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Abstract

Anomaly detection is the well-studied task of identifying
when data is atypical in some way with respect to its source.
In this work, by contrast, we are interested in finding pos-
sible descriptions of what may be causing anomalies. We
propose a new task, attaching semantics drawn from meta-
data to a portion of the anomalous examples from some data
source. Such a partial description of the anomalous data in
terms of the meta-data is useful both because it may help
to explain what causes the identified anomalies, and also
because it may help to identify the truly unusual examples
that defy such simple categorization. This is especially sig-
nificant when the data set is too large for a human analyst
to inspect the anomalies manually. The challenge is that
anomalies are, by definition, relatively rare, and so we are
seeking to learn a precise characterization of a rare event.
We examine algorithms for this task in a webcam domain,
generating human-understandable explanations for a pixel-
level characterization of anomalies. We find that using a
recently proposed algorithm that prioritizes precision over
recall, it is possible to attach good descriptions to a moder-
ate fraction of the anomalies in webcam data so long as the
data set is fairly large.

1. Introduction
An anomaly is a pattern or observation that does not con-

form to expected behavior. The standard anomaly detection
task is to identify such anomalies via an algorithm. The
anomalies are then subject to further investigation, for ex-
ample by a human analyst.
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But, consider that a peta-scale dataset may have tera-
scale anomalies, which are thus beyond the ability of a hu-
man analyst to digest. This occurs for example if you set a
threshold such as “something that occurs 0.1% of the time
is an anomaly.” Therefore, the usual approach to anomaly
detection is not adequate in that you cannot gather sufficient
information about what differentiates these anomalous data
points from the rest. We consider the problem of under-
standing what distinguishes these anomalies. Once anoma-
lies have been detected, we propose a way to find structure
within those anomalies to better understand them.

To reiterate, in our scenario, our notion of an “anomaly”
is based on a model of expected variations in a data set: we
define examples that don’t fit this model as anomalies. This
may lead to a complex and hard-to-understand anomaly de-
tection procedure. We show how to take such anomaly
classifications, and extract a partial, human-understandable
characterization of the anomalies.

As an example, suppose you have a collection of traf-
fic camera images, and you want to better understand what
comprises atypical traffic conditions. You could obtain
a collection of meta-data corresponding to these images.
Some attributes might include weather patterns, rush hour
periods, and holidays. We propose to consider the task of
identifying what meta-data conditions are associated with
anomalous data. For instance, the co-occurrence of rush
hour and snowy weather be correlated in anomalous images,
as these conditions could result in traffic delays, low visi-
bility, or accidents. There may be other anomalies that you
might be able to identify, but unable to easily explain from a
meta-data collection, such as a power outage, or snow cov-
ering the camera lens.1 These, you would perhaps take a
separate look at to see if they are relevant. This is the type
of application we envision.

In sum, given a list of meta-data attributes about a

1This last condition can be difficult because it is visually ambiguous,
and snowfall is neither necessary nor sufficient for the lens to be covered.
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dataset, differences in the meta-data can be used to infer an
informative relationship. Our anomaly explanation seeks to
attach semantics drawn from the image meta-data to a por-
tion of the anomalous images by returning a list of condi-
tions on meta-data that are associated with anomalies. Not
all meta-data attributes necessarily have conditions, as not
all are necessarily associated with anomalies.

In this work, we emphasize approximate validity in our
descriptions of anomalies. We want the conditions we ob-
tain to reliably indicate that data satisfying those conditions
will be anomalous. In this sense, our description of an
anomalous event would be informative: when these con-
ditions hold, the image should be an anomaly. Thus, we
aim to find a set of anomalies that are easily explainable.
These explainable anomalies may the focus of study, or they
may be more common anomalies that keep occurring, that a
user wants to filter out in order to focus on more interesting
cases.

