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ABSTRACT

We address the problem of segmenting multiple similar

objects by optimizing a Chan-Vese-like [1] functional with

respect to a mixture of level set functions. We solve the vari-

ational formulation under this model allowing for similarity

transforms. This allows shape priors to be enforced even in

the presence of mutual occlusion, lifting the limitation in [2].

We show numerical results on example images to demonstrate

the promise of our approach.

Index Terms— image segmentation, variational methods,

shape priors, level set methods, mutual occlusion

1. INTRODUCTION

A fundamental problem in image processing is segmenting

an image into regions and their boundaries. The level set

method [3] has become an important tool in this task, because

it is able to naturally present shapes with complex boundaries

and topologies. In recent years, level set methods have been

extended to enforce priors on the extracted shapes, which are

particularly important in medical image segmentation. This

paper extends this to the common cases where there are mul-

tiple known objects and there is mutual occlusion.

An important variational approach underlying level set-

based segmentation method is derived from the Mumford-

Shah functional [4], in which image segmentation is posed

as finding an optimal piecewise smooth approximation of the

given image and a set of boundaries with minimal length be-

tween contiguous regions. Since the seminal work of Osher

and Sethian [3], level set-based active contours [5, 6, 7] have

been increasingly popular in image segmentation. A level set

implementation of piecewise constant Mumford-Shah func-

tional was proposed in [1]. These models all require that some

low level features distinguish the region of interest from the

background, and often use edges consistency or homogene-

ity of intensity, color, texture or motion. They may fail to

segment meaningful objects from images in the presence of

missing or misleading information due to noise, clutter and

occlusion. Searching for objects whose shape is known a pri-

ori, what we call familiar objects, can be improved by incor-

porating the prior on the shape model into the level set frame-

works [8, 9, 10, 11] as additional shape-driven term.

A limitation of these approaches is that they introduce the

shape priors into level set framework in such a way that only

one object can be segmented per image. They do not per-

mit the simultaneous segmentation of multiple independent

familiar objects, except for [2] which explicitly labels exclu-

sive image regions for each independent object, therefore fails

if objects overlap. In this context, our goal is to segment all

objects of familiar shape simultaneously even in the presence

of mutual occlusion. This work is, to the best of our knowl-

edge, the first to apply a shape prior to extracting multiple,

potentially overlapping shapes in the scene.

The idea of this work is to solve for a level set as a mixture

of basis functions. Using multiple basis functions allows the

extraction of multiple objects; constraining each basis func-

tion to be consistent with a shape prior improves the extrac-

tion of familiar objects, and an extra coupling term is added

between mixtures to keep the basis components from evolv-

ing to be identical with each other.

The remainder of this paper is organized as follows: in

Section 2, we review the level set formulation of the Mumford-

Shah functional proposed by Chan and Vese [1], as well as

the segmentation model integrating shape priors. Section 3

presents our main contribution. Section 4 demonstrates our

experimental results. Conclusions and future work are pre-

sented in Section 5.

2. BACKGROUNDS

2.1. Region-based Segmentation with Level Sets

The basic idea of the level set method is to implicitly represent

contours C in the image plane as the zero-level of a Lipschitz

function φ : Ω → R.

In [1], Chan and Vese proposed a level set-based formu-

lation of the Mumford-Shah functional. In particular, a two-

phase segmentation of an image f can be generated by mini-

mizing the following functional:

ECV (c1, c2, φ) = λ1

∫
Ω

|f − c1|2Hφ dx

+λ2

∫
Ω

|f − c2|2(1 − Hφ)dx + µ

∫
Ω

|∇Hφ|dx (1)

where Hφ denotes the Heaviside step function of φ, and scalar
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variables c1 and c2 model the intensity values of the image re-

gions inside and outside C respectively, and may be updated

as the estimate of the contour C is updated. The first two

terms enforce a minimal intensity variance in the segmented

regions, and the last term penalizes a large length of the sep-

arating boundary.

Using the calculus of variations, one can recover the fol-

lowing evolution equation which incorporates an artificial time

parameter t and converges to minimize ECV (φ):

∂φ

∂t
= δφ

[
µ∇ ·

( ∇φ

|∇φ|
)
− λ1(f − c1)2 + λ2(f − c2)2

]
(2)

where δφ is the dirac delta function of φ. The scalars c1 and

c2 are updated in alternation with the level set evolution to

take on the mean intensity values of the input image f with

the regions φ > 0 and φ < 0, respectively.

2.2. Incorporating Shape Priors

In many applications of image segmentation, some prior knowl-

edge about the shape of the expected objects is available. A

straightforward incorporation of the shape prior in the Chan-

Vese segmentation model can be generally formalized as a

modification to the Chan-Vese energy functional:

E(c1, c2, φ) = ECV (c1, c2, φ) + νEshape(φ) (3)

where ν > 0 is a weighting parameter which determines the

influence of the shape prior, and Eshape is the shape con-

straint energy that restricts the space of possible shapes to

segment. Specifically, Eshape penalizes the dissimilarity be-

tween the shape embodied by the evolving level set function

φ and the shape prior.

The shape prior can be derived from a single or a col-

lection of reference shapes, and is implicitly represented by

a signed distance function [12, 9] . For simplicity, we will

only consider a single training shape in our following pre-

sentation. Nevertheless, our proposed model can be easily

extended to more involved statistical shape priors of the form

given in [8, 11].

Even when the shape of objects of interest is known, of-

ten their scales and poses are unknown. We can encode the

similarity transform A = (s, θ, T ) of the shape prior ψ0 as:

A(x) = s

[
cos(θ) sin(θ)
− sin(θ) cos(θ)

]
x + T,

ψ(x) =
1
s
ψ0(A(x)), ∀x ∈ Ω (4)

where s > 0 is scaling factor, θ represents the rotation angle

between shapes, and T is the displacement. Accordingly, the

Eshape can be simply formulated as follows:

Eshape(φ, ψ) =
∫

Ω

(φ(x) − ψ(x))2dx (5)

Since ψ is related to ψ0 by some similarity transformation

A, we may also write Eshape in terms of ψ0 with unknown

variables (s, θ, T ).
The above model introduces a shape prior in such a way

that only objects of interest similar to the shape prior can be

recovered, and all unfamiliar image structures are suppressed.

Therefore, it enables recovery of the preferred object in the

presence of large image artifacts. However, this formulation

solves for a single level set consistent with the shape prior. If

there are several objects of such shape in the scene, this model

finds at most one, and may not find any.

To simultaneously segment an image consisting of multi-

ple objects of a familiar shape, Cremers et al. [2] introduced a

multiphase dynamic labelling scheme, in which multiple pre-

ferred objects can be recovered by jointly generating a seg-

mentation (by a level set function) and a recognition-driven

partition of the image domain (by a vector-valued labelling

function) which indicates where to enforce certain shape pri-

ors. However, this approach restricts each pixel to be associ-

ated with only one object. Therefore, in cases of mutual oc-

clusion, this approach will fail to recover all familiar objects.

In the next section, we cope with this limitation by present-

ing a novel method in a way which permits the simultaneous

segmentation of multiple independent familiar objects even in

the presence of mutual occlusion.

3. OUR METHOD

Now we consider a given image consisting of multiple ob-

jects {O1,O2, · · · ,On} of familiar shape. Instead of parti-

tioning image domain into mutual exclusive regions, we al-

low each pixel to be associated with multiple objects or the

background. Specifically, we try to find a set of characteristic

functions {χi} such that:

χi(x) =
{

1, if x ∈ Oi;

0, otherwise
(6)

To define {χi}, we associate one level set per object in such

a way objects are allowed to overlap with each other within

the image. These level set components may both be positive

on the area of overlap, and enforce the prior on the shapes

of objects extracted from the image. We first consider the

case of segmenting two objects within an input image, then

we generalize to simultaneous segmentation of n independent

familiar objects.

Two familiar objects. Suppose we are given an image f with

two familiar objects, and for simplicity, assume that these are

consistent with the same shape prior ψ0 and share a similar

intensity value. Then simultaneous segmentation of two fa-

miliar objects with respect to the given shape prior is solved
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by minimizing the following energy functional:

E(c1, c2, Φ, Ψ) = λ1

∫
Ω

(f − c1)2Hχ1∨χ2 dx

+ λ2

∫
Ω

(f − c2)2(1 − Hχ1∨χ2) dx

+ µ
2∑

i=1

∫
Ω

|∇Hφi
|dx + ω

∫
Ω

Hχ1∧χ2 dx

+ ν
2∑

i=1

∫
Ω

(φi − ψi)2dx (7)

with

Hχ1∨χ2 = Hφ1 + Hφ2 − Hφ1Hφ2 , Hχ1∧χ2 = Hφ1Hφ2

where Φ = (φ1, φ2) and Ψ = (ψ1, ψ2). The fourth term

penalizes the overlapping area between the two segmenting

regions, and it prevents the two evolving level set functions

φ1 and φ2 from becoming identical.

Minimizing the energy functional (7) alternatingly with

respective to the dynamic variables, yields the associated Euler-

Lagrange equations, parameterizing the decent direction by

an artificial time t > 0 as follows:

∂φi

∂t
= δφi [

(−λ1(f − c1)2 + λ2(f − c2)2
)
(1 − Hφj )

+ µ∇ ·
( ∇φi

|∇φi|
)
− ωHφj ] − 2ν(φi − ψi),

∂θi

∂t
= 2ν

∫
Ω

(φi − ψi)(∇ψi · ∇θAi) dx,

∂Ti

∂t
= 2ν

∫
Ω

(φi − ψi)(∇ψi · ∇T Ai) dx,

∂si

∂t
= 2ν

∫
Ω

(φi − ψi)(−ψi

s
+ ∇ψi · ∇sAi) dx,

i, j ∈ {1, 2}, i �= j (8)

where ψi = ψ0(Ai(x))/si. Similar to the Chan-Vese model,

we update c1, c2 for each iteration as follows:

c1 =

∫
Ω

fHχ1∨χ2 dx∫
Ω

Hχ1∨χ2 dx
, c2 =

∫
Ω

f(1 − Hχ1∨χ2) dx∫
Ω
(1 − Hχ1∨χ2) dx

(9)

General cases of n > 2. Our proposed method can be gen-

eralized for simultaneous segmentation of n > 2 independent

objects familiar to the shape prior ψ0. The energy in this more

general case will be:

E(c1, c2, Φ, Ψ) = λ1

∫
Ω

(f − c1)2H∨n
i=1χi dx

+ λ2

∫
Ω

(f − c2)2(1 − H∨n
i=1χi

) dx

+ µ
n∑

i=1

∫
Ω

|∇Hφi
|dx + ω

∑
i �=j

∫
Ω

Hχi∧χj
dx

+ ν
n∑

i=1

∫
Ω

(φi − ψi)2dx (10)

Fig. 1. Starfish example. (a) an image consisting of two starfish

with horizontal strips. (b) the shape prior. (c) the result from the

method proposed in [2]. (d) our method: the final segmented contour

for each starfish is illustrated as yellow and green respectively.

where Φ = {φi} and Ψ = {ψi}. Minimizing the func-

tional (10) with respect to the unknowns can be obtained in

the same fashion as in Equation (8) and (9).

A multi-resolution approach. When allowing the shape prior

to be invariant to similarity transforms, the computational com-

plexity may be high. A coarse-to-fine approach [13], which

begins the process on a low resolution image, allows for an

efficient implementation. The algorithm may be summarized

as three steps: (1) initialize the input image and shape prior

at the lowest resolution; (2) at the current resolution level, do

gradient decent optimization of the functional (10) with re-

spect to the unknowns c1, c2, Φ and Ψ , for a defined number

of iterations or until convergence; (3) increase image resolu-

tion as well as the resolution of evolving level sets, and repeat

the previous until the finest level of resolutions is done.

4. EXPERIMENTAL RESULTS

In this section we present the experimental results from our

proposed segmentation model on various synthetic and real

images. We use through our experiments the following pa-

rameter settings: λ1 = 1, λ2 = 2, µ = 0.2, ω = 0.5 and

ν = 0.5 unless otherwise stated. The automatic selection of

optimal parameters is under our future investigation.

Consider the image shown in Fig. 1.a of two overlapping

starfish cluttering with horizontal strips. Only the contour in

Fig. 1.b is known in advance and used as shape prior. Fig. 1.c

shows the result obtained with the model [2] for two known

objects. Due to the mutual occlusion, the starfish favored

by the image data is correctly segmented, while the other

one is suppressed by the competition process of dynamic la-

belling. Our result is demonstrated Fig. 1.d, in which the

final segmented contours for both starfish are drawn as yel-

low and green respectively. This demonstrates that our pro-

posed model can correctly recover from background clutter

both starfish which occlude one another. Figure (2) shows

our experiment on segmenting jets on formation flying. In

this case, three jets are present in the scene and perceptually

share a same shape which is known in advance. Note almost

half part of the jet in the middle is occluded by the front one,

which makes the segmentation task very challenging. Our

model successfully extracted and reconstructed all three jets

from the image.
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Fig. 2. Jets example. The top row shows an image of three jets on

formation flying and the corresponding segmentation results from

our model. On the bottom are respectively the plots of the final level

set functions φ1∼3 with zero iso-contour overlaid.

Fig. 3. Missing parts example. The left two frames shows the input

image of two overlapping toys with missing parts and the segmenta-

tion results from our proposed model. The right two frames illustrate

respectively the final level set functions φ1∼2 with zero iso-contour

overlaid.

The last example as in Fig. (3) demonstrates that our method

successfully recovered two objects with different shape pri-

ors. The image contains two overlapping toys with missing

parts. The simultaneous segmentation of both toys is obtained

by extending our model to integrate multiple competing shape

priors. The toy on the right is correctly reconstructed despite

prominent occlusion by the one in front.

In the experiments, we found that our method becomes

more sensitive to the initial contour position on more compli-

cated images. This is due to the non-convexity of the Mumford-

Shah functional from which our model stems. Another reason

is that our similarity transform optimization is also a local op-

timization scheme. Moreover, the complexity becomes high

when the number of objects increases. Improving these is a

subject of our further investigations.

5. CONCLUSION

In this paper, we present a novel level set based variational

model for simultaneous segmentation of multiple similar ob-

jects using shape prior. In contrast to existing shape prior

segmentation models, our method permits the reconstruction

of familiar objects even they partially occlude each other. In

addition, invariance of the shape prior with respect to similar-

ity transformations of the level set function is also incorpo-

rated. Experimental results confirm that our algorithm con-

verges empirically even for fairly large object overlaps and

substantial transformations in the presence of significant im-

ages artifacts.
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