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Abstract—Five years ago we reported at AIPR on a nascent
project to archive images from every webcam in the world and
to develop algorithms to geo-locate, calibrate, and annotate this
data. This archive of many outdoor scenes (AMOS) has now
grown to include 28000 live outdoor cameras and over 630 million
images. This is actively being used in projects ranging from
large scale environmental monitoring to characterizing how built
environment changes (such as adding bike lanes in DC) affects
physical activity patterns over time.

But the biggest value in a very long term, widely distributed
image data-set is the rich set of before data that can be analyzed to
evaluate changes from unexpected or sudden events. To facilitate
the analysis of these natural experiments, we build and share
a collection of web-tools that support large scale, data driven
exploration. In this work we discuss and motivate a visualization
tool that uses PCA to find the subspace that characterizes the
variations in this scene, This anomaly detection captures both
imaging failures such as lens flare and also unusual situations
such as street fairs, and we give initial algorithm to clusters
anomalies so that they can be quickly evaluated for whether they
are of interest.

I. INTRODUCTION

The amount of imagery available online to the public is
astounding, comprised of satellite feeds, Google Street View,
Flickr and Facebook uploads, and webcam imagery. Equally
amazing is the efforts that companies expend to index this
imagery so that anyone can find the imagery they need or want
– pictures to suggest what a particular highway exit will look
like or to remember what, exactly happened at a party the night
before. This indexing is usually done based on geographic
coordinates of the image data, or semantic/text tags that are
included with the image data.

Image data captured over time by a webcam is not well
served by these indexing methods, because all images from
a webcam come from the same geographic coordinates, and
because webcams constantly share images and rarely have any
sort of annotation included with those images. This paper aims
to develop tools to improve the visualization and indexing of
these sets of images that are taken over the course of many
years from a single viewpoint. The challenges to visualizations
of outdoor data over long time periods include the fact that
large variations are caused by variations that may not be of
interest to a particular application. These nuisance variables
include

• lighting and weather variations,

Fig. 1. As of 2014, the AMOS database comprises over 630 million images,
captured from public webcams around the world. This paper discusses aspects
of visualizing this dataset in terms of data availability, patterns of change, and
anomalies within scene.

• image artifacts such lens flare and specular reflections,
and

• occluding objects such as cars that, in some cases, take
up a substantial fraction of the image.

While there are attempts to define a formal information
theory of outdoor images that explicitly captures the effects
of these nuisance variables [9], [11], [12]; the approach in
this paper is to create specific visualizations can help users
quickly look through large amounts of data and find the types
of variations or images that are most interesting to them.
These visualizations are built into the interface for a very
large archive of webcam imagery called “The Archive of Many
Outdoor Scenes” (AMOS) [7], [6], [8]. That dataset includes
imagery from about 28000 webcams, captured one picture per
half hour, for the last 8 years. The specific contributions of
this paper include:

• a description of AMOS and documentation of the
types of image variations within it,

• an exposition of visualization tools appropriate for
very long image sets from static images and screen-
shots of its implementation as a live web service in
AMOS, and

• examples of how these visualization tools illustrate
different types of long term changes.



Fig. 2. The basic format of our camera visualization page shows an image
from the camera and an annual summary image. This summary image is
organized by time of day and time of year, and each pixel in the summary
images is the average color of the entire image captured on that day at that
time. Dark red indicates that the camera did not capture an image at that time,
in this case the camera only operates in the daytime and had some week-long
and one several month long gap in service.

All the visualization tools are available to the public live
through the website: http://amos.cse.wustl.edu.

II. BACKGROUND AND RELATED WORK

In the last 5 years there has been an incredible variety
of very large image data sets that have been collected and
shared. Some of the most interesting datasets attempt to
be comprehensive, for example, the ImageNet project giving
example images for all noun categories in the English Lan-
guage [5], a data set called 80 million tiny images aims to be
the definitive resource for scene classification examples [13].
Imaging resources such as Flickr allows users to geotag images
creating fascinating maps of where and when people take
pictures around the world [4], and long running crowd source
projects that explicitly seek to acquire pictures that are well
sampled across the earth [1].

In this paper we focus on the problem domain of images
that are captured from a camera that remains in the same
location and views the same scene. In this simplified context,
the image variations are very limited and often well represented
by a low-dimensional subspace [7]. Work that focuses on this
problem domain often seeks representations of common scene
variations in order to detect anomalies [3], [10] or to find
patterns of behaviors that help to label image regions by their
function attributes [14], or to label times of day or times of
week that correspond to behavioral changes [15], [2]

To our knowledge, our paper is the first to explicitly seek to
create web accessible visualization tools capturing the variation
in long term image data sets. Making these tools publicly
available and not reliant on expertise in Matlab or R or another
statistical programming packing is a requirement to make these
broadly accessible.