While covering all of the anomalies may also be desir-
able, this was not the focus of our work. Some anoma-
lies are simply not easily explained, or we may not have
meta-data capturing their cause. For instance, the cam-
era could, unbeknownst to us, periodically malfunction. In
other cases, it may be that the rule used to make the anomaly
classification decision is simply too complex to be captured
by a human-understandable rule. In such a case, we inher-
ently must give up on some fraction of the anomaly expla-
nations for the sake of human interpretability. In addition,
the unexplainable anomalies could be events that we want
to focus on! That our meta-data set is insufficient to explain
an anomaly could itself be valuable information.

1.1. Summary of contributions and results

Our main contribution is that we propose a new task,
anomaly explanation using meta-data. The key feature of
this task is that it is cross-modal: we are seeking an explana-
tion of anomalies in one type of data, in this case anomalies
in image data, using conditions derived from other types of
data. This allows us to connect data with a strong, well-
understood semantics such as weather data, the date and
time, or image labels, to a pixel-level model of anomalies.
We believe such tasks appear well beyond the webcam do-
main we investigate here, as we discuss in Section 5.

Our second contribution is that we demonstrate that this
task can be solved for a standard notion of anomalies in
webcam data [16] by using algorithms that prioritize preci-
sion over recall, as long as the data set is relatively large,
for example, using a training set containing more than 80k
images. Given such a large training set, it was able to find
simple conditions that explain between 1/10 and 1/6 of the
anomalies with precision greater than 75%, and 1/30 of the
anomalies with precision greater than 97% (see Section 4
for more detailed results). Using smaller training sets of

size closer to 50k, none of the methods we considered, in-
cluding the baselines, were able to obtain greater than 60%
precision, and thus could only address this task weakly at
best. We note that since our task is inherently one of learn-
ing about events that occur by definition at most 3% of the
time, it is not surprising that they should require a large
training set (and indeed, also a large test set).

A tertiary contribution is that we conduct the first evalua-
tion of new algorithms, proposed by Juba [11] and Zhang et
al. [20], for such high-precision, low-recall tasks on a real-
world problem. These algorithms have ironclad but loose
worst-case theoretical guarantees, and Zhang et al. pre-
sented evidence that their algorithm significantly outper-
forms the earlier algorithm by Juba using synthetic data.
Our results confirm these findings: the algorithm by Zhang
et al. performed similarly to the top-performing but harder-
to-interpret baseline method (random forest) in the range of
interest, and the algorithm by Juba obtained significantly
worse results than all of the rest of the methods.

We found that the quality of explanations produced by
the meta-data we obtained is fair, but could likely be im-
proved. In particular, many of the image labels we obtained
(from Google Vision [2]) were questionable. We investi-
gated omitting these attributes from the data set and found
that although a baseline method could still succeed at the
task, the human-interpretable methods could not. Thus,
the image labels were crucial to the success of the human-
interpretable methods we considered. Image labeling was
not the focus of this work, but our qualitative results sug-
gest that improving the quality of the image labels should
substantially improve the quality of our explanations. We
leave this to future work.

1.2. Related Work

A number of other works have considered tasks that they
refer to as “anomaly explanation,” which differ significantly
from the task we consider. The main difference is that in
our work, the notion of what is an anomaly may be distinct
from what is an explanation. Our explanations are given
in terms of the meta-data attributes such as time, weather
conditions, and so on, whereas the anomaly classification is
derived from a model of the distribution of the pixels in an
image, which are only indirectly related to the meta-data.

