
Software Design Issues:
A Very Large Information Systems Perspective*

Gerald B. Williams, Chunka Mui, Vairam Alagappan, Bruce B. Johnson

.Andersen Consulting
Center for Strategic Technology Research

1100 South Wacker Dr.
Chicago, Illinois 60606

Abstract

Research in software engineering is concerned with the en-
hancement and automation of the processes of building
computer application systems. While there is a broad
consensus on the problems associated with software devel-
opment, a specific understanding of the software engineer-
ing problem and the appropriate solutions are inevitably
driven by the target application domain. Much of the
current software engineering research is driven by the de-
velopment of large scale embedded software systems. Our
understanding of the problems is based on a different
domain: that of very large information systems (VLIS). In
this paper, we identify some significant software engineer-
ing problems from the context of developing very large
information systems.

1. Introduction

The ultimate goal of research in software engineering (SE)
is to improve the productivity and quality associated with
both the processes and products of software development.
The foreseen benefits are improvements in the manage-
ment of the development process, increasesin user satisfac-
tion, and the delivery ofgreaterfunctionality to themarket-
place in the form of software and related products. As a
means to this end, software engineering research is aimed
at reducing costs and improving time in production by
automating portions of the development process..

Some of the major problems associated with the automation
of software development occur withrespect to requirements
specification, design, maintenance, reusability, validation,
verification, and testing. While there is a broad consensus
on the existence of these problems in general, a specific
understanding of the software engineering problems and
their appropriate solutions is inevitably driven by and is
sensitive to the target application domain. Software engi-
neering solution methods are dependent on the application
domain.

l The full version of this short paper is available from the authors.

Permission to copy without fee all or part ofthis material is gmn ted provided
that copies are not made ordistributed for direct commercial advantage, the
ACMcopyright noticeandthetitleofthepublicationanditsda~!appear,and
noticeisgiven thatcopyingisbypermissionoftheAssociationforC!omputing
Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.

Much of the current software engineering research is being
drivenby the development oflarge scale embedded software
systems. The nature of an embedded system can be charac-
terized by asynchronous parallelism and urgent perform-
ance requirements Cl]. ‘I’he concentration of effort in this
domain has resulted in attempts to develop formal, high
level specification languages, methods of specification vali-
dation, and methods of transforming specifications into
executable code.

Our approach to research on the problems of software
engineering is founded on a different class of application
domains; namely that of very large information systems
(VLIS). In the following sections we briefly define and
characterize VLIS and the problems associated with VI.33
development. The intent is to contrast the nature of the
software development problems related to large informa-
tion systems with the development problems of the com-
monly investigated domain of embedded systems. As a
result we hope to illuminate new perspectives on the soft-
ware engineering problem and construct a foundation from
which an integrated, productive research program can be
launched for software engineering issues in VLIS.

2. VLIS Viewpoint

An information system is not a single monolithic structure.
VLIS are federations of subsystems developed according to
a system wide design plan to provide information to support
the operational, managerial, analytical and decision-mak-
ing functions of an organization. These subsystems are in-
tegrated and evolved over time for the purpose of support-
ing these organizational functions.

Decision Support

Integrated Data Processing
I

Tactical Planning: Data Summarization and
Reorganization

Transaction Processing,
Data Management and Control

Figure 1: Information Systems Pyramid

238

01989 ACM O-89791 -305-1/89/050010238$00.‘75

The operational scope of VLIS across different levels of
business activities can characterized as a pyramid struc-
ture similar to that shown in Figure 1. Each layer of the
pyramid represents a class of information processing activi-
ties and provides a processing foundation for the levels
above it. As one ascends through the layers of the pyramid
the complexity of the business problem being addressed
increases, additional use ofbusiness specific knowledge is
required, the degree of integration across the activities
increases, the accumulation of information increases and
the form of the information being processed becomes more
complex.

As is the case with embedded systems, VLIS development is
certainly concerned with the functional complexity and the
performance of software. However, in contrast to embedded
systems, VLIS are more strongly characterized by rela-
tively simple functional demands, massive size, enormous
volumes of data, continuous use and constant evolution. In
essence, the complexity of a VLIS is rooted in the size of the
system and the demographic complexity of the application
environment.

