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Abstract

Background subtraction is the first step of many video
surveillance applications. What is considered background
varies by application, and may include regular, systematic,
or complex motions. This paper explores the use of several
differentlocalspatio-temporal models of a background, de-
fined at each pixel in the image. We present experiments
with real image data and conclude that appropriate local
representations are sufficient to make background models
of complicated real world motions. Empirical studies illus-
trate, for example, that an optical flow-based model is able
to detect emergency vehicles whose motion is different from
those typically observed in traffic scenes. We conclude that
“different models are appropriate for different scenes”, but
give criteria by which one can choose which model will be
best.

1 Introduction

Video surveillance applications seek to find, identify, or
track objects and events that appear before the camera. A
first step in many surveillance algorithms is background
subtraction — identifying the background regions of the
image or video which should be ignored. This allows re-
sources to be devoted to tracking or interpreting the remain-
ing data. What should be considered “background” is an
application specific question. In this paper we aim to ex-
tend the set of motions within video scenes that can be con-
sidered background. We propose and analyze background
representations which effectively model natural scenes in-
cluding waving grass or trees and intersections with cars
moving along varied but regular trajectories. The ability to
model complicated background motions will allow surveil-
lance and tracking algorithms to be deployed in a wider va-
riety of scenes.

The background models are computed with techniques
characterized as spatio-temporal image processing. This ap-
proach explicitly avoids finding or tracking image features.
Instead, the video is considered to be a 3D function giving
the image intensity as it varies in space (across the image)
and time. The fundamental atoms of the image processing

Figure 1. The generic framework of the front
end of visual surveillance systems. This work
focusses on exploring different local back-
ground models.

are the value of this function and its spatial and temporal
derivatives, measured at each pixel in each frame. Unlike
interest points or features, these measurements are defined
at every pixel in the video sequence. With appropriate blur-
ring, these derivatives give robust measurements to form a
basis for further processing. Optimality criteria and algo-
rithms for creating derivative and blurring filters of a par-
ticular size have been developed by [2], and lead to signifi-
cantly better results than estimating derivatives by applying
Sobel filters to raw images.

The framework of many surveillance systems is shown
in Figure 1. These systems generate a model of the back-
ground and subsequently determine which parts of (each
frame of) new video sequences fit that model. The form
of the background model influences the complexity of this
problem, and can be based upon (a) the expected color of
a pixel [4] (e.g. the use of blue screens in the entertain-
ment industry), or (b) consistent motions, where the image
is static [3] or undergoing a global transformation which
can be affine [8] or planar projective [5].

Each background model defines an error measure. The
analysis of new video data consists of calculating this error



for each pixel in each frame. This measure of error is thresh-
olded to mark objects that do not fit the background model,
enhanced with spatial or temporal integration, or used in
higher level tracking algorithms. An excellent overview and
integration of different methods for background subtraction
can be found in [6].

This paper does not develop or present a complete
surveillance system. Rather, it explores the statistical and
empirical efficacy of a collection of different background
models. Each background model is defined independently
for each pixel(x, y) in the scene, and is based upon the
distribution of the image intensityI(x, y) and its spatial
Ix(x, y), Iy(x, y), and temporal derivativesIt(x, y) at that
pixel. Qualitative analysis of local image changes have been
carried out using oriented energy measurements [7], here
we look at the quantitative predictions that are possible with
similar representations of image variation.

For simplicity of notation, we drop the(x, y) indices, but
we emphasize that background model presented in the fol-
lowing section is independently defined for each pixel loca-
tion. Every pixel in every frame has an image measurement
vector of the form〈I, Ix, Iy, It〉; a complete background
model includes a function which returns a score which is
smaller when the pixel fits the background model.

2 Models of background motion

Each local model of image variation is defined with four
parts. First, the measurement – which part of the spatio-
temporal image that the model uses as input. Second, the
score function which reports how well a particular measure-
ment fits the background model. Third, the estimation pro-
cedure that fits parameters of the score function to a set of
data that is known to come from the background. Fourth,
if applicable, an online method for estimating the parame-
ters of the background model, so that the parameters can be
updating for each new frame of data within the context of
streaming video applications.

2.1 Known Intensity

The simplest background model is a known background.
This occurs often in the entertainment or broadcast televi-
sion industry in which the environment can be engineered to
simplify background subtraction algorithms. This includes
the use of “blue screens”, backdrops with a constant color
which are designed to be easy to segment.

measurement: The measurement~m is the color of a
given pixel. For the gray scale intensity the measurement
consists of the just the intensity value:~m = I. For color
images the value ofm is the vector of the color components
〈r, g, b〉, or the vector describing the color in the HSV or
another color space.

score: Assuming Gaussian zero-mean noise with vari-
anceσ2 in the measurement of the image intensity, the neg-
ative log-likelihood that a given measurement m arises from

the background model isf(~m) =
(~m−~mbackground)

2

σ2 . The
score function for many of the subsequent models has a
probabilistic interpretation , given the assumption of Gaus-
sian noise corrupting the measurements. However, since
the assumption of Gaussian noise is often inaccurate and
since the score function is often simply thresholded to yield
a classification, we do not emphasize this interpretation.

estimation: The background model~mbackground is as-
sumed to be known a-priori.

2.2 Constant Intensity

A common background model for surveillance applica-
tions is that the background intensity is constant, but ini-
tially unknown.

measurement: The gray-level intensity (or color) of a
pixel in the current frame is the measurement:~m = I or,
~m = 〈r, g, b〉.

Independence Score: The independence score for this
model is calculated as the Euclidean distance of the mea-
surements from the meanf(~m) = ||~m − ~mµ||22.

parameter estimation: The only parameter is the esti-
mate of the background intensity.mµ is estimated as the
average of the measurements taken of the background.

online parameter estimation: An online estimation
process which maintains a countn of the number of back-
ground frames and the current estimate ofmµ. This esti-
mate can be updated:~mµnew

= n−1
n ~mµ + 1

n ~m.

2.3 Constant Intensity and Variance

If the background is not actually constant, then modeling
both the mean intensity at a pixel and its variance gives an
adaptive tolerance for some variation in the background.

measurement: The gray-level intensity (or color) of a
pixel in the current frame is the measurement:~m = I or,
~m = 〈r, g, b〉.

model parameters: The model parameters consist of
the mean measurement:~mµ, and the varianceσ2.

score: Assuming Gaussian zero-mean noise with vari-
anceσ in the measurement of the image intensity, the nega-
tive log-likelihood that a given measurementm arises from

the background model isf(~m) = ||~m−~mµ||22
σ2 .

parameter estimation: For the given set of background
samples, the mean intensity~mµ and the varianceσ2 are
computed as the average and variance of the background
measurements.

online parameter estimation:The online parameter es-
timation for each of the models can be expressed in terms
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Figure 2. (Left) The best fitting optic flow field, for a 19,000 frame video of a traffic intersection. (Top
Middle) The residual error of fitting a single optic flow vector to all image derivative measurements at
each pixel. (Top Right) Residual error in fitting a single intensity value to each pixel. (Bottom Middle)
Residual error in fitting a Gaussian distribution to the image derivative measurements. (Bottom
Right) The error function, when using the optic flow model, of the intersection scene during the
passing of an ambulance that was not when creating the background model. The deviation scores
are 3 times greater than the deviations for any car.

of a Kalman Filter. However, since we have the same con-
fidence in each measurement of the background data, it is
straight-forward and instructive to write out the update rules
more explicitly. In this case, we maintain a countn, the cur-
rent number of measurements. The mean~mµ is updated so
that: ~mµnew

= 1
n+1 ~m + n

n+1 ~mµ. If each measurement is
assumed to have variance 1, the varianceσ2 is updated as
follows: σ2

new = ( 1
σ2 + 1)−1.

2.4 Gaussian distribution in 〈I, Ix, Iy, It〉-space

The remainder of the models use the intensity and the
spatio-temporal derivatives of intensity in order to make a
more specific model of the background. The first model
of this type uses a Gaussian model of the distribution of
measurements in this space.

measurement:The 4-vector consisting of the intensity,
and the x,y,t derivatives of the intensity:~m = 〈I, Ix, Iy, It〉.

model parameters: The model parameters consist of
the mean measurement:~mµ, and the covariance matrixΣ.

score:The score for a given measurement~m is: f(~m) =
(~m − ~mµ)>Σ−1(~m − ~mµ)

estimation: For a set of background measurements

m1, . . . ,mk, the model parameters can be calculated as:

~mµ =
∑

i=1...k mi

k

Σ =
∑

i=1...k(mi − ~mµ)(mi − ~mµ)>

k − 1
.

online estimation: The mean value,~mµ, can be updated
by maintaining a count of the number of measurements so
far as in the previous model. The covariance matrix can be
updated incrementally:

Σnew =
n

n + 1
Σ +

n

(n + 1)2
(~m − ~mµ)(~m − ~mµ)>.

2.5 Multiple Gaussian distribution in 〈I, Ix, Iy, It〉-
space

Using several multi-dimensional Gaussian distributions
allows a greater freedom to represent the distribution of
measurements occurring in the background. An EM al-
gorithm is used to fit several (the results in Section 3 use
three) multi-dimensional Gaussian distributions to the mea-
surements at a particular pixel location.

model parameters:The model parameters are the mean
value and covariance for a collection of Gaussian Distribu-
tions.

score: The score for a given measurement~m is the dis-
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tance from the closest of the distributions:

f(~m) = mini(~m − ~mµi)
>Σ−1

i (~m − ~mµi)

online estimation: We include this model because its
performance was often the best among the algorithms con-
sidered. To our knowledge, however, there is no natu-
ral method for an incremental EM solution which fits the
streaming video processing model and does not require
maintaining a history of all prior data points.