In most other work, by contrast, anomaly explanation in-
volves finding the most influential attributes that caused the
anomaly classification rule to classify a given, single obser-
vation as an anomaly. For example, Micenková et al. [15]
use feature selection methods on a linear classifier to iden-
tify the significant features leading to an anomaly classifi-
cation. Pevny and Kopp [17] simply collect the branches
of the trees in a Random Forest [5] that lead to a point be-
ing classified as an anomaly to generate a DNF on a per-
example basis; Knorr and Ng [12] similarly search directly
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to find a minimal set of attributes possessed by an example
that cause a point to be classified as an anomaly. Blahut [4]
similarly identifies the features of a model obtained via in-
ductive logic programming for “anomalous” points that dif-
fer from the models obtained for “ordinary” points. Each
of these other techniques would select out “important” pix-
els to the anomaly classification decision (or worse, a for-
mula indicating that various sets of pixels may be impor-
tant) which may highlight a region of the image as be-
ing significant, but does not solve the task of interpreting
what it is about this portion of the image that is anoma-
lous. Furthermore, while explaining the classification of a
single point is relevant for some applications, it is a differ-
ent task from providing a summary of the most common
kinds of anomalies produced by the data source, which is
the task we address. Since we are most interested in the
case where the dataset is very large, it is not clear how to
solve our summarization task even given algorithms for the
task of explaining why individual examples were classified
as anomalies.

Kuo and Davidson [13] similarly solve a variant of the
anomaly explanation problem in which, like our problem,
a classification of which points are “anomalies” is given as
input, and the task is to find a rule that ideally separates the
anomalies from the ordinary images. The difference is that
for Kuo and Davidson (like Knorr and Ng [12] and the oth-
ers), this “rule” is actually given by a subspace of the fea-
tures in which the points labeled as anomalies are anoma-
lies in a standard, point-density sense: that is, the points that
are labeled as anomalies should have few neighbors in this
subspace, and the points that are labeled as ordinary should
have many neighbors. So, like in the other variants of the
problem (and unlike our problem), ultimately they are iden-
tifying a set of features that cause the points to be classified
as anomalous in the usual, model-based sense. Also, the
density of points with respect to these features must separate
all of the anomalies from all of the ordinary points, whereas
we are only seeking to explain a subset of the anomalies.

Babbar [3] casts the problem of anomaly detection and
description in terms of Bayesian networks. Here, anoma-
lies are taken to be low probability events based on the joint
probability distribution, after which they are scored to de-
termine if they are “genuine” or “trivial” anomalies based
on a user defined cutoff. As with most other methods dis-
cussed earlier, this method also aims at picking out the at-
tributes which contribute to the standard anomaly classifi-
cation; again, this is unlike the method we are proposing.
We note that one could set up a larger Bayes net that en-
compassed the meta-data attributes as well, and select out
sets of attributes that have near-zero probability conditioned
on a non-anomalous classification. This would address our
task, and the key question with such an approach is how
well it can be made to scale. But again, we stress that this

was not the approach considered by Babbar.
Lastly, it should be noted that in our experiments, al-

though we will use Random Forest as a baseline, we will not
use Pevny and Kopp’s actual Random Forest-based method
for the individual examples. As mentioned earlier, the ob-
jectives in their work are slightly different as they are look-
ing at explaining a specific point as an anomaly, whereas we
want to characterize a large class of anomalies.

2. Dataset
The data combines webcam image data with meta-data

collected from a variety of sources. These meta-data con-
cern the semantic contents of the image (i.e., image labels
obtained via object recognition) and local conditions when
the image was collected.

We use webcam data from four locations in the AMOS
database of webcams [9], which takes a photo from each
webcam approximately every thirty minutes. We selected
these locations based on three criteria: first, they are very
stable; second, they have a relatively large number of im-
ages for the AMOS collection; and third, they are located
in the USA, and so data on the weather and holidays at
these locations was readily available from common sources.
For each camera, there were between 73847 and 131873
images, and the meta-data ranged from 195 to 335 dimen-
sions. The locations are a pond (camera #269), Lake Mono
(#4312), the Moody Gardens theme park (#623), and a
Toledo highway (#21656). The actual longitude and lati-
tude of the cameras have been estimated using prior work
by Jacobs et al. [10].

To gather meta-data, we use the Google Vision API [2],
the SunCalc API [1], the Python holidays library [18], and
data from The Weather Channel [19] to generate a binary
and nonbinary meta-data collection. The binary version is
intended to provide a “summary” of nonbinary variables for
those methods that require all variables to be binary. The
scripts we used and the meta-data apart from the Weather
Channel data is available at bitbucket.org/pastateam/pasta.
(The Weather Channel data is available for purchase from
the company.)

We use the label detection feature in the Google Vision
API to obtain a list of objects found in images. Each la-
bel was a variable. If an image did not receive that label,
then the variable takes the value 0. If it received the label,
the variable takes the value 1 in the binary dataset, and the
value of the score in the nonbinary dataset. The score is a
value between 0 and 1 that represents the confidence that
the label is relevant to the image. Google Vision failed to
run on a small number of the images. For these, we mark
all Google Vision variables as 0 and for all images, we ap-
pend an additional variable to signify whether or not Google
Vision successfully ran.

We use the SunCalc API to create a list of binary vari-
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ables for each image based on whether or not it was taken
within a certain sunlight phase, for example, during sunrise.
We use data from The Weather Channel to generate binary
and nonbinary variables based on weather phenomena, in-
cluding precipitation and cloud cover. Lastly, we include
binary labels for weekends and holidays.

Figure 1 shows a sample of the meta-data labels gener-
ated for an image from camera #269. Note that we also
included the absence of a particular label that was found in
other images as a feature, in this case the absence of the la-
bels “weekend”, “freezing”, and “coast.” A complete list of
the meta-data attributes we used for each camera is included
in the bitbucket repository.

dry, sea, humid, not weekend, landscape, cloud, not freez-
ing, plain, mountain, lake, cloud, not coast, reservoir, sky,
...

Figure 1: A subset of meta-data labels for an image from
camera #4312

3. Procedure
We considered anomaly classifications produced by prin-

cipal component analysis (PCA). Following prior work
[16], we defined anomaly scores by the reconstruction er-
ror using three principal components, and defined the top
3% scoring images as anomalies. We confirmed that there
was no significant improvement to using five, ten, or twenty
components, nor was there any significant change to our
results when defining 1%, 2%, 4%, or 5% of images as
anomalies. For time intervals where the camera changed
resolutions or moved, we obtained independent PCA de-
compositions. These changes would cause predictable re-
construction errors that would have detracted from the goal
of finding a diverse set of meta-data explanations.

We evaluated methods of producing rules that select
a subset of the images from the camera based solely on
the meta-data. We can think of this selection as a clas-
sification of images as anomalous or not, that is allowed

to make false-negative predictions but (ideally) not false-
positive predictions. Thus, the key metrics we considered
were the precision and coverage of the explanations gen-
erated, where the coverage simply refers to the proportion
of images selected. If the precision is high, the coverage
is essentially an unnormalized version of the recall. (That
is, we can essentially obtain the recall by dividing by 3%,
which by definition is the proportion of the data set that is
classified as an anomaly.) Thus, 100% precision and 3%
coverage is ideal.

We evaluated four algorithms for this task: the Pa-
tient Rule Induction Method (PRIM) [8, 7, 6], random
forests [5, 14], and two new algorithms from the ar-
tificial intelligence community that prioritize precision
over recall, and thus were good candidates for this task.
We used standard implementations of PRIM and ran-
dom forest, and the implementations of the new meth-
ods are available at bitbucket.org/pastateam/pasta and
github.com/kikumaru818/RedblueSetCover.

The first of the new methods, Tolerant Elimination, was
introduced by Juba [11]. The algorithm seeks to find a k-
DNF explanation for some fixed k, i.e., an OR of ANDs of
k “literals”—our Boolean attributes or their negations. It
forms a working hypothesis that initially includes all possi-
ble terms of size k. It then tries to narrow this k-DNF down
to the best definition by iteratively eliminating terms that
have more false-positives than a bound calculated based on
a user defined tolerance parameter and the predicted proba-
bility of hitting an outlier. The algorithm iteratively reduces
the target coverage bound until it either finds a formula that
approximately achieves the target coverage, or determines
that the bound is too small for statistical validity. These
tight bounds restrict the algorithm, leading it to report a very
high error rate in comparison to the other algorithms used
for evaluation on most datasets because it was not able to
eliminate enough terms.

