels at region boundaries where ap-
pearances should be correlated (because they are neighbors)
but would otherwise be modeled independently by the hier-
archical model. Across these boundaries, we show how to
enforce a priori smoothness constraints on pixels in non-
overlapping regions as implicit measurements that can also
be included in the Kalman filter. Effectively, this loosens
the independence assumption and allows for limited inter-
action between neighboring regions.

Our contributions within this paper are: (1) the first
derivation of a hierarchical dynamic texture model, (2) a
description of how to integrate that model within a Kalman
filter and allow for explicit sparse measurements to drive
the texture synthesis process along with implicit constraints
to address smoothness at the boundaries of the hierarchy,
(3) an application to continental scale satellite cloud map-
ping that shows the potential benefits of driving a large scale
dynamic texture model with sparse measurements, and (4)
extensive testing across a large collection of DynTex [17]
sequences demonstrating qualitative and quantitative im-
provements in general texture synthesis. This suggests the
generality of our formulation and demonstrates its potential
for use in other applications of dynamic textures.

2. Background and Previous Work
Dynamic textures provide a rich stochastic model of im-

age sequence appearance and dynamics. The classic dy-
namic texture model [6, 8, 20] has two parts. The first cre-
ates a low-dimensional representational model for the im-
age appearance, often by computing the PCA decomposi-
tion of the set of images. The second creates a model of the
dynamics by solving for an auto-regressive model predict-
ing the coefficients of one image from the coefficients of the
previous frames. Most recent uses of dynamic textures have
had the goal of segmenting scenes into regions [3, 7, 23]
or layers with specific dynamics patterns [4], or classifying
videos based on the dynamics of the scene [2, 18, 19, 24, 9].

Approaches to improving the synthesis of new images
have addressed both the limitations of a linear appearance
basis and the limitations of a first order dynamics model.
A manifold learning approach–followed by learning the dy-
namics of manifold coordinates–was used to characterize
the space of appearance with more fidelity than linear mod-
els allow [13]. A second approach used a higher-order SVD
(tensor decomposition) of the video to capture both spatial
and temporal dynamics [5]. However, these approaches are
more complicated and do not scale well to large datasets.

The image synthesis process of dynamic textures can be
naturally driven through Kalman filtering. This has been
used in the context of surveillance [25], where the entire
(possibly corrupted or occluded) image is used as a mea-
surement. Similarly, our approach uses a sparse set of noisy
samples from an image in addition to the first use of implicit
a priori smoothness constraints within a Kalman filter.

Computer vision techniques have been employed suc-
cessfully for weather classification. For example, [14] ad-
dressed a two-class weather classification problem for ar-
bitrary, non-stationary imagery using a manually-labeled
training dataset. The application of capturing continental-
scale cloud maps based on widely-distributed ground mea-
surements was first considered in [11] by learning a lin-
ear regression estimator for the cloud cover map from PCA



coefficients at each ground camera. Better approaches to
learning the mapping between ground level imagery and lo-
cal cloud estimates were presented in [16]. However, this
paper is the first attempt to exploit the consistent patterns of
how clouds propagate over time.

3. Dynamic Textures
The higher-order dynamic texture model described in

[10] uses a linear dynamical system to predict future im-
ages. Each frame of the training sequence is mean-
subtracted and projected onto a lower dimensional basis.
Future coefficients are computed as a linear transforma-
tion of the coefficients of m previous frames. This pro-
cess is summarized in Equation 1 where y(t) are the images
formed as column vectors, y is the mean image, and C is
the reduced dimensionality basis. The state of the system is
represented by the coefficients used to reconstruct an image,
x(t), and Aj are the state transition matrices. The state pre-
diction x(t) has a stochastic error w, assumed to be drawn
from a Gaussian distribution with covariance Q:

x(t) =

m∑
j=1

Ajx(t− j) + w, w ∼ N (0,Q) (1)

y(t) ≈ ȳ + Cx(t).

