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CS 211: Computer Architecture

Instructor: Prof. Bhagi Narahari
Dept. of Computer Science

Course URL: 
www.seas.gwu.edu/~narahari/cs211/
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Course Summary

• Technology trends
– Density increasing
– Wire delays getting longer

» Need for simpler architectures
– Reduced instruction set is faster and simpler to 

implement
• Architecture performance

– Metrics: throughput, response time, IPC, CPI
– Benchmarks

• Review of Computer Organization
– CPU components, data paths, control path
– Sample design of a processor and its data and control 

path
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Pipeline Approach to Improve System 
Performance

• Analogous to fluid flow in pipelines and 
assembly line in factories

• Divide process into “stages” and send tasks 
into a pipeline

– Overlap computations of different tasks by 
operating on them concurrently in different stages

CS211  4

Instruction Level Parallel Processors (ILP)

• early ILP - one of two orthogonal concepts:
– pipelining - vertical approach
– multiple (non-pipelined) units - horizontal approach

• progression to multiple pipelined units
• instruction issue became bottleneck, led to

– superscalar ILP processors
– Very Large Instruction Word (VLIW)

• Note: key performance metric in all ILP 
processor classes is IPC (instructions per 
cycle)

– this is the degree of parallelism achieved 
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Parallelism in Pipelining Comes From 
the Following Fact

• While a load/store instruction is executing at the 
second  pipeline stage, a new instruction can be 
initiated at the first stage.

CS211  6

Computer Pipelines

• Execute billions of instructions, so 
throughput is what matters

• MIPS desirable features: 
– all instructions same length, 
– registers located in same place in instruction 

format, 
– memory operands only in loads or stores
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Linear Pipeline Processor    

Linear pipeline processes a sequence of 
subtasks with linear precedence
At a higher level - Sequence of processