
Structure from Shadow Motion

Austin Abrams, Ian Schillebeeckx, Robert Pless
Washington University in St Louis

{abramsa|ians|pless}@cse.wustl.edu

Abstract

In outdoor images, cast shadows define 3D constraints
between the sun, the points casting a shadow, and the sur-
faces onto which shadows are cast. This cast shadow struc-
ture provides a powerful cue for 3D reconstruction, but re-
quires that shadows be tracked over time, and this is dif-
ficult as shadows have minimal texture. Thus, we develop
a shadow tracking system that enforces geometric consis-
tency for each track and then combines thousands of track-
ing results to create a 3D model of scene geometry. We
demonstrate reconstruction results on a variety of outdoor
scenes, including some that show the 3D structure of oc-
cluders never directly observed by the camera.

1. Introduction
We consider the problem of inferring outdoor scene

structure based on the motion of shadows in long term time-
lapse data. As the sun illuminates a scene from different
directions during the day and during a year, it casts shad-
ows onto the scene. The pattern of these shadows, and how
they change, depends on what the camera directly views and
nearby structures that cast shadows.

This provides a cue to solve for 3D scene structure from
images captured from a single viewpoint. Because shadows
are purely geometric objects, this approach does not require
photometric camera calibration, and permits the sun as a
calibrated light source. Furthermore, the constraint does not
require the occluding object to be visible, and instead infers
its position from the motion of shadows. Thus, anything
that casts a shadow into the scene can be modeled, including
structures hidden behind others in the scene.

What makes this problem difficult is that shadows are
sparse and difficult to track. In any one frame, shadows
only give constraints at shadow boundaries, so it is vital to
track shadows across frames. This tracking is difficult be-
cause only the shape of the shadow boundary can be used to
track, and only a few boundary points have distinguishable
shapes. Also, in general scenes, the trajectory of a shadow
point between images depends on the lighting direction, the
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Figure 1. From a sequence of outdoor images (a), we track shadow
movement; three color-coded example correspondences are shown
on the two example images. These tracks are used as a cue for
recovering sparse depth from a single view over time (b), where
blue is closer to the camera and red is farther away. Our approach
can even recover the structure of objects not directly visible to the
camera, as seen in the 3D point cloud reconstruction (c), where
black points are the reconstructed locations of shadow casters in
the scene. In this case, shadow movements reveal the 3D struc-
ture of two trees, one of which the camera only observes from its
shadows. We invite the reader to view the supplemental material,
which shows rotating views of this 3D point cloud.
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relative geometry of object casting the shadow, and the sur-
face on which that shadow lands.

Our approach to find shadow tracks and scene structure
is to exploit the geometry of outdoor illumination and de-
rive explicit constraints relating the solar illumination di-
rection, the 3D location of shadow casting objects, and a
depth map of the scene. Even when the overall structure of
the scene is unknown, these constraints give a rule for eval-
uating whether a possible track is geometrically consistent.

Our primary contributions are three-fold. First, for a geo-
calibrated camera, we derive relationships between shadow
trajectories, the scene depth, and the shadow casting po-
sitions without any assumptions on structure of the scene.
Second, we create a fully automatic shadow tracking ap-
proach that is effective in tracking shadows because it
makes use of these geometric relationships as a strong con-
sistency check. Third, we show how to use these shadow
trajectories to reconstruct scenes from a single view over
time.

We find that our tracking approach works best when
shadows are cast on relatively simple structures like hill-
sides and ground planes. However, we emphasize that the
geometry is general for all forms of depth surfaces and
shadow casters, and the shape of the recovered shadow-
casting objects exhibit great complexity (such as the double
trees in Figure 1).

2. Related Work
The geometry of shadows, light sources, and scene

shapes has been explored in a large number of contexts.
Early work characterized the projection of object bound-
ary curves casting shadows onto ground planes of known
geometry in line-drawings [20, 23]. These constraints de-
fine relations between the depth of points that lie along the
same shadow boundary, and have been used to create 3D
models of object shapes. For example, Bouget and Per-
ona [7], and Kawasaki and Furukawa [16] use the shadows
of polyhedral objects as a partially structured light source,
where each straight shadow constrains groups of pixels to
be co-planar in 3D. Bamber et al. [6] use a ground plane as-
sumption to leverage 3D reconstruction and Belhumeur and
Kriegman [18] characterize the equivalance class of object
shapes that can cast the same set shadows onto a ground
plane under varied lighting directions.