Base upon our experiences in developing very large infor-
mation systems, webelieve a significant amount ofprogress
can be made to enhance and automate software develop-
ment methods for VLIS by exploiting the unique properties
of those systems. These properties place a set of real-world
constraints on the systems development process and will
allow problems which, in the general case, seem intractable
to be addressed.

SE research therefore needs to contain a strong empirical
component and be grounded by data generated from indus-
trial experiences. The formulation of research problems
and the strengths and weaknesses of the alternative ap-
proaches need to be subjected to the test of industrial
practices, time constraints, resource limitations and eco-
nomic pressures.

3. Software Development Issues

This section describes some oftheissues associated with the
software development process in the VLIS context. In each
case we define the issue, identify the sources ofits existence,
and discuss the implications of what needs to be done. We
see these issues as highly interdependent and regard the
approach to an overall solution as necessarily dependent on
concurrent development in each area.

3.1 System Evolution

In current practice, the process of maintenance is too often
thought of as the patching of software bugs. Software
maintainability is wrongly assumed to be a natural by-
product of good initial systems development. These percep-
tions are faulty and contribute to the maintenance crisis
being experienced today. In order to support the full scope
of maintenance, it must be recognized that software sys-
temsneedtoeuolueandthatthisevolutioncannotbetreated
in the same manner as initial development.

The ability to continually evolve is crucial for VLIS. Infor-
mation systems are typically a critical arm of the business
and must adapt continually to the changing business envi-
ronment. Change is not the exception for these systems, it is
the norm. Unless they can effectively adapt to the needs of
the company, the stability and competitive position of the
company will be jeopardized.

In order to support system evolution, processes which di-
rectly support maintenance must be developed and infor-
mation required during maintenance (design rationale)
must be available. Taken together, designrationale and the
maintenance processes must help the designer (1) under-
stand the functionality, structure, and behavior of a system
(2) assess the impact of alternative changes, and (3) control
the impact of necessary changes. Of course, the integrity
and maintainability of the system must be preserved.

Supporting system evolution must be viewed as a major
driving factor in shaping an approach to formalizing the
design process, Maintenance requires more information
because an existing system represents a larger set of con-
straints that does not exist during initial design and the
design tradeoffsmade during maintenance differ from those
in the initial design process. For example, data structure
decisions maybe driven by efficiency during initial develop-
ment but by minimization of impact during maintenance.

3.2 Leveraging Expertise and Experience

The necessarily large size of VLIS development teams
coupled with the relative scarcity of highly experienced
systems builders mandate the judicious use of less experi-
enced personnel in most phases of the development effort.
Leveraging expertise and experience is concerned with the
ability to manage and successfully complete large software
development projects with a relatively small amount of
highly experienced, proven resources. This is a critical issue
given that the success of a development project is directly
correlated with the levels of experience and talent across
members of the project team 121.

The focus of SE research should be on supporting the high
level design activities where the decomposition ofhigh level
problemsintorelativelyindependent components take place.
The simple functional demands of individual programs
allows for their construction by less experienced personnel.

3.3 The Design Process

The design process is the task of creating or generating
design artifacts and subsequently evaluating, refining,
integrating, and modifying these artifacts until the result
satisfies the requirements of the problem definition. In
essence, the design process is the task of mapping problem
requirements into design solutions. The design process
should be guided by a productive, economic, and control-
lable methodology that will ensure a high quality product.

The reasons why the design problem is important are fairly
obvious. Good design decisions made early have a positive

effect on the quality of the ultimate product as well as the
efficiency of the development process. Poor design decisions
play havoc with the quality, efficiency and cost of the
development process and the design products.

Design is characterized by a necessity to deal simultane-
ously with a large number of diverse constraints that are
highly intertwined. In general the design problem isintrac-
table. However, we believe that the combination of the
restricted domain of VLIS development, the simplicity ofits
algorithmic requirements, and the knowledge accumulated
from the experience of building a large number of VLIS
provides good insights into the available expertise, known
solutions and alternatives. Our intention is to exploit the
natural structure of the domain in ways that allow us to
reduce the complexity of the problem to manageable levels.
We cite several issues that help focus some of the design
process concerns.