3.1. Hierarchical Extension

For many scenes, the challenge to creating high-fidelity
images y(t) is in the necessity to have many components
in the linear decomposition, leading to a large coefficient
vector x(t). This increases the size of the Aj matrices
characterizing system dynamics, and therefore increases the
amount of necessary training data. Solving for a dynamic
texture model explicitly within a multi-resolution structure
allows for the dynamics and appearance model to share low-
frequency components across larger areas but retain inde-
pendent local models for the higher-frequency components.

To accomplish this, our generic formulation defines r re-
gions in the image. We introduce a separate linear dynam-
ical system for each of r arbitrarily partitioned regions so
that each one (indexed by k) has a linear basis Ck for re-
constructing its appearance, and its own independent state
transition matrices Ak,l. These state transition matrices are
constructed so that the coefficients of region k can be pre-
dicted from the history of the coefficients of some subset Rk

of the regions (which could be, for example, the region it-
self and ancestor regions, as explained in detail later). Each
region also has an uncertainty in its state transitions, repre-
sented by the covariance matrix Qk.

The overall reconstructed image can be formed by tak-
ing the sum of each region’s reconstruction from the co-
efficients xk(t). Equation 2 gives the model for predicting
xk(t), the coefficients of region k at time t, as a linear trans-
formation of the coefficients from the previous m frames of

image regions in Rk. Images are reconstructed as the sum
of the average image and the reconstructions of each region.
This model reduces to that of ordinary dynamic textures if
each region covers the entire image and each subset Rk con-
tains all of the r regions.

xk(t) =
∑
l∈Rk

m∑
j=1

Ak,l
j xl(t− j) + wk, wk ∼ N (0,Qk)

y(t) ≈ ȳ +

r∑
k=1

Ckxk(t) (2)

While the optimal region interactions and support are
likely scene-dependent, in this work we consider a general
quad-tree hierarchical structure. We find this to have suf-
ficient expressibility to represent the appearance of many
dynamic textures with improved performance, especially
when combined with the smoothness constraints described
in Section 4.1. This model restricts the complexity of the
interactions between coefficients and can be interpreted as
a regularization on the system parameters that allows for
independent dynamics and makes it possible to solve with
fewer training data.

Our quad-tree hierarchy starts at the top level with a sin-
gle region covering the entire image. On the next level,
we divide that region into quadrants and repeat this process
recursively until the desired number of layers is reached.
Each region has its own linear basis Ck that can be used
to reconstruct the residual error left by its parent region, so
the resulting image decomposition has many total variables.
However, we model the dynamics of a region k as depend-
ing only on the coefficients of itself and its ancestors. Thus,
in our generic formulation, we define Rk to contain the re-
gions that are supersets of region k, which enforces that the
dynamics of a region be defined by its own history and the
history of its parent regions in the quad-tree hierarchy.

This design choice embodies the observation that lower-
frequency image motion is often correlated over large im-
age regions while high-frequency motion is correlated over
small spatial scales. The spatial smoothness constraints in
Section 4.1 address a side effect of this approach which can
result in inconsistencies across region boundaries.

3.2. System Identification

Given sufficient training data, it is possible to solve for
the matrices Ak,l

j , Qk, and Ck. While optimal solutions
exist [22], they are infeasible for systems with a large num-
ber of variables and closed-form suboptimal solutions have
been found to be very effective [20].

We follow the lead of the original dynamic textures
model described in [20] and use a Principal Component
Analysis (PCA) as the appearance basis in image regions. In
our quad-tree decomposition, we borrow from an approach
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Figure 2: An example of full, concatenated hierarchical dynamic textures system parameters. The sequence (a) demonstrates motion
that is largely independent on the left and right side of the waterfall. The first level of the appearance decomposition (b) accounts for
global pixel correlations, while the second level (c) decomposes each image quadrant separately. The state transition matrix (d) and the
uncertainty covariance (e) have block-structured sparsity that enforces the independence of these higher level regions.

to hierarchical, hybrid PCA, which has been used in im-
age denoising [15]. In its original form, this considers all
patches in an image and computes a low-dimensional PCA
reconstruction followed by computation of the residuals in
each patch. Then, in each image quadrant, a PCA basis is
constructed on the residuals of the patches in that quadrant.
This process is repeated over several layers. For image de-
noising, this structure captures the fact that image textures
(e.g. hair) are often localized to one part of the image, and
a PCA patch basis can be constructed to more efficiently
account for the residual error in regions that have consis-
tent texture. In our context, these localized regions allow
for the decoupling of distant, unrelated motions. Similarly,
we create an appearance basis by first computing PCA over
the entire image and calculating the reconstruction residu-
als. We then divide the image into quadrants and construct a
PCA basis of the residuals in these smaller regions, repeat-
ing this process over several layers. A demonstration of this
is shown in Figure 2(b-c).