Low-degree Greedy Cover is the second new algorithm,
due to Zhang et al. [20], for the same task as tolerant elim-
ination. This algorithm finds a k-DNF with high preci-
sion by iteratively ignoring terms that exceed a given false-
positive threshold, ignoring points that are false-positives
for too many terms (using a corresponding threshold), and
using a greedy selection of terms to classify a specified frac-
tion of the points as positive. By ignoring the terms and
points that may “share too much,” the errors due to each
term can be treated roughly as fixed costs: by carefully
choosing these thresholds, they find that the new method
has quadratically smaller error than Tolerant Elimination in
the worst case. Moreover, they found that this new algo-
rithm substantially outperformed Tolerant Elimination on a
synthetic benchmark. To our knowledge, neither algorithm
had been used for any real-world problem until the present
work.
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In both of these methods, the size of the terms, k, is a
parameter that controls a trade-off between the expressive
power of the explanations we can generate, and the run-
ning time and amount of data needed. Juba and Zhang et
al. provide theoretical guarantees for their effectiveness at
the statistical task, with running time and data requirements
both growing exponentially with k. Due to the running time
in practice, it was difficult to scale these methods beyond
k = 2 while using the full set of attributes, and so our ex-
periments only consider k = 1 and k = 2.

PRIM [8, 7] is another well-known method for such sta-
tistical tasks that produces essentially a DNF as output (and
is thus interpretable), although it does not have the same
guarantees. Specifically, it finds a region of the input asso-
ciated with high-valued values of a dependent output vari-
able. We ran PRIM once with the real-valued meta-data
and PCA reconstruction errors and another time with real-
valued meta-data and binary representations of anomalies.
PRIM has a peeling step to remove non-anomalous data and
an optional pasting step to correct for over-peeling. Because
pasting failed to complete on a cluster with a 2.3 GHz pro-
cessor and 192GB RAM after 14 days, we omitted this step.

We also felt it was useful to compare these methods
to some established state-of-the-art baseline method for
such high-precision classification without regard for inter-
pretability. We chose Random Forests [5] since this is
a well-known baseline that has seen use as an input for
other kinds of anomaly explanation, and thus we had rea-
son to believe it would be effective. Specifically, Pevny and
Kopp [17] use Random Forests to produce per-example ex-
planations of anomalies, in contrast to our explanations that
describe conditions that capture the variety of anomalies ob-
served on a given camera. We simply used the standard
Random Forest classifier as a baseline, which we anticipate
to be more accurate but surely less interpretable than the ac-
tual method used by Pevny and Kopp. For this method we
used binary representation of both meta-data and anomalies.

4. Results
We evaluated the four methods described in the previ-

ous section on our four data sets using a three-fold cross-
validation. Thus, for each fold we used 2/3 of the data
set, including both anomalous and non-anomalous data, for
training; used the remaining 1/3 as a test set; and averaged
the three results.

4.1. Semantic Explanations
We draw some examples of explanations from the pond

location (camera #269). Two non-anomalous images from
this camera are shown in Figure 2.

We first examine the terms generated as explanations of
anomalies by the algorithm of Zhang et al. [20] run using
2-DNF with 0.3% coverage; it obtained a precision error of

(a) 4.37th percentile (b) 92.91st percentile

Figure 2: Non-anomalous images for camera #269 with per-
centile score of its PCA reconstruction error. The images
with anomaly scores greater than 97 percentile are classi-
fied as “anomalies.”