A different constraint is based on matching points on a
cast shadow to the points on the object casting the shadow.
The line from the shadow caster to the shadow needs to
be unobstructed, providing additional constraints on scene
points that lie along this line [10, 11, 22, 25].

In the context of outdoor imagery, shadow constraints
have been used for calibration and scene structure estima-
tion in a variety of contexts. In a recent application to photo
forensics, Kee et al. [17] made use of shadow correspon-

dence to expose photos with inconsistent shadows as being
manipulated.

Antone and Bosse [5] assume a stationary camera with
known internal calibration, timestamps, geo-location, and
define the analytic constraint between vertical objects and
the shadow they cast onto a flat ground plane. Junejo and
Foroosh [15] calibrate the intrinsic parameters of a cam-
era and solve for constraints on camera geo-location from
the trajectories of shadows of two points moving across a
ground plane, and Wu et. al [24] extend this to complete
camera calibration, geolocation, and the relative heights of
the two shadow casting points, even if those are not in the
field of view. Caspi and Werman [9] focus more on mod-
eling the scene structure and use the set of shadows of cast
by two vertical edges in the scene to reconstruct a plane and
parallax model of scene structure.

Abrams et al. [2] create a scene depth map from co-
linearity constraints between the sun direction, a shadow
caster, and the object casting a shadow. With enough light-
ing directions this supports the creating of a scene depth
map. In this paper, we extend their approach to work with
moving shadows, rather than correspondences between a
shadow and its shadow caster. The main benefits are that
the resulting geometry is more general and able to recon-
struct objects the camera cannot directly see, and in many
cases, tracking a shadow from frame to frame is easier than
finding a correspondence between a shadow and its shadow
caster. [2] use a naive shadow correspondence algorithm
that would not work for any of the examples shown in this
paper.

The current work combines the co-linearity constraints
of [2] with constraints from shadow tracking [24] to better
constrain the 3D shape of points in the field of view, and
to provide constraints on shapes not directly visible to the
camera. To our knowledge it is the first to derive constraints
relating scene geometry from shadow tracks without mak-
ing any simplifying assumptions about that geometry.

3. Structure from Shadow Motion

The fundamental constraint this paper considers is the
relationship between shadow motion and scene structure.
We represent this shadow motion by finding corresponding
points on shadows cast by the same objects in different im-
ages. We call the set of correspondences from one shadow
caster a track. In this section we characterize the geometric
constraints a shadow track must obey. We defer the dis-
cussion of generation those tracks to Section 4 because our
tracking algorithm uses these constraints as part of a con-
sistency check.
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Figure 2. Shadow tracking geometry. By tracking a shadow’s
movement through three frames, shown as white circles in (a)
(insets shown in top-left), we can recover the 3D geometry (b)
of the shadow casting object (red) and the surfaces that received
a shadow (blue) by solving Equation 1 with respect to the given
lighting directions at each time (yellow).

3.1. From Tracks to Structure

A track Ti is defined as a set of location-time pairs
{(x1, t1), . . . , (xm, tm)}, which we can use to recover the
depth dx ∈ R of all pixels x on the track, and the location
of a shadow caster Ci ∈ R3. The set of all (x, t) location-
time pairs in track Ti must satisfy the following 3D spatial
constraint:

rxdx + Ltαti = Ci, (1)

where rx ∈ R3 is the unit vector which passes through pixel
x in the image plane, Lt ∈ R3 is the lighting direction at
time t, andαti is the 3D distance along the lighting direction
between a shadow and its caster. This geometry is visual-
ized in Figure 2.

This work assumes that the camera geo-centric calibra-
tion (and therefore rx all pixels x) is known, as well as
the per-image lighting directions L, which can be recov-
ered with known geolocation and timestamps via a solar
lookup [21].