Given this fixed basis, the remaining parameters can be
learned using ordinary autoregressive methods. For first-
order models that depend only on the coefficients from the
previous time step, simple least-squares works well [20].
For higher-order models, insufficient training data and noise
can cause the resulting dynamical system to be unstable.
While many solutions have been proposed to resolve this
issue [1], we had most success with the algorithm in [21],
which estimates higher-order statistics recursively instead
of computing them directly from training data.

Equation 2 can be reformulated by concatenating the co-
efficients for each region xk(t) into the set of all coefficients
x(t), combining the various prediction matrices Ak,l

j to cre-
ate a single unified system of the form:

x(t) = Ax(t− 1) + w, w ∼ N (0,Q) (3)
y(t) ≈ Cx(t)

Since this is exactly the same form as ordinary dynamic tex-
tures, our approach can be interpreted as a method for en-
forcing predefined sparsity constraints on the parameters, as

shown in Figure 2(d-e), which results in a system with im-
proved prediction performance in comparison to ordinary
dynamic textures with the same number of coefficients.

4. Integrating Image Measurements
Image synthesis using dynamic textures is often driven

by random noise, but there are applications where some lim-
ited image information is available. For example, it may
be possible to acquire a sparse set of pixels of the desired
output image. In the case of constructing large-scale cloud
maps, this information is obtained from localized ground-
based webcam measurements. We would thus like to in-
corporate these measurements within the synthesis process.
Since dynamic textures–including our hierarchical version–
are expressed in terms of a linear state update and a linear
mapping between the state and the image, a Kalman filter
provides a natural means to do so.

Linear dynamical systems, as in Equation 3, can be opti-
mally filtered when observations of the true state are avail-
able. Given measurements (possibly corrupted by Gaussian
noise), state update models, and appropriate estimates of
the noise distributions, the Kalman Filter gives this optimal
fusion of measurements with model dynamics[12].

In standard terminology, x(t) is the state vector at time
t, A is the state transition model that predicts the state vec-
tor from its previous value, w is the process noise, z(t) is
a vector of measurements at time t, and H is the linear ob-
servation model that maps x(t) to z(t). The measurement
noise v is assumed to be normally distributed with a covari-
ance R estimated from training data. The measurements
then can be expressed as:

z(t) = Hx(t) + v, v ∼ N (0,R)

During the prediction step, the Kalman filter estimates the
a priori state prediction and updates the uncertainty accord-
ingly, as shown in Equation 4 below.

x̂(t) = Ax(t− 1), P̂t = APt−1Aᵀ + Q (4)



The optimal Kalman gain Kt is then used in the update step
to compute the a posteriori estimates with respect to the
observation z(t), as shown in Equation 5.

Kt = P̂tHᵀ
(

HP̂tHᵀ + R
)−1

, Pt = (I−KtH) P̂t

x(t) = x̂(t) + Kt (z(t)−Hx̂(t)) (5)

Since measurements are linear transformations of the state
vector, they can be expressed directly in image space as lin-
ear combinations of pixel values by first projecting the state
coefficients onto the basis C. Thus, the measurement obser-
vation model can be written as Hm = SmC, where C is the
basis and each image measurement in z(t) corresponds to a
row of the measurement pixel selection matrix Sm, which
contains the weights of the pixel values that make up the
measurement. For example, if a measurement is sampled
from a single pixel in the image, the corresponding row in
S contains a value of one at the sample location and zeros
elsewhere, selecting just the image pixel at the desired loca-
tion. However, since a measurement can be constructed as a
linear combination of any number of pixels, more complex
measurements can also be represented.