1.5% (i.e., out of the points satisfying the condition returned
by the algorithm, only 1.5% were not anomalies). Since the
data set only contains 3% anomalies, this condition captures
essentially 1/10 of the anomalies. The four terms describing
the condition, together with examples of images satisfying
those individual terms, appear in Figure 3.

(a) “panorama” & “winter” (b) “community” & “frost”

(c) “rain and snow” & “holiday” (d) “branch” & “dry”

Figure 3: Terms covering 0.3% of images (1/10 of the
anomalies) with 1.5% test precision error for camera #269,
illustrated by example images. The term in bold, 3a, was
contained in all of the three cross-validation runs.

We can see in Figure 3 that all three cross-validation runs
contained the term “panorama” and “winter,” depicted in
Figure 3a. Indeed, this single term achieved 0.2% coverage
(1/15 of the anomalies) and test precision error was approx-
imately 0%. Four more images satisfying this term can be
seen below, in Figure 4. We believe that this is a reasonable
description of these anomalous, snow-covered scenes.

Indeed, three out of four of the terms in Figure 3 reason-
ably describe the anomalous image, but one, “branch” and
“dry” seen in 3d, is not so reasonable. (Further examples of
images labeled by the other two terms are available at bit-
bucket.org/pastateam/pasta.) All 62 images that had these
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Figure 4: A subset of the 235 images from camera #269
that contain the terms “panorama” and “winter,” a 2-DNF
explanation generated by the algorithm of Zhang et al. [20].

labels were marked as anomalies, so from a purely quantita-
tive standpoint, this tag is quite good. Four of these images
can be seen below, in Figure 5. A further 16 of these im-
ages are available at bitbucket.org/pastateam/pasta. These
images seem to be distinguished by a flat white landscape
that gives no sense of depth, perhaps leading the tree to be
mislabeled as a “branch.”

Figure 5: A subset of the 62 images from camera #269 that
contain the terms “branch” and “dry,” a 2-DNF explanation
generated by the algorithm of Zhang et al. [20].

The 36 terms generated by the algorithm of Zhang
et al. [20] for 0.5% coverage contain the terms that ap-
peared in 0.3% coverage, in Figure 3, together with the
terms displayed in the Supplementary Material at bit-
bucket.org/pastateam/pasta (Figures 1 and 2). In this sce-
nario, most of the scenes detected as anomalous were win-
ter scenes or image encoding errors. The labels largely re-
flect this: many of the terms selected, like those illustrated
in Figure 3, include terms referring to snow, ice, or winter.
Similarly, many of those capturing an image encoding error
do give a rough characterization of the error: for example,

the labels “purple” and “yellow” capture, respectively, im-
ages that have a purple and yellow tint due to encoding er-
rors; meanwhile, labels like “texture” or “macro photogra-
phy” capture images that are heavily blurred. But, as previ-
ously mentioned, the quality of explanations was negatively
affected by image label quality. For example, for this cam-
era, we see labels such as “farmhouse” and “ice boat” that
do not seem to refer to anything that appears in the image.

We also examine the terms obtained for camera #623, the
Moody Gardens theme park. A couple of ordinary images
for this camera are shown in Figure 6.

(a) 91.42nd percentile (b) 21.26th percentile

Figure 6: Non-anomalous images for camera #623 with per-
centile score of its PCA reconstruction error.

The 2-DNF explaining 0.1% of the images (1/30 of the
anomalies) for camera #623 is shown in Figure 7. Although
we were able to obtain a similarly high rate of precision
for covering 0.1% of the images (2.2% test precision er-
ror), as a consequence of the quality of the image labels,
the anomalies are harder to interpret for this camera. For
example, the image in Figure 7c is actually an anomaly be-
cause the lamps in the parking lot are not lit, but the image
has been labeled by the unusual term “gadget” that has no
clear relationship to the image’s contents. (We note that this
term did not appear in some of the cross-validation runs.)
Further examples of images labeled by all four of these
terms are included in the Supplementary Material at bit-
bucket.org/pastateam/pasta. The formulas covering 0.3%–
0.5% of the images contained 84 and 98 terms, respectively,
and are not included here.