2.6 Constant Optic Flow

A particular distribution of spatio-temporal image
derivatives arises at points which view arbitrary textures
which always follow a constant optic flow. In this case, the
image derivatives should fit the optic flow constraint equa-
tion: Ixu + Iyv + It = 0, for an optic flow vector(u, v)
which remains constant through time.

measurement: The 3-vector consisting of the x, y, t
derivatives of the intensity:~m = 〈Ix, Iy, It〉.

model parameters:The model parameters are the com-
ponents of the optic flow vectoru, v.

score: Any measurement arising from an object in the
scene which satisfies the image brightness constancy equa-
tion and is moving with a velocityu, v will satisfy the optic
flow constraint equation:Ixu+ Iyv + It = 0. The score for
a given measurement~m is the squared deviation from this
constraint:f(~m) = (Ixu + Iyv + It)2.

estimation: For a given set ofk background samples,
the best fitting solution for the optic flow is determined by
the solution to the linear system (note that here the optic
flow is assumed to be constant over time, not over space —
each of the background measurements consist of the values
of Ix, Iy, It for the same pixel ink different frames):

Ix1 Iy1
Ix2 Iy2
...

...
Ixk Iyk


[

u
v

]
= −


It1

It2
...
Itk


The solution to this linear system is the values for(u, v)

which minimize the sum of the squared residual error. This
residual error is a measure of how well this model fits the
data, and can be calculated as:

σ2 =
∑

i=1...k (Ixiu + Iyi + Iti)2

n
.

A map of this residual at every pixel is shown in Figure 2.
online estimation: The above linear system can be

solved using the pseudo-inverse. This solution has the fol-
lowing form:(

u
v

)
= −

( ∑
I2
x

∑
IxIy∑

IxIy

∑
I2
y

)−1 ( ∑
IxIt∑
IyIt

)

The components of the matrices of the pseudo-inverse
can be maintained and updated with the measurements from
each new frame. The best fitting flow field for the “intersec-
tion” data set is plotted in Figure 2.

2.7 Linear Prediction based upon time history

The following model model does not fit the spatio-
temporal image processing paradigm exactly, but is in-
cluded for the sake of comparison. The fundamental back-
ground model used in [6] was a one step Wiener filter. This
is linear predictor of the intensity at a pixel based upon the
time history of intensity at that particular pixel. This can
account for periodic variations of pixel intensity.

measurement:The measurement includes two parts, the
intensity at the current frameI(t), and the recent time his-
tory of intensity values at a given pixelI(t − 1), I(t −
2), . . . , I(t − p), so the complete measurement is~m =
〈I(t), I(t − 1), I(t − 2), . . . , I(t − p).

score: The estimation procedure gives a predictionÎ(t)
which is calculated as follows:

Î(t) =
∑

i=1→p

aiI(x, y, t − i)

Then the score is calculated as the failure of this predic-
tion:

f(~m) = (I(t) − Î(t)).2

estimation: The best fitting values of the coefficients of
the linear estimator,(a1, a2, . . . , ap) can be computed as the
solution to the linear system defined as follows:



I(1) I(2) . . . I(p)
I(2) I(3) . . . I(p + 1)
I(3) I(4) . . . I(p + 2)
...

...
...

...
...

...
... I(n − 1)




a1

a2

. . .
ap

=


I(p + 1)
I(p + 2)
I(p + 3)
...I(n)



online estimation: The pseudo-inverse solution for the
above least squares estimation problem has ap × p and a
1 × p matrix with components of the form:∑

i

I(i)I(i + k),

for values of k ranging from 0 to (p+1). Thesep2 + p com-
ponents are required to compute the least squares solution.
It is only necessary to maintain the pixel values for the prior
p frames to accurately update all these components. More
data must be maintained from frame to frame for this model
then previous models. The amount of data is independent,
however, of the length of the video input, so this fits with a
model of streaming video processing.
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3 Experimental Results

We captured video imagery from a variety of natural
scenes, and used the online parameter estimation processes
to create a model of background motion. Each model pro-
duces a background score at each pixel for each frame. The
mean squared deviation measure, calculated at each pixel,
gives a picture of how well a particular model applies to
different parts of a scene. Figure 2 shows the mean devia-
tion function at each pixel for different background models.

By choosing a threshold this background score can be
used to classify that pixel as background or foreground.
However, the best threshold depends upon the the specific
application. One threshold independent characterization of
the performance of the classifier is a Receiver Operator
Characteristic (ROC) Plot. The ROC plots give an indica-
tion of the tradeoffs between false positive and false nega-
tive classifications errors for a particular pixel.

3.1 Receiver Operator Characteristic (ROC)
Plots

ROC plots describe the performance (the “operating
characteristic”) of a classifier which assigns input data into
dichotomous classes. An ROC plot is obtained by trying all
possible threshold values, and for each value, plotting the
sensitivity value (fraction of true positives correctly identi-
fied) on the y-axis against the (1 - specificity) value (frac-
tion of false positive identifications) on the x-axis. A classi-
fier which randomly classifies input data will have an ROC
plot which is a line of slope 1, and the optimal classifier
(which never makes either a false positive or false negative
error) is characterized by an ROC curve passing through the
top left corner (0,1), indicating perfect sensitivity and speci-
ficity (see Figure 3. This study is a technology evaluation
in the sense described in [1], in that it describes the perfor-
mance characteristics for different algorithms in a compar-
ative setting, rather than defining and testing an end to end
system.

These plots are defined for five models, each applied to
four different scenes (shown in Figure 4). The y-axis of
each plot is the sensitivity: the probability that a measure-
ment from the background is correctly classified as back-
ground. The x-axis of each plot is (1-specificity): the
probability that a measurementnot from the background
is classified as background. Lacking an accepted model
of the distribution of〈I, Ix, Iy, It〉 measurements in natural
scenes, we choose to sample randomly from every location
(in space and time) in every video tested.

The ROC plots are created by using a range of different
threshold values. For each model, the threshold value de-
fines a classifier, and the sensitivity and specificity of this
classifier are determined using measurements drawn from

Figure 3. Receiver Operator Characteristic
(ROC) curves describe the performance char-
acteristics of a classifier for all possible
thresholds. A random classifier has a ROC
curve which is a straight line with slope 1.
A curve like that labelled (A), has a thresh-
old choice which defines a classifier which is
both sensitive and specific. The non-zero y-
intercept in the curve labelled (B) indicates a
threshold exists where the classifier is some-
what sensitive, but gives zero false positive
results.

our distribution. The plot shows, for each threshold, (1-
specificity) versus sensitivity. Each scene illustrated in Fig-
ure 4 merits a brief explanation of why the ROC plot for
each model takes the given form:

• The first scene is a traffic intersection, and we consider
the model for a pixel in the intersection that sees two
directions of motion. The intensity model and the sin-
gle Gaussian effectively compare new data to the color
of the pavement. The multiple Gaussian model has
very poor performance (below chance for some thresh-
olds). There is no single optic flow vector which char-
acterizes the background motions.

• The second scene is the same intersection, but we con-
sider a pixel location which views objects with a con-
sistent motion direction. Both the multiple Gaussian
and the multiple optic flow models have sufficient ex-
pressive power to capture the constraint that the mo-
tion at this point is consistently in one direction with
different speeds.

• The third scene is a tree with leaves waving naturally in
the wind. The model which uses EM to fit a collection
of Gaussians to this data is clearly the best, because it
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Figure 4. Each ROC plot represents the tradeoffs between the sensitivity of the classifier on the
(y-axis), and (1-specificity) on the (x-axis). The model is defined at one pixel (x,y position marked by
the hashes on the axes), and plots are shown for a model based upon: (I) intensity, (SG) Gaussian
distribution in (I, Ix, Iy, It)-space, (MG) multiple Gaussian, (OF) optic flow, and (ARfit) linear prediction
based upon intensity in prior frames.

is able to specify correlations between the image gradi-
ent, and the image intensity (it can capture the specific
changes of a leaf edge moving left, a leaf edge moving
right, the static leaf color, and the sky). The motions
do not corresponds to a small set of optic flow vectors,
and are not effectively predicted by recent time history.

• The final test is the tree scene from [6], a tree which
was vigorously shaken from just outside the field of
view. The frame to frame motion of the tree is large
enough that it is not possible to estimate accurate
derivatives, making spatio-temporal processing inap-
propriate.

Finally, included with this submission is a video show-
ing a brief pair of clips. First a clip including an ambulance,
followed by the deviation function for this clip, and second
a clip of regular traffic flow, followed by the deviation func-
tion for that part of the video. One frame of the deviation
including the ambulance is shown in Figure 2.

4 Conclusion

This work focusses on the goal of expanding the set of
background motions that can be subtracted from video im-
agery. Automatically ignoring common motions in natu-
ral outdoor and pedestrian or vehicular traffic scenes would
improve many surveillance and tracking applications. It is
possible to model much of these complicated motion pat-
terns with a representation which is local in both space and
time and efficient to compute, and the ROC plot gives ev-
idence for which type of model may be best for particular
applications. The success of the Multiple-Gaussians model

argues for research in incremental EM algorithms which fit
in a streaming video processing model.
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