Equation 1 considers one track and relates depths in the
scene to the positions of a shadow caster only up to an un-
known scale factor. Given a set of tracks in the scene T ,
the tracks-to-structure optimization matches scale factors
between tracks with a constrained linear system over the
depth d, 3D distances α, and occluders C:

argmin
d,α,C

∑
Ti∈T

∑
(x,t)∈Ti

||rxdx + Ltαti − Ci||2, (2)

Figure 3. An example of track connectivity using tracks recov-
ered from our algorithm. The top figure shows the color-coded
locations of three tracks in a scene. The bottom row of images
shows crops from these three tracks. This group of tracks has two
“crossover” locations (indicated in white in the top image, and
with dotted black outlines below), where two tracks constrain the
same pixel. We use this tracking overlap to fix the depth scale
across tracks when solving for scene structure.

under the constraints that d ≥ 1 (to set the scale) and α ≥ 0.
This fixes the scale factor between tracks that overlap,

because if one image location x is part of two shadow tracks
(at different times), it must have a consistent depth dx in
both. Therefore, it is desirable that a tracker return as dense
a set of tracks as possible, to promote high crossover, and
thus support many tracks sharing the same depth scale. Fig-
ure 3 shows that in real scenes, there is typically a large
amount of crossover which connects distant pixels through
a network of constraints.

3.2. Geometric Consistency

When a track passes through two or more frames, solv-
ing for the unknowns defines 3D scene locations for each
shadow point, and the location of the shadow casting object
Ci. Therefore, we can test for the geometric consistency of
a track by estimating how well Ti satisfies this linear rela-
tionship.

If we believe some pixel x to be under shadow at time
t, then the projection of all feasible shadow casters is ex-
actly the projection of the lighting direction onto the image
(termed the “episolar line” in [2]). If a track is geometrically
consistent, then each of these lines will intersect in a com-
mon location, the location of the shadow caster in the im-
age. Therefore, this geometric consistency check can be vi-
sualized as an intersection test between many image-space
lines, as demonstrated in Figure 4.



(a) (b)

Figure 4. A visualization of the geometric consistency check.
In (a), both the green and blue tracks have similar appearances
through time. In (b), we annotate each detection with a line cor-
responding its set of feasible shadow casters. This additional geo-
metric check reveals that the green track is consistent with a single
shadow caster (since all green lines intersect in a common loca-
tion), while the blue track is inconsistent.

In practice, we test a track Ti’s geometric consistency by
solving Equation 1 for dx, αti, andCi. If a track is perfectly
consistent, there will be no error, and the angle between Lt
and (Ci− rxdx) will be 0 degrees for all (x, t) ∈ Ti. In the
following section we reject a track if, for any (x, t) ∈ Ti,
this angle is greater than a half degree, or if dx is negative
(corresponding to observing a shadow behind the camera),
or if any αti is negative (corresponding to a shadow being
projected the wrong direction).

3.3. Challenges and Limitations

The geometric constraints relating shadows to scene
structure have several formal ambiguities. Characterizing
the ambiguities helps helps to define limits of the approach
and suggests properties that are important for robust shadow
tracking.

The first ambiguity affects the tracking step and is a
corollary to the aperture problem in standard optic flow.
When tracking a shadow cast by any straight edge (such
as a pole), the shape of the shadow will be a strong edge,
and the motion of the shadow along this edge is not well
constrained. Unfortunately, the additional geometric con-
straints do not remove the aperture problem; there are still
an infinite number of geometrically-consistent tracks that
pass through the shadow’s shape. Figure 5 illustrates this
case.

The second ambiguity affects reconstruction in the pres-
ence of degenerate lighting configurations. In a video se-
quence taken over the span of one day, the set of illumina-
tion directions is often degenerate. In the extreme case of
images taken over a day during the equinox at the Equa-
tor, the sun passes directly overhead, and all shadows are
cast exactly along east-west lines. Thus, while tracks may
cross each other, tracks will never “move north and south”
to unify the scale factors of different parts of the scene.
While this effect is mitigated when the lighting configura-
tion is non-degenerate (e.g. when the camera is far from
the Equator, or during the summer and winter solstices), we

(a) (b) (c)

Figure 5. Shadow tracking under geometric constraints still suf-
fers from the aperture problem. Consider a vertical pole casting
shadows across three frames shown as a single composite image
in (a). Where does the shadow in the blue box go in the other two
frames? The tracks in (b) and (c) are both geometrically consis-
tent, and have exactly the same appearance over time, but only the
track in (b) is correct.

find the reconstruction step for images from a single day to
be poorly conditioned.