4.1. Imposing Image Constraints

The hierarchical dynamic texture model has no explicit
way of enforcing smoothness across boundaries between in-
dependent regions. However, because image measurements
can be any linear combination of pixel values, they can be
used to express priors on the expected appearance of the
synthesized images. To constrain two neighboring pixels to
be equal, the row in a constraint pixel selection matrix Sc

will contain a value of one at the the first sample location
and a value of negative one at the second sample location
with zeros elsewhere. Thus, we can concatenate one (or
many) “measurements” in z(t) that are fixed to be zero for
a set of constraints Hc = ScC defined as the difference of
neighboring pixels across region boundaries, where the sum
of each row in Sc is constrained to be zero.

5. Experimental Results

In this section, we describe our experiments in the tasks
of cloud map synthesis from webcam imagery and general
dynamic texture synthesis. We use RMS pixel error as a
comparison metric for all of our experiments. While this
is generally not appropriate for evaluating qualitative im-
age synthesis, we emphasize that our primary goal is not
to produce visually similar images (like traditional dynamic
textures) but to estimate physically-meaningful quantities
(e.g. IR reflectance, which is related to cloud elevation and
thickness) arranged on a grid.

5.1. Cloud Map Synthesis

We evaluate the applicability of hierarchical dynamic
textures in the real-world application of constructing large-
scale maps of cloud cover from sparse measurements ac-
quired from distributed, ground-based webcams. Specifi-
cally, we train regression models on one year of imagery
from 4388 webcams across the United States to predict
scalar measurements of local cloudiness. We adopt the ap-
proach of [16] and first decompose the imagery using partial
least squares, retaining the top 20 components that best pre-
dict cloudiness sampled from historical satellite imagery.
We then train random forest regression models using this
data with 200 trees and all 20 features. Since many of
the webcams were concentrated close together in highly-
populated areas, we include only the measurement with the
lowest prediction error variance (estimated on validation
data) in a radius of 10 pixels in the satellite image, or ap-
proximately 100 miles. In addition, we train separate mod-
els for both day and night images, thus taking advantage
of cameras in which clouds are visible at night due to city
lights, moonlight, etc.

A first-order hierarchical dynamic texture model, as de-
scribed in the previous sections, was trained on 3000 satel-
lite images using 4 levels with 5 principal components per
region for a total of 425 variables. In addition, we included
300 Gaussian filtered consistency constraints uniformly dis-
tributed across region boundaries with variances estimated
from training data. Figure 3 shows the average numerical
prediction results of a model trained on 6 months of data.
Despite the large amount of noise in the cloudiness pre-
dictions, our model performs better than ordinary dynamic
textures and natural neighbor spatial interpolation, which
showed the best performance in a thorough comparison of
cloud map interpolation methods [16]. In addition, by con-
sidering ideal measurements sampled directly from ground
truth satellite imagery, we show that our model has sig-
nificant room for improvement if more accurate regression
could be available. Finally, Figure 6 shows example syn-
thesized cloud maps. (Videos are also included in the sup-
plementary material to accentuate the temporal consistency
gained by considering cloud dynamics.) While the output
of the ordinary dynamic textures model appears sharper and
more perceptually similar to the ground truth in some cases,
this hallucinated high-frequency content is simply overfit-
ting due to the measurement sparsity and the large spatial
extent of the output, in which a pixels width is on the or-
der of 10km. This is verified quantitatively in Figure 3
which clearly shows improved prediction performance of
our model.

5.2. General Experiments

We also quantitatively and qualitatively compare the per-
formance of hierarchical and ordinary dynamic textures on
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Figure 4: The reconstruction and single-step prediction error for
both training (a) and testing (b) data in response to increasing the
number of variables of ordinary and three-level hierarchical dy-
namic textures. The systems were trained on a sequence of 3000
satellite images and example frames are shown on the right. The
ordinary dynamic texture model with the same number of total
coefficients performs better on training data while the proposed
model generalizes significantly better to testing data.

a variety of sequences from the DynTex database [17]. Fig-
ure 4 demonstrates the improved generalizability of the hi-
erarchical approach (red lines) in comparison to ordinary
dynamic textures (blue lines), which is based on an ap-
pearance model built from PCA over the entire spatial ex-
tent of the image. For a given set of coefficients, PCA is
guaranteed to optimally reconstruct the training data, which
leads to better reconstruction and prediction performance on
that data simply because the reconstructions are better (Fig-
ure 4a). On the other hand, the hierarchical model gives
improved performance on testing data with the same num-
ber of total coefficients indicating reduced overfitting (Fig-
ure 4b). This likely indicates that our model better gen-
eralizes to novel data during testing because it is able to
consider smaller regions independently.