For the remaining two cameras, as we will discuss in
more detail in the next section, no method (including the
baselines) could obtain a satisfactorily high-precision char-
acterization of the anomalies given the data available. We
believe that this is due to the training set being too small.
These cameras also suffered from poor image label qual-
ity; for example, in the Toledo highway location (camera
#21656), a truck was mistakenly identified as a “jet air-
craft.” Thus, we found that the overall quality of the se-
mantic explanations was poor for these cameras. We have
included some example images for these cameras at bit-
bucket.org/pastateam/pasta, but we do not further discuss
the contents of the rules found to describe the anomalous
images for these cameras.
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(a) “text” & “image”
(b) “bird’s eye view” &

“peninsula”

(c) “gadget” & “weekend”
(d) “horizon” & “bird’s eye

view”

Figure 7: Terms covering 0.1% of images (1/30 of the
anomalies) with 2.2% test precision error for camera #623,
illustrated by example images. The terms contained in all
of the three cross-validation runs are in bold.

4.2. Quantitative Comparison of Methods

The performance of the methods on the four data sets are
shown in Figure 8. Actually, the performance of Juba’s [11]
Tolerant Elimination algorithm is not included in these
graphs. It had an error rate ranging from 92% to 98% for all
cameras and anomaly percentages, which was significantly
worse than what could be achieved using the other three
methods.

We stress that by definition, the data only contains 3%
anomalies. Thus, any classifier that covers, say, 6% of the
data necessarily has a precision error of greater than 50%.

Camera Precision error with
1% coverage

Precision error with
3% coverage

#623 0.3930 0.7713
#269 0.1366 0.4082
#4312 0.7603 0.8521
#21656 0.8579 0.9110

Table 1: Precision error rates obtained by Low-degree
Greedy Cover with 3% of elements defined as anomalies

For this task it appears that having a larger data set is ex-
tremely important for generating a set of explanations with
low precision error rates. For instance, cameras #623 and
#269 have 131873 and 123886 images respectively (Fig-
ure 8a,b), whereas cameras #4312 and #21656 have 75453
and 73847 images respectively (Figure 8c,d), and the latter

Figure 8: Precision error vs. coverage plots. (a) and (b) are
larger datasets with >80k training examples; (c) and (d) are
smaller datasets with ≤50k training examples. Observe that
no method obtains precision substantially greater than 60%
for the smaller datasets, while for the larger datasets we can
obtain greater than 75% precision as long as we only fit a
fraction of the anomalies.
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have higher error rates as shown in Table 1 for the Low-
degree Greedy Cover algorithm [20] and in the precision
error vs. coverage graphs. Moreover, for smaller coverage
rates, the plots show that the algorithms are overfitting, as
evidenced by the increase in precision error as the target
coverage decreases. Note that in principle, a smaller cov-
erage should lead to a lower precision error, so the increase
in error rates cannot be inherent to the task. That such error
might occur due to overfitting is unsurprising: for cameras
#4312 and #21656, 1/30 of the anomalies correspond, re-
spectively, to 51 and 50 images in the training set. We cer-
tainly do not expect reliable statistical estimation from such
small numbers of positive examples, and on the contrary we
expect overfitting should occur. In any case we observe that
for the larger data sets, it was possible to obtain sufficiently
high precision to obtain high confidence that the rules we
found really do indicate that an image will be an anomaly,
as long as we aim to explain a moderately small fraction of
the possible anomalies.