To alleviate the aperture problem, we track shadows in
a spatially smooth manner so that ambiguous edges are
more likely to follow the movements of more discrimina-
tive shapes. We handle the second ambiguity by working
with data spanning over months to get a more diverse set of
lighting conditions. In this case, the set of sun directions is
not planar, but rather lies on a full-rank subset of the unit
sphere. This is not a large limitation, because there exist
large archives of outdoor scenes which have already been
capturing live webcam streams for years [14, 19].

4. Shadow Tracking

The shadow tracking approach has four steps. First, we
detect where shadows are in each image, and describe each
point with a local binary pattern. Second, frame-to-frame
matches are found between pairs of images with similar
lighting directions. Third, these matches are linked together
in an approach that guarantees geometric consistency, and
finally, these tracks are extended to cover a greater temporal
extent.

4.1. Shadow Detection and Description

Given a set of input imagery, we begin by computing
the Canny edges [8] on each image. An edge could oc-
cur due to shadows, as well as depth or texture. Shadows
from depth discontinuities or scene texture remain station-
ary through time, while cast shadows move as the lighting
direction varies. Therefore, for each image, we take the pix-
els on the edge map, and remove any that were on an edge
map more than 10% of the time. The result is a set of pixels
that mostly come from moving cast shadows; see Figure 6
for an example.

To describe each point (x, t), we compute a local binary
pattern feature in a circle with a 10-pixel radius centered
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Figure 6. To detect shadows in a time-lapse sequence, we run an
edge detection algorithm (a) on each image, and keep any edge
pixel that was not an edge in many other frames, largely removing
edges from persistent structure or texture (b).

at the detection of interest. Our feature f is a bit-vector
which encodes if the pixel x has a greater intensity than
each of the sample locations around it at time t. To allevi-
ate image noise, we additionally smooth the image with a
3x3 average filter before extracting features. The result is
a set of detections D with feature descriptors, denoted as
(x, t, f) triplets. As shorthand, we denote the detection i as
(xi, ti, fi).

4.2. Frame-to-frame matching

In the next step, we create many frame-to-frame shadow
matches. We repeat this process for many image pairs from
nearby lighting directions to create a rich set of 2-frame
correspondences. Specifically, given two images t1 and t2,
each with their own sets of detections D1, D2 ⊂ D, we
want to find a matching function from D1 to D2.

Assuming that shadow motion is small across nearby
lighting directions, the shadow’s location and appearance
should not vary dramatically. For consistency in this sec-
tion, we denote variables with i and j subscripts when they
refer to detections in D1 and D2, respectively. For each
detection i, we gather a set of possible matches Mi ⊂ D2:

Mi = {j ∈ D2 |sij > τ}, (3)

where τ is a minimum matching score, and sij is a score
that attains a large value when detections i and j have a
similar appearance (in terms of their local binary patterns)
in similar locations in the image:

sij = wlocation(i, j) wappearance(i, j) (4)

wlocation(i, j) = exp

(
− (xi − xj)

2

σ2
x

)
(5)

wappearance(i, j) = exp

(
− (fi − fj)2

σ2
f

)
(6)

Furthermore, we expect the matching function should
be spatially smooth; nearby shadows at t1 should match to
nearby locations at t2. We model the matching function as

(a) (b) (c)

(d) (e)

Figure 7. A visualization of the matching algorithm. Suppose we
want to match the shadow edges in (a) to (b), shown as an aver-
age image in (c) for visualization. We first find a set of candi-
date matches, shown in (d) for two detections. The pink detection
comes from a corner and only has a few candidate matches, but
the cyan detection comes from a shadow edge and is less discrimi-
native, so it could match to many more. We optimize for a smooth
warp across the image that maps each point to one of its matches,
and accept frame-to-frame matches (white) that came close to one
of their candidates (e).

a nonparametric warp by assigning a warp vector ui ∈ R2

to each detection i, and optimize the following:

argmin
u

∑
i∈D1

min
j∈Mi

||xi+ui−xj ||2+

∣∣∣∣∣
∣∣∣∣∣ui − ∑

i′∈D1

vii′ui′

∣∣∣∣∣
∣∣∣∣∣
2

(7)
The first term encourages the warp to push xi toward one
of its potential matches, and the second term is a Laplacian
smoothness term, where vii′ ∝ wlocation(i, i

′)1, with vii = 0.
We optimize this objective with gradient descent, initial-

izing ui as xj − xi, where j ∈ Mi is the detection where
sij is maximal. If Mi is empty, we initialize ui to 0. After
convergence, we create a match between detections i ∈ D1

and j ∈ D2 whenever ||xi + ui − xj || is less than 2 pixels.