Figure 7 shows a similar comparison across 24 different
sequences from the DynTex database. These sequences
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Figure 5: A comparison of Kalman filtering performance us-
ing both ordinary (a) and hierarchical (b) dynamic textures while
varying the total number of variables and the number of observed
sparse pixel measurements. While ordinary dynamic textures re-
sult in better performance with fewer coefficients, a hierarchical
model can more effectively integrate many measurements for more
accurate reconstructions of localized details, as shown by the de-
creased error in models with more variables.

were all tested with a 500 image training sequence and a
hierarchical model consisting of 3 layers with 10 compo-
nents per region for a total of 210 coefficients, which we
compare to ordinary Dynamic Textures using 210 basis im-
ages computed through PCA. We plot the difference in the
reconstruction error, comparing the hierarchical model to
the ordinary Dynamic Textures model. While our approach
results in greater training reconstruction and prediction er-
rors, there is almost always improvement in reconstructing
and predicting testing data (which begin 20 frames after the
end of the training data) indicating better generalizeability.

The hierarchical model also allows for more accurate re-
constructions when sparse measurements are available. Fig-
ure 5 demonstrates this by considering a four-level hierar-
chical model in comparison to ordinary dynamic textures
with the same number of variables. Both were trained on
582 frames at the beginning of the sequences and evaluated
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Figure 6: Synthesis results (a-g) for example satellite imagery. (Full video sequences are found in the supplementary material.) Rows 1-3:
Frames synthesized from noisy webcam measurements using nearest neighbor interpolation, ordinary dynamic textures, and hierarchical
dynamic textures with edge consistency constraints respectively. (All frames were taken sufficiently far, i.e. over 50 frames, from initial-
ization.) Rows 4-6: Frames synthesized from ideal measurements sampled from the ground truth using the same methodology. Note that
our proposed approach (Rows 3,6) results in images that are less noisy and more robust to measurement error. Row 1: The ground truth
satellite image with webcam measurement locations shown as red dots.

on a test set of 282 frames beginning 20 frames after the end
of the training data. The hierarchical model is better able to
accommodate many variables resulting in reduced error.

6. Conclusions
We demonstrated that available data can give insight for

tailoring existing methods (e.g. dynamic textures) to new
applications (e.g. meteorology.) Specifically, for the task of
constructing large-scale maps of cloud cover from ground-
based webcam imagery, the multi-scale behavior of clouds
inspired our hierarchical model and the public availability
of geolocated webcams provided a means to drive its dy-

namics using sparse measurements within a Kalman filter.
We believe this fusion of seemingly disparate data sources
will yield even better results as online image archives be-
come even more ubiquitous.

In comparison to previous approaches, our method was
able to train more representative dynamic models using a
novel representation that decoupled distant, independent re-
gions of cloud cover while enforcing consistency between
them. In addition to providing improved interpolation per-
formance of cloudiness measurements, we demonstrated
potential for our model to be applied to other dynamic tex-
ture applications due to its better generalizability.



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
−8

−6

−4

−2

0

2

4

Improvement Over Ordinary Dynamic Textures

Video Sequence

R
e

la
ti
v
e

 A
v
e

ra
g

e
 R

M
S

 P
ix

e
l 
E

rr
o

r

 

 
Training Reconstruction

Training Prediction

Testing Reconstruction

Testing Prediction

Sequence 1 Sequence 2 Sequence 3 Sequence 4 Sequence 5 Sequence 6 Sequence 7 Sequence 8 Sequence 9 Sequence 10 Sequence 11 Sequence 12

Sequence 13 Sequence 14 Sequence 15 Sequence 16 Sequence 17 Sequence 18 Sequence 19 Sequence 20 Sequence 21 Sequence 22 Sequence 23 Sequence 24

Figure 7: Relative performance for 24 sequences from DynTex. The y-axis shows difference of reconstruction error of proposed hierar-
chical model relative to ordinary dynamic textures, where positive values show an improvement for the proposed model. Reconstruction
and single-step prediction errors are shown for both training and testing data. Ordinary dynamic textures always performs better on training
data, but hierarchical extension usually improves results on the testing data indicating reduced overfitting and better generalizability. The
biggest improvement is in sequences that exhibit complicated, locally-correlated motion like cars (Sequence 1), while standard dynamic
textures do better with globally-correlated, deterministic motions like windmills (Sequence 24).

Acknowledgments: We gratefully acknowledge the support of
our sponsors. Calvin Murdock was partially supported by the De-
partment of Defense (DoD) through the National Defense Science
and Engineering Graduate Fellowship (NDSEG) Program, Nathan
Jacobs by DARPA grant D11AP00255, and Robert Pless by NSF
grants DEB-1053554, EF-1065734, NSF IIS-1111398.

References
[1] B. Boots, G. J. Gordon, and S. M. Siddiqi. A constraint

generation approach to learning stable linear dynamical sys-
tems. In Advances in Neural Information Processing Sys-
tems, 2008. 4

[2] A. Chan and N. Vasconcelos. Classifying video with kernel
dynamic textures. In Proc. IEEE Conference on Computer
Vision and Pattern Recognition, 2007. 2

[3] A. Chan and N. Vasconcelos. Modeling, clustering, and seg-
menting video with mixtures of dynamic textures. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
30(5):909–926, 2008. 2

[4] A. Chan, N. Vasconcelos, et al. Layered dynamic textures.
In Advances in Neural Information Processing Systems, vol-
ume 18, page 203, 2006. 2

[5] R. Costantini, L. Sbaiz, and S. Susstrunk. Higher order svd
analysis for dynamic texture synthesis. IEEE Transactions
on Image Processing, 17(1):42–52, 2008. 2

[6] G. Doretto, A. Chiuso, Y. N. Wu, and S. Soatto. Dy-
namic textures. International Journal of Computer Vision,
51(2):91–109, 2003. 2

[7] G. Doretto, D. Cremers, P. Favaro, and S. Soatto. Dynamic
texture segmentation. In Proc. IEEE Conference on Com-
puter Vision and Pattern Recognition, 2003. 2

[8] A. Fitzgibbon. Stochastic rigidity: Image registration for
nowhere-static scenes. In Proc. IEEE International Confer-
ence on Computer Vision, 2001. 2

[9] K. Fujita and S. Nayar. Recognition of dynamic textures
using impulse responses of state variables. In Proc. Interna-
tional Workshop on Texture Analysis and Synthesis (Texture
2003), 2003. 2

[10] M. Hyndman, A. Jepson, and D. Fleet. Higher-order autore-
gressive models for dynamic textures. In British Machine
Vision Conference, 2007. 3

[11] N. Jacobs, S. Satkin, N. Roman, R. Speyer, and R. Pless. Ge-
olocating static cameras. In Proc. IEEE International Con-
ference on Computer Vision, Oct. 2007. 2

[12] E. Kalman, Rudolph. A new approach to linear filtering and
prediction problems. Transactions of the ASME–Journal of
Basic Engineering, 82(Series D):35–45, 1960. 4

[13] C. Liu, R. Lin, N. Ahuja, and M. Yang. Dynamic textures
synthesis as nonlinear manifold learning and traversing. In
British Machine Vision Conference, 2006. 2

[14] C. Lu, D. Lin, J. Jia, and C.-K. Tang. Two-class weather
classification. In Proc. IEEE Conference on Computer Vision
and Pattern Recognition, 2014. 2

[15] J. Mairal, G. Sapiro, and M. Elad. Learning multiscale sparse
representations for image and video restoration. SIAM Mul-
tiscale Modeling and Simulation, 7(1):214–241, 2008. 4



[16] C. Murdock, N. Jacobs, and R. Pless. Webcam2satellite: Es-
timating cloud maps from webcam imagery. In Proc. IEEE
Workshop on Applications of Computer Vision (WACV),
2013. 1, 2, 3, 5
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