The Paradigm Problem: The paradigm problem refers to
the failure to recognize and develop a manageable, produc-
tive, economically feasible process model for SE. Much at-
tention has been focused on the development of new soft-
ware engineering paradigms [3, 41 but no results have
proven completely satisfactory for VLIS development. Any
successful model must deal with the interdependent facets
of making design decisions while recognizing the need for
adequate leverage and project management.

Bridging the Functional to Technical Gap: A signifi-
cant portion of the design process occurs during the creative
process of translating the business problem description to a
high level systems design. Presently techniques at this
level of the development process are not adequately under-
stood. The result is an inability to adequately map problem
requirements to technical solutions. No good Wanguage”
has been developed in which the requirements of the prob-
lem can be expressedand uItimately transformed to techni-
cal solutions.

Design Evaluation: In order to make good design deci-
sions, one must have the ability to assess the validity of a
particular design decision or weigh the relative merits of
competing design alternatives. The lack of evaluation abil-
ity leads to inadequacies in assessing the impacts of a design
decision on all levels of the design process. Under the um-
brella title ofevaluation we include testing, validation, veri-
fication and, as a specific instance, prototyping.

The Representation Problem: The representation prob-
lem is a fundamental requirement for advancement in each
of the areas mentioned above. The issue is the ability to
express, manipulate and make inferences about design
objects and processes. In current practice, major deveIop-
ment takes place at very low levels of design for at least two
reasons. First, current methods of software engineering
encourage designers to think in terms of low level issues
such as databases, data structures, performance measures,
screens, and interfaces because low level representations
are the only mechanisms that provide feasibility measures

andevaluation feedback. As a result designers move quickly
to lower levels without adequately investigating alterna-
tive early design decisions. Second, the nature of the
business is that cost pressures often do not allow for an
adequate investigation of high level design alternatives. As
a result projects designs are often inadequate and brittle.

3.3 Large Scale Integration

The problem oflarge scale integrationis concerned with the
understanding, use and exploitation of the functionalities,
standards, protocols, and communication interfaces of a
heterogeneous set of technologies in developing large sys-
tems. Integration of component systems differing both in
functionality and platform is important because systems
within the commercial environment can nolongerbe treated
as isolated entities. In fact there is great disincentive to do
so.

The large scale integration problem points out the need to
understand the interrelationships of all systems within a
company. Efforts need to be concentrated on large scale
design at theenterprise, or company wide,level before detail
design and implementation of a particular component is
undertaken. Understanding the enterprise level connectiv-
ity and integration issues is extremely important and will
have tremendous impact upon the design process.

4. Conclusions

The intent of this paper is to discuss the implications that
the process of developing very large information systems
(VLIS) has on the approach to the software engineering
problem. Although the same SE problems are found in
many domains, they take on a unique set of constraints
when considered in the context of developing VLIS. It is our
position that possibilities for enhancing the software devel-
opment process are functions of the domain in which one
participates.

Acknowledgements

We wish to thankMehdi Harandi, Wojtek Kozaczynski, and
Bill Sasso for their contributions to the ideas presented in
this paper.

111

121

131

[41

References

Pamela Zave, “An Operational Approach to Requimments
Specification for Embedded Systems,” in New Paradigms for
Software Development, (ed. William W. Agresti), IEEE Soci-
ety, Los Angeles, Ca., 1986, 1.59 -178.

Bill Curtis, Herb Krasner, Vincent Shen, & Neil Iscoe, “On
Building Software Process Models Under the Lamppost,” in
the Proceedings of the 9th International Conference on Soft-
ware Engineering, Monterrey, CA., 1987, 96-103.

Barry W. Boehm, “A Spiral Model of Software Development
and Enhancement,” IEEE Computer, May 1988,61- 72.

Cordell Green, David Luckham, Robert Balzer, Thomas
Cheatham, and Charles Rich. ‘Report on a Knowledge-Based
Software Assistant,” Kestrel Institute, 1983.