4.3. Linking together matches

Given a large set of frame-to-frame matches, we now
link these matches into long tracks. There are a few ob-
vious baselines for this problem which we found to be in-
sufficient, so we first describe two baseline track linking ap-
proaches, and then our approach which enforces geometric
consistency through time.

1Although one could define wlocation and v with different bandwidths,
we chose to use the same bandwidth σx for both for simplicity.



Figure 8. The percent of detections included in a geometrically-
consistent track, as a function of the minimum acceptable track
length, for three track linking approaches. The naive method in-
crementally links together matches with a common endpoint, the
RANSAC method finds geometrically-consistent subtracks within
those, and the constrained linking approach incrementally links to-
gether matches with a common endpoint, so long as it maintains
the track’s geometric consistency. The third approach performs
the best, incorporating more detections into long, geometrically
consistent tracks.

The simplest method to link matches together is to iter-
atively group together two matches if they share a common
endpoint (i.e. they share a detection), unless it creates a
track that passes through the same frame twice. This pro-
cess is repeated until the track cannot be extended any more,
and if the track is sufficiently long, we keep it.

We found that this method does not give many tracks
which satisfy the geometric consistency check, even for
shadows with discriminative local binary patterns. This
is alleviated somewhat if each track is filtered through a
RANSAC routine: we choose two random detections in
the recovered track, find their shadow caster, and see which
other detections in the track are consistent with that. After
many rounds, we keep whichever subtrack has the largest
number of inliers.

The best approach we found was to incorporate the ge-
ometric consistency check into the track linking procedure.
We still iteratively group together matches with common
endpoints, but at each step check if the next addition would
break the track’s geometric consistency so far. If there are
multiple possible extensions, we choose the one that is most
consistent (in terms of angular reconstruction error as in
Section 3.2).

These three approaches are shown in Figure 8 using
frame-to-frame matches for the scene from the first page.
This plot shows how many detections in a scene are in-
corporated into a track after each track linking strategy
(for varying thresholds on the minimum acceptable track
length). The more detections that are incorporated into
some consistent track, the more complete the model will be.
The geometrically-aware linking algorithm outperforms the

(a) (b)

(c) (d)

Figure 9. Track expansion encourages well-connected reconstruc-
tions. Given an image sequence (average image shown in (a)), our
full algorithm returns a depth map that covers most of the ground
plane (b). (c) and (d) show two “connected components” of a re-
construction fueled with un-expanded tracks. Since the tracks that
build these 3D models are shorter and cover a smaller area, over-
lap between tracks is less likely and the reconstructions are dis-
connected.

other two, typically explaining the motion of 5% to 10%
more detections.

4.4. Track expansion

As a final step, we take each track and try to extend it
into frames it does not yet pass through. For each track, we
find all detections j in new frames that have a high score
sij to some detection i already in the track. If that detection
is geometrically consistent with the rest of the track, we
append it, and repeat until no such j is found.

Although the tracks generated before this step are al-
ready long and consistent, this extra expansion step helps to
create crossover between tracks that might not have crossed
over before. Figure 9 demonstrates this property, where the
un-expanded track set is not quite expansive enough to con-
nect together two large depth components in a scene.

4.5. Implementation Details

Rather than perform the full constrained least squares re-
construction as in Equation 2, we take advantage of an in-
cremental reconstruction for robustness and speed. We be-
gin by reconstructing a seed track, chosen as the track that
overlaps with the most others. One by one, we reconstruct
the track that overlaps the most with the reconstruction so
far, under the additional constraint that the depth for pixels
already reconstructed stay constant. If the track is no longer
geometrically consistent under those additional constraints,
we remove the (likely erroneous) detections from that track
that accrued the most error and pick another track. This
process repeats until there are no tracks that overlap with



(a) Example images

(b) Our depth map (c) True depth map

Figure 10. Results on a synthetic sequence. Our recovered single-
view depth matches the ground truth to within 2% error.

the model. A typical reconstruction takes about a minute,
which is fast compared to the full least squares optimiza-
tion, which (even with commercial sparse linear system
packages) often cannot fit the full linear system in memory.