Although Figure 8 demonstrates that Low-degree
Greedy Cover is quantitatively competitive with random
forest on cameras #269 and #623 where sufficient data was
available, we were occasionally disappointed by the qual-
ity of the explanations using attributes produced by Google
Vision when these contained spurious tags. We thus also
evaluated the performance of the methods on the four data
sets omitting the labels obtained from Google Vision, seen
in Figure 9. We were interested in whether or not explana-
tions relying on the better grounded data about the weather,
time of day, and so on could provide higher-quality expla-
nations. The performance of our baseline method, Ran-
dom Forest, demonstrates that there is indeed enough in-
formation in the meta-data to perform the task reasonably
well. But, unfortunately, the human-understandable meth-
ods did not succeed at extracting the relevant information
from these attributes. (Plots for cameras #4312 and #21656,
again reflecting the lack of training data can be found at bit-
bucket.org/pastateam/pasta.) It is an interesting open ques-
tion whether or not some other human-interpretable method
can succeed in this setting. We leave this to future work.

5. Extensions and Further Applications
We believe that this task has applications well beyond

the webcam domain we investigated here. For example,
there are well-known models of typical data (and hence,
also anomalies) in time-series data such as stock market in-
dices. In this context, supposing we are given a source of
meta-data such as the day’s news articles or messages on a
social network from the previous hour, we could attempt to
produce a summary of what events may have corresponded
to anomalously large (or small) stock movements in terms
of keywords or topics appearing in these sources. Note that
the stock price changes themselves have a rather limited se-

Figure 9: Precision error vs. coverage plots for data sets
omitting Google Vision data for cameras #269 and #623.
The Random Forest baseline can achieve low precision error
but none of the other, interpretable methods do.

mantics, and thus the meta-data is essential for such a task.
In the future, we hope to investigate such further applica-
tions.

Acknowledgements
We thank our reviewers for their constructive comments

and suggestions.

References
[1] V. Agafonkin. Suncalc api.

https://github.com/mourner/suncalc, 2015.
[2] Alphabet. Google vision api.

https://cloud.google.com/vision/, 2016.
[3] S. Babbar. Detecting and describing non-trivial outliers us-

ing bayesian networks. In Proc. Cognitive Computing and
Information Processing (CCIP), pages 211–222, 2015.

[4] V. Bahut. Outlier detection and explanation. Bachelor’s the-
sis, Faculty of Informatics, Masaryk University, 2015.

[5] L. Breiman. Random forests. Machine learning, 45(1):5–32,
2001.

[6] J.-E. Dazard, M. Choe, M. LeBlanc, and J. Rao. R package
primsrc: Bump hunting by patient rule induction method for

1923



survival, regression and classification. In JSM Proceedings.
Section for Statistical Programmers and Analysts. American
Statistical Association-IMS, Seattle, WA, USA, 2015.

[7] J.-E. Dazard and J. Rao. Local sparse bump hunting. J. Comp
Graph. Statistics, 19(4):900–929, 2010.

[8] J. H. Friedman and N. I. Fisher. Bump hunting in high-
dimensional data. Statistics and Computing, 9(2):123–143,
1999.

[9] N. Jacobs, N. Roman, and R. Pless. Consistent temporal vari-
ations in many outdoor scenes. IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 1–6,
2007.

[10] N. Jacobs, S. Satkin, N. Roman, R. Speyer, and R. Pless. Ge-
olocating static cameras. In Proc. International Conference
on Computer Vision (ICCV), pages 1–6, 2007.

[11] B. Juba. Learning abductive reasoning using random exam-
ples. In Proc. AAAI Conference on Artificial Intelligence
(AAAI), pages 999–1007, 2016.

[12] E. M. Knorr and R. T. Ng. Finding intensional knowledge
of distance-based outliers. In Proc. Very Large Data Bases
Conference (VLDB), pages 211–222, 1999.

[13] C.-T. Kuo and I. Davidson. A framework for outlier descrip-
tion using constraint programming. In Proc. AAAI Confer-
ence on Artificial Intelligence, pages 1237–1243, 2016.

[14] A. Liaw and M. Wiener. Classification and regression by
randomforest. R news, 2(3):18–22, 2002.
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