III. CURRENT VISUALIZATIONS

Our AMOS dataset currently contains the web addresses of
over 32000 webcams, about two-thirds of which are currently
publicly sharing images. For each camera, we capture one
image each half hour, and our current database comprises
over 630 million images. One primary question for data sets
collected from disparate locations and systems is simply data
availability. This leads to our first visualization, which offers
the ability to navigate an image data set based on an annual
summary image. This is shown in Figure 2 which is a screen
capture of our interactive system.

This interface has three parts. On the right of the screen is
a navigation bar to visit other parts of our site. The top shows
an image from the current camera. The bottom of the screen
(in red and gray) is an annual summary image. Each location
in this summary image corresponds to a time of day and a time
of year. The pixel at that location is colored by the average
(r,g,b) color of the entire image that was captured at that time
of day and day of year, unless no image was captured in which
case that pixel is colored dark red.

This is a ”clickable” interface, a user can select and see
the image from a time of day and day of the year. The camera
shown in this figure views a farm, and in this (r,g,b) summary
image it is possible to see that the summertime is slightly
greener than winter. Such effects are often much smaller than
expected because there is substantial natural variation due
to weather, snow, lighting, etc., and because many cameras
implement some sort of white balancing that encourages the
average color of the image to be gray.

Visualizing Variations: Because the raw color of images
is often uninformative, we consider another simple summary
of each image. The PCA decomposition provides an approach
to take a large collection of images: I1, I2, I3, . . . In, and to
represent each image as a linear combination of a mean image
and basis images, so that:

Ii ≈ Iµ + ci1B1 + ci2B2 + ci3B3,

where Iµ is the mean image, B1, B2, B3 are basis images,
and ci1, ci2, ci3 are the coefficients that describe what linear
combination of B1, B2, B3 are needed to reconstruct Ii. PCA
solves for the basis images Bi that capture the maximum
variation within the dataset, and the coefficients for each image
represent how they vary within that basis. Therefore, we use
the coefficients ci1, ci2, ci3 as the (r, g, b) − color to create a
false color image that summaries how a scene changes over
time.

Figure 3 gives on example of this summary image, showing
a years worth of images captured from a webcam on the Notre
Dame campus. In the annual summary image, the colors no
longer have a direct relationship to the colors that appear in
the image, but pixels on the summary image that are the
same color are similar images (or, more specifically, their
approximate PCA reconstruction is similar) because they have
similar coefficients. In the particular case shown, the images at
night have a blue-ish green false color and are very consistent
(because the night-time appearance in this scene is dominated
by a few lights that are constantly on). The daytime images
often vary over the course of the day because the sun changes
position, and this is reflected in the false-color summary image

http://amos.cse.wustl.edu


Fig. 3. One alternative summarization approach computes a 3-component
PCA decomposition of all images in the year and then represents each image
by the 3 coefficients used to best reconstruct it. Using those 3 coefficients
as the (r,g,b) color in the summary image create a false-color image that
highlights important change in the scene, such as the slight camera viewpoint
shift that happens in late July, and variations in scene appearance as a function
of cloudiness and different sun positions.

Fig. 4. For large image sets where the camera does not move, the space
of images that is view is often low dimensional and a low dimensional
PCA reconstruction often reconstructs images quite well. The residual image
captures regions of the scene that are not well reconstructed; here those include
the flowers on the near tree (left) and most of the flowering tree on the right.

as a color change from greenish to purple-ish in the first half
of the year, and from orange to fuchsia in the second half
of the year. Near the middle of the year, the camera slightly
shifted viewpoints; because PCA is a linear basis that does not
code for motions, reconstructing the images before and after
the shift require significantly different coefficients and the shift
becomes easy to see in this summary image.

Reconstruction Error: The PCA coefficients capture how
one image varies with respect to the most common variations
in the data set, but image may also vary in other ways. The
image variation not captured by the PCA reconstruction is
captured in the residual; the difference between the image and
its reconstruction. This is computed as follows:

Ri = Ii − Iµ + ci1B1 + ci2B2 + ci3B3,

An example of an original image and its approximate PCA
reconstruction is shown in Figure 4. The residual image shows
the magnitude of the reconstruction error as a colormap from
blue (low error) to red (greatest error). This highlights that
in this scene, the flowering trees on the right and the left are
unusual with respect to the PCA basis, which makes sense
because they flower only for a short amount of time.