For webcam data, geometric camera calibration was de-
rived by manually corresponding scene points to Google
Earth models [3] or using manually specified shadow to
shadow caster correspondences [2].

The algorithm, starting from a calibrated camera and a
set of 200 images requires, on average, three hours to cre-
ate 3D models. About 55% of the time is spent on find-
ing and optimizing frame-to-frame matches, another 35%
spent on linking together matches, 8% spent on expanding
tracks, and the remaining time spent loading images, detect-
ing/describing shadows, and incremental reconstruction.

In our implementation, we find matches between each
image and its 5 nearest neighbors, where distance is mea-
sured in terms of angular difference in sun position. We use
the parameters σx as 5% of the main diagonal length, σf as
5% of the feature dimensionality, τ as 0.1, and the minimum
track length as 8 frames.

5. Results

To evaluate the approach, we explore results based on
a synthetic scene and a collection of images takes by web-
cams over long periods of time. We invite the reader to view
the supplemental video to view the reconstructions in 3D.

To test the accuracy of our approach, we rendered a syn-
thetic scene using virtual sun positions over the span of
a year. This synthetic scene is challenging because most
shadows are projected onto a curved surface, so shadows
distort their shape for even small movements. After fixing
the scales between the ground truth depth and our recon-
struction, our model’s depth has an error of about 2%.

Recent research in single-view shape-in-the-wild ap-
proaches shows that the camera’s color calibration needs to

(a) (b)

(c) (d)

Figure 11. An evaluation on the robustness to unknown radiomet-
ric calibration. The top row shows an example image an image
sequence (a), and the same image artificially distorted by an un-
known exposure and tone mapping curve (b). Each image is an-
notated with the set of detections that were successfully tracked
through that image. When our algorithm runs on the original (c)
and distorted (d) sequences, the results are almost identical.

be known a priori [4, 13], or that the camera’s response can-
not change through time [1]. Figure 11 shows an evaluation
of the robustness of our approach to unknown color calibra-
tion. For this experiment, we artificially distorted each im-
age in a sequence with a random exposure and radiometric
response chosen from [12] (i.e. a different response profile
for each image), and ran our algorithm on both the origi-
nal and distorted data. Since our features come from Canny
edges and local binary patterns, which are both invariant to
response and exposure changes, the result is identical before
and after distortion. This level of distortion would cause
dramatic errors in any of the photometric methods above.

6. Conclusions
In this paper, we introduce a framework for single-view

shape in the wild. This approach extracts shadow tra-
jectories using a new geometric consistency measure and
response-invariant features. In some cases, this approach
allows us to use shadows to recover the shape of objects the
camera never directly saw.

We share a similar error mode to traditional structure
from motion, in that scenes with relatively little shadow tex-
ture are poorly modeled. If there aren’t many shadows with
discriminative shapes, then the matching routine is more
ambiguous, and the whole pipeline suffers.

Our approach only tracks shadows on the boundary be-
tween darkness and light, because they are more discrimi-
native than pixels on the shadow’s interior. However, these
interior pixels carry useful information, and could be used
to determine more complete 3D models of shadow casters.

Our largest assumption is that the scene remains static,
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Figure 12. Results on a webcam sequence looking at a ski slope in
the spring (a). Finding shadow trajectories in this sequence pro-
vides a cue to reconstruct a sparse depth map (b). The final figure
show a novel view (c) of the underlying point cloud. We invite
the reader to watch the supplemental video, which shows rotating
views of this point cloud.

which can break down when imagery comes over the span
of a few months. Our incremental reconstruction and track-
ing algorithms are robust enough that if the scene changes
geometry briefly, we only capture the most static mode.
However, more formally addressing dynamic geometry is
an exciting avenue for future work.

The largest limitation of our shadow tracker comes from
our relatively rigid feature representation. Our local binary
pattern features do not have any invariance to scale or rota-
tion, so we depend on the shape of the shadow to not dis-
tort wildly between images with similar lighting conditions.
Therefore, this approach works best when reconstructing
planar surfaces or surfaces with small curvature. However,
our geometric consistency checks are valid for any kind of
depth surface, meaning that any future change to the feature
representation is a drop-in replacement.
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