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Abstract 

 
Many natural image sets are samples of a low 

dimensional manifold in the space of all possible 
images.  When the image data set is not a linear 
combination of a small number of basis images, then 
linear dimensionality reduction techniques such as 
PCA and ICA fail, and non-linear dimensionality 
reduction techniques are required to automatically 
determine the intrinsic structure of the image set.  
Recent techniques such as ISOMAP and LLE provide a 
mapping between the images and a low dimensional 
parameterization of the images.  In this paper we 
consider how choosing different image distance 
metrics affects the low-dimensional parameterization.  
For image sets that arise from non-rigid and human 
motion analysis, and MRI applications, differential 
motions in some directions of the low-dimensional 
space correspond to common transformations in the 
image domain.  Defining distance measures that are 
invariant to these transformations makes Isomap a 
powerful tool for automatic registration of large image 
or video data sets.  
 
1. Introduction 
 
Faster computing power and cheap large scale memory 
has led to a surge in research in the machine learning 
community on the topic of dimensionality reduction: 
finding structure in a large set of points embedded in a 
very high dimensional space.  Many problems in 
computer vision can be cast in this framework, as each 
image can be considered to be a point in a very high 
dimensional space (one dimension for each pixel).  
When an image data set is generated by varying just a 
few parameters, such as a combination of pose, 
lighting, or camera viewpoints, then the set of images 
can be described as sampling a continuous manifold of 
the space of all possible images. 
 
Isomap [6] and Locally Linear Embedding (LLE) [4] 
typify a class of techniques that discover a low-

dimensional parameterization of a point set.  Given a 
set of images , these methods define a mapping: 

 
 

where k is usually a small number such as 2 or 3, and 
is ideally the number of free parameters that were 
varied in creating the image data set.  
 
Significantly, the problem with these methods is that 
they define only a mapping of the original image set to 
a k-dimensional space.  Unlike popular linear 
dimensionality reduction techniques (such as PCA or 
ICA) the function f defined by these methods is not 
defined for any image not in the original image set, 
and there is no defined inverse mapping that takes a 
new set of parameters (a point in Rk) and returns the 
corresponding image.  Despite these drawbacks, this 
method has been effectively used in a variety of 
applications, by directly parameterizing image sets in 
the context of computing pose estimates in rigid body 
motions [8], visualization of biomedical image data 
sets [3], or by parameterizing a large set of filter 
responses to tune representations for visual tracking 
[9] or to learn and represent the space of Bidirectional 
Reflectance Distribution Functions (BRDFs) in 
graphics applications [7].   
 
The contribution of this paper is a framework for the 
specialization of a wide class of non-linear 
dimensionality techniques for use in many computer 
vision problems.  In particular we exploit the fact that 
the mapping function f is a diffeomorphism, and that 
for important application areas, the differential motion 
in the parameter space corresponds to specific image 
operators such as warping or contrast changes.  These 
operators are incorporated into the local distance 
function.  We illustrate this on deformable and human 
motion data sets and show how it gives rise to 
automatic registration algorithms to improve image de-
noising for MRI data. 



 
 
2. Projections and Inverse Projections 
 
Given an input set , which is a finite subset of Rn, 
(where n is the number of pixels in an image), the 
dimensionality reduction techniques of Isomap and 
LLE produce a mapping function .  
Very briefly, Isomap begins by computing the distance 
between all pairs of images (using the square root of 
the sum of the squared pixel errors, which is the L2 
norm distance if the images are considered points in 
Rn).  Then a graph is defined with each point as a node, 
and edges are created to the closest neighbors (usually 
choosing 5 to 15 neighbors).  Then distances are 
computed between every pair of nodes in the graph 
using any all-pairs shortest path algorithm to give a 
complete distance matrix.  Finally, this complete 
distance matrix is embedding into Rk, by solving an 
eigenvalue problem (a technique called multi-
dimensional scaling).    This mapping preserves the 
distance relationships defined by paths between nearest 
neighbors in the original data set.  LLE is a method 
with similar aims that creates a mapping that preserves 
linear relationships between nearby points.  The 
original papers for Isomap [6] and LLE [4] have 
pointers to online, free implementations of the 
algorithm, and several other papers have discussed 
appropriate distance measures in the direct application 
of Isomap to embedding image sets [8, 3]). 
 
It is instructive to view PCA in the same light.  Given 
an input data set  (also a finite subset of Rn), 
Principle Component Analysis computes a function f 
which projects each image (in our case) onto a set of 
basis images.  The image set  defines a set of 
orthonormal basis images b1, b2, … bk, and then the 
function f maps any image x in Rn to a set of 
coefficients that define a point in Rk: 
 

 
 
Therefore, although the bases images, and therefore 
the function f are defined based upon an eigen-analysis 
of the image data set I, it actually gives a function f 
that is defined for all possible images of n pixels: 
 

 
 
Furthermore, the inverse function is defined as well, so 
that any point in point in the coefficient space is 
mapped to a specific image by a linear combination of 
the basis images: 

 
 (1) 

 
So, for PCA, the inverse function is defined for all 
possible points in the coefficient space: 
  

 
 
These properties of PCA (a linear dimensionality 
reduction technique) highlight the benefits and 
drawbacks of non-linear dimensionality reduction.  
One major problem with techniques such as Isomap is 
that the mapping function f is only defined for the 
original input data set , and it is complicated to 
compute the “out of sample” projections for new 
images that are not in the set I [1].  In fact, that adding 
one new image to the input data set requires re-
computing the mapping for all the images, and may 
make very large global changes in the projection of 
every image of the set.  Even under the assumption that 
projection of the original images does not change, 
projecting a new image requires computing the 
distance to every original image. 
 
To attack this problem, two new methods have been 
announced that offer continuous mappings between the 
coefficient space and the original (in our case image) 
space: Automatic Alignment [5] combines LLE with a 
set of pre-estimated local dimensionality reducers each 
of which is presumed to be fitted to a relatively flat 
subset of the manifold, and solves for a mixture of 
these projections that globally flattens the data while 
minimizing barycentric distortion in each point 
neighborhood.  Charting [2] solves for a kernel-based 
mixture of projections that minimizes Euclidean 
distortion of local neighborhoods; it includes a solution 
for the local dimensionality reducers needed by 
automatic alignment. 
 
While these methods define a smooth transformation 
between the image space and the coefficient space, 
they are ill suited for many image analysis applications 
because they still assume that the image manifold is 
locally linear.   Locally, the inverse function has the 
form of Equation (1), (although the basis functions bi 
may vary for different points in the coefficient space), 
so differential changes to the coefficients lead to 
changes in weights of the linear basis functions.  
Consider an image x with corresponding coefficients 
(c1, c2, … ck).  The partial derivative of the inverse 
mapping function (Equation 1) describes how the 
image varies when changing the c1 coefficient: 
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Isomap dimensionality  
Figure 1.  Sample frames of a video data set of a woman 
running on a treadmill.   Bottom left, the two dimensional 
non-linear embedding of this data set (Using Isomap with 
distance defined by sum of the squared pixel intensity 
difference, and using 8 closest neighbors).  Each blue dot is 
the (non-linear) projection of an original image, the red line 
connects the points from consecutive frames.  The axes are 
irrelevant, as any Euclidean transformation of the points 
would have the same relative distances.  Bottom right, plot of 
residual error shows that two dimensions capture almost all 
of the information in these local distance measurements. 
 

Alternatively, moving through the coefficient space 
can be interpretted as an operator: changing coefficient 
c1 by ε, changes the image x by the addition of part of 
the b1 basis image: 

 
 

But this is not, usually, an interesting change.  For 
image sets defined by images of objects taken from 
different poses, even locally images are not linear 
combinations of basis functions.  Instead there are 
changes caused by non-rigid deformation of the object, 
and changes caused by relative motion of the object 
and camera, which may cause a family of relevant 
image warping functions, translations, rotations, 
homographies, and intensity variations such as gamma 
corrections, as well as actual deformations of the 
object itself. 
 
Our goal, then, is to specialize Isomap, use the fact that 
the points in our high dimensional space are images, 
and find mapping functions f so that motion along an 
axis in the coefficient space is either an image warping 
transformation or a non-rigid deformation of the 
object. 

 

 

 
Figure 2.  A expanded view of the top of the trajectory shown 
in Figure 1.  The radial variation show images takes at the 
same part of the running cycle.  The dominant variation here 
is translation to the left, and can be seen most clearly in the 
zoomed in view of the feet shown at the right. 
 

3. Relevant Parameterizations 
 
The intuition for this project is observed in the Isomap 
embedding of image set of a woman running on a 
treadmill.  Figure 1 gives sample frames from the 
video, and the Isomap embedding.  The cyclic nature 
of the running motion leads Isomap to embed the 
points in a circle.  The “thickness” of the circle arises 
from the variation in the image appearance for images 
taken at the same part of the running cycle. 
 
Note that the Isomap embedding has already separated 
the image variations into two components.  Tangential 
motion in the coefficient space (moving around the 
circle) corresponds to changing what part of the 
running cycle the image depicts.  Radial motion in the 
coefficient space by other changes --- variation in the 
stride --- in this sequence the dominant change is the 
left to right position of the runner on the treadmill.  
Figure 2 shows an expanded view of the Isomap 
embedding, and the image set generated by moving 
radially through the coefficient space.  The displayed 
images are all original samples, and they related by 
translating the runner relative to the background.  This 
visualization of the data set is, in itself, a useful 
diagnostic tool, but directly applying this operator to 
the image would require segmentation of the runner 
from the background. 
 



Our second example uses a data set of a flying bird, 
taken against a featureless blue background.  In this 
case, the data set is essentially a binary valued image, 
and the bird image can be represented as the set of 
image points that fall inside the silhouette.  Isomap is 
performed on this data set using the symmetric 
Hausdorf distance and the eight nearest neighbors.  
This gives the embedding shown in Figure 3.  As in 
the running video, there is a circular motion in the 
trajectory caused by the cyclic nature of the data.  
However, there is also a consistent radial motion, 
caused by image differences that arise from the 
approach of the bird toward the camera.  That is, the 
image changes embedded as radial motions in the 
Isomap space results from only the approach of the 
bird to the camera, not the changing shape of the bird 
as it flies.  Thus the Isomap embedding automatically 
de-couples the non-rigid component of the bird motion 
from the rigid component of the bird approaching the 
camera! 
 
The right side of Figure 3 shows the images closest to 
a radial line in the Isomap embedding.  These images 

appear to be related by a rigid transformation, but 
lacking a 3D model, a convenient set of 
transformations is linear coordinate transforms (image 
warping functions).  In order to decouple the 
deformable motion of the bird from other variations in 
appearance, we will modify the distance function to 
ignore variation caused by anything other than the 
deformable motion.  As before, we simplify this 
process by defining the image as a set of point 
coordinates that are not blue.  Then the affine invariant 
distance function returns the following distance: 

 

 
Figure 3.  Every fourth image of a video sequence of a bird 
flying across the sky.  The bottom left shows the Isomap 
embedding of this set of images.  Moving radially in the 
embedding corresponds, locally, to an affine transformation 
of the image that depends only on the relative position of the 
bird from the camera.  The transform required to move 
tangentially in the Isomap space would vary by location and 
require a motion model of the bird.  At the right are the seven 
images closest to the dark radial arrow, Figure 4 and the text 
describe the process of finding the affine transformation. 
 

 

 
 
A potential affine transformation A (a 3 by 2 matrix) 
warps the positions of the points in point set Q, this 
affine invariant distance measure returns the distance 
between P and the most similar affine transform of Q.  
Figure 4 shows that using this distance measure allows 
differentiation of deformable motion even in the more 
confused area at the beginning of the sequence.  
Futhermore, the solution for the best fitting affine 
matrix A between two images offers an image warping 
operator for interpolating between images that is an 
alternative to a weighted sum of these images. 
 

 

    
Figure 4.  The affine invariant distance measure effectively 
decouples the image variation at the beginning of the bird 
video sequence.  On the left is the Isomap embedding and 
the distance matrix for the first 30 frames of the sequence.  
One the right is the Isomap embedding using the affine 
invariant distance matrix.  This distance matrix more closely 
resembles an exactly periodic function, the Isomap 
embedding more cleanly maps non-rigid deformations of 
the bird to tangential motions. 
 



4. Application to MRI de-Noising 
 
An increasingly important application domain is the 
analysis of MRI data.  MRI data is typified by large 
data sets which are often noisy.  An image of the same 
subject may vary for a number of reasons, including: 
including noise inherent in the sensor itself, motion of 
the subject during data capture, and time varying effect 
of contrast agents that are used to highlight particular 
types of tissue.  The analysis of MRI data would be 
greatly improved with automatic techniques for image 
registration. 
 
The direct application of Isomap to a particular MRI 
image set is shown in Figure 4.  This image set is a 
“held breath” MRI of a heart.  In this experimental 
design, the patient is asked to hold their breath, and the 
MRI pulses are triggered at the same point in 
consecutive heart beats until enough pulses are 
captured to reconstruct an image.  Each image shown 
in Figure 4 is created in this way, and the data set 
includes 180 such images from the same patient.  The 
variation in these images has three causes.  First, the 
patient does not always hold their breath in exactly the 
same position, so between images there is variation in 
the position of the heart and liver (visible at the bottom 
of the images).  Second, the contrast agent is slowly 

permeating through the tissues in view.  Third, the 
MRI images themselves have noise.  

 

Figure 4.  Four samples of a sequence of MRI images, and 
the associated Isomap embedding (using 8 neighbors, and 
sum of squared pixel intensity difference as a local distance 
measure).  The plot of Isomap dimensional versus residual 
error indicates that 2 dimensions suffice to capture most of 
the distance information.  The red line connects the image 
in order,  
 

 
The Isomap embedding of this data set is shown at the 
bottom right of Figure 4 (Isomap was run using sum of 
the squared pixel intensity differences, and 8 nearest 
images were used as neighbors for each image).  The 
red line connects the images in the temporal order they 
were taken.  Following the trend of this path roughly 
corresponds to the effect of the contrast agent 
permeating through the membrane.  If we can ignore 
the effect of the contrast agent, then the remaining 
variability is due to the position of the organs in the 
image.  We consider the local change in the effect of 
the contrast-agent to remap pixel intensity values that 
are expected to be in the range [0,1]: 

.  Then, we can define the 
contrast-agent invariant function to be: 
 

 
 
Although this is clearly a naïve function for many 
reasons (it is not based upon a physical model of the 
contrast agent dynamics, it does not account for the 
fact that only the parts of the image where the contrast 
agent has permeated should be affected and so on), it 
give a reasonable local approximation to the variation 
caused by change in the contrast agent.  If we re-map 
the images using this distance function, the 
parameterization of the images will be independent of 
the local changes in contrast.   
 
This Isomap embedding has been plotted at the top of 
Figure 5.  The x-axis has been manually stretched out 
to improve the understandability of the figure, but no 
other changes are made.  The embedding retains two 
degrees of freedom, the global permeation of the 
contrast agent through the heart region which is very 
directly encoded in the x-axis, and the changing 
position of the heart and liver as caused by the patient 
motion.  If we project our data set onto the x and y 
axis, we can see the two dominant degrees of freedom.  
In particular, images whose projection onto the y-axis 
is similar taken when the positional changes are 
minimized.  This allows us to average these images 
together with essentially no spatial blurring.  An 
average of 10 images nearby on the y-axis is show at 
the bottom of figure 5.  



Several concluding thoughts are in order.  First, is that 
techniques such as Isomap and LLE are important 
tools in processing large video and image collections.  
These general statistical tools need to be specialized in 
order to take advantage of properties that images have, 
because image data sets are (even locally) almost never 
linear sums of other images.  Finally, a small set of 
image transformation primitives gives powerful tools 
for registration of many different kinds of data sets. 

 

 

Figure 5.  Using a gamma-invariant distance measure, the 
Isomap embedding aligns itself with two concrete degrees 
of freedom.  Since the y-component encodes shifts in the 
image, averaging images with similar y-component does not 
result in spatial blurring, but does minimize pixel noise in 
individual images. 
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