Fig. 5. Another alternative summarization highlights the reconstruction error
of each image by displaying those errors for each day and time of day. Images
with the highest reconstruction error are often unusual images like those with
strong lens glare (left), or times when a camera is briefly moved or zoomed
in compared to its usual viewpoint (right).

To create a tool that allows anyone to understand the
unusual images from a camera throughout a year we use this
residual computation to create another annual summary image.
In this case, we create a pixel for each image whose magnitude
corresponds to the sum of the squared residual errors. This
creates an annual summary image whose brightest points
correspond to the images that were least well reconstructed
by the PCA bases. Figure 5 shows an example of this image
again on the Notre Dame webcam, with two example images
that had large reconstruction error. One of these images was a
case where the sun was in the field of view and a large lens
flare dominates the image appearance. The other image comes
from a day when the camera was zoomed in dramatically and
the image was not similar to the rest of the year.

IV. CHARACTERIZING ANOMALIES

The images that are highlighted in the visualization shown
in Figure 5 are typical of natural outdoor images that have the
largest residuals, because lens-flare and large camera motion
create changes all over an image. While those effects are
sometimes of interest, it is often other types of changes that are
more relevant or interesting to an application. Most commonly,
systems first flag anomalies and then show all anomalies to
a user to find those that are interesting. For large datasets,
however, there may be many anomalies so it is useful to
consider how to provide additional support for finding those
that are of interest.

The approach that we explore here is to support the
exploration of anomalous images by clustering features of the
residual images. The goal is to sort those images that are not
well reconstructed by the PCA basis into groups that have
different explanations of why they are not well reconstructed.
Then a user can focus on the clusters that are of interest to
them. Our algorithm for this process is the following:

1) Compute the PCA basis and reconstruction for all
images for a camera from a year

2) Compute the magnitude of the residual (which is the
sum of squared error of the PCA reconstruction) for
each image

3) Select all images whose reconstruction error is in the
highest 3%.

4) Use k-means clustering with 5 clusters to categorize
these anomalies into clusters.



Fig. 6. Results of the anomaly clustering algorithm for the golf course camera
shown in Figure 4. Pixels labeled with the same color represent images that
were clustered together because they had residual errors in the same places,
and representative pictures from some of the clusters are shown.

5) Create a visualization showing these clusters in the
annual summary image.

We explored several features of the residual image, but
found the most interesting and relevant clusters when we
dramatically sub-sampled the squared residual image to 24×
32pixels, unwrapped that image into a 24×32 element vector
and directly run k-means clustering on those vectors. These
creates a clustering that captures where in the image there
was an anomaly, but because the residual images are so sub-
sampled, it is a coarse estimate of where the anomaly occurs so
very small changes (like a specular reflection moving slightly
over a curved metal surface) are clustered together.

After running that algorithm the 3% of the images with the
worst reconstruction error are each assigned to a cluster. We
create a false color summary image by placing a pixel at the
time of day and time of year each image was captured. We
color this pixel in the summary image based on its cluster.

We offer two examples of this clustering. The first example,
shown in Figure 6 is from a webcam that looks at a golf course.
We can impute meanings to these clusters by viewing example
images and by exploring where (in time of year and time of
day) those clusters appear. For this first example, we see:

• the pink cluster occurs only for a few days in April
and last during the entire day — this corresponds to
the few days when the trees in the scene are flowering,

• the light blue cluster is scattered throughout the day
and on many different days. Example images show
harsh shadows across the scene, which are difficult
for a low-dimensional PCA model to capture because
they move,

• the yellow cluster occurs only in the mornings because
they correspond to foggy days and fog only appears
in this scene in the morning, and

• the purple/pink cluster only appears in the winter and
corresponds to snow on the ground.

This example is informative because three of these clusters
(foggy days, snow on the ground, and harsh shadows) are not

Fig. 7. Results of the anomaly clustering algorithm for a camera from the
Grand Canyon. Pixels labeled with the same color represent images that were
clustered together because they had residual errors in the same places, and
representative pictures from some of the clusters are shown.

likely to be the type of anomalies one is most interested in.
But looking through exemplar images of each cluster allows
one to ignore whole clusters at a time.

Another example scene is from the National Park Service
webcam looking at the Grand Canyon. We ran this on images
from the first half of 2014. The color coded visualizations of
the clusters in this case shows:

• a pink cluster corresponding to shadow patterns in the
very early morning,

• a dark blue cluster corresponding to shadow patterns
in the late morning,

• a yellow cluster corresponding to the early morning
condition when the sun is in the field of view, and

• a green cluster corresponding to different patterns of
shadows from partly cloudy days.

V. DISCUSSION AND CONCLUSIONS

All visualizations of large scale data present challenges.
We believe that creating systems and tools that allow web-
based interaction for the public offers exciting potential for
two reasons. First, from the perspective of allowing people
to explore data-sets, creating web-visualizations makes this
accessible to users that don’t have the expertise to be able
to use systems based on Matlab or R. Second, from the per-
spective of creating new data sets, building a system based on
logging public webcam feeds, allows anyone to add their own
webcam to our system and therefore benefit from having these
visualizations for themselves or sharing them. Collectively, this
allows a more diverse user based with a broader set of interests
to explore large scale data visualization. We hope that sharing
these tools broadly will encourage a very diverse set of users
to explore data visualization in novels ways.

ACKNOWLEDGMENT

The authors would like to thank Nathan Jacobs for long
term support and insightful comments, and support from:
NSF DEB-1053554, NSF EF-1065734, NSF IIS-1111398, and
NSF IIA-1355406. Any opinions, findings, and conclusions
or recommendations expressed in this material are those of



the author(s) and do not necessarily reflect the views of the
National Science Foundation.

REFERENCES

[1] www.confluence.org.
[2] A. Abrams, J. Tucek, J. Little, N. Jacobs, and R. Pless. Lost: Longterm

observation of scenes (with tracks). In Applications of Computer Vision
(WACV), 2012 IEEE Workshop on, pages 297–304. IEEE, 2012.

[3] M. D. Breitenstein, H. Grabner, and L. Van Gool. Hunting nessie-real-
time abnormality detection from webcams. In Computer Vision Work-
shops (ICCV Workshops), 2009 IEEE 12th International Conference on,
pages 1243–1250. IEEE, 2009.

[4] D. J. Crandall, L. Backstrom, D. Huttenlocher, and J. Kleinberg.
Mapping the world’s photos. In Proceedings of the 18th international
conference on World wide web, pages 761–770. ACM, 2009.

[5] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet:
A large-scale hierarchical image database. In Computer Vision and
Pattern Recognition, 2009. CVPR 2009. IEEE Conference on, pages
248–255. IEEE, 2009.

[6] N. Jacobs, W. Burgin, N. Fridrich, A. Abrams, K. Miskell, B. H.
Braswell, A. D. Richardson, and R. Pless. The global network of
outdoor webcams: Properties and applications. In ACM International
Conference on Advances in Geographic Information Systems (SIGSPA-
TIAL GIS), pages 111–120, Nov. 2009.

[7] N. Jacobs, N. Roman, and R. Pless. Consistent temporal variations in
many outdoor scenes. In Proc. IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 1–6, June 2007.

[8] N. Jacobs, R. Souvenir, and R. Pless. The global webcam imaging
network. In Applied Imagery Pattern Recognition Workshop (AIPR),
pages 1–8, 2009.

[9] A. Ravichandran and S. Soatto. Long-range spatio-temporal modeling
of video with application to fire detection. In Computer Vision–ECCV
2012, pages 329–342. Springer, 2012.

[10] E. Ricci, G. Zen, N. Sebe, and S. Messelodi. A prototype learning
framework using emd: Application to complex scenes analysis. Pattern
Analysis and Machine Intelligence, IEEE Transactions on, 35(3):513–
526, 2013.

[11] S. Soatto. Actionable information in vision. In Machine learning for
computer vision, pages 17–48. Springer, 2013.

[12] S. Soatto. Visual scene representations: Sufficiency, minimality, invari-
ance and approximations. CoRR, abs/1411.7676, 2014.

[13] A. Torralba, R. Fergus, and W. T. Freeman. 80 million tiny images: A
large data set for nonparametric object and scene recognition. Pattern
Analysis and Machine Intelligence, IEEE Transactions on, 30(11):1958–
1970, 2008.

[14] M. W. Turek, A. Hoogs, and R. Collins. Unsupervised learning of
functional categories in video scenes. In Computer Vision–ECCV 2010,
pages 664–677. Springer, 2010.

[15] G. Zen, J. Krumm, N. Sebe, E. Horvitz, and A. Kapoor. Nobody
likes mondays: foreground detection and behavioral patterns analysis
in complex urban scenes. In Proceedings of the 4th ACM/IEEE
international workshop on Analysis and retrieval of tracked events and
motion in imagery stream, pages 17–24. ACM, 2013.


	Introduction
	Background and Related Work
	Current Visualizations
	Characterizing Anomalies
	Discussion and Conclusions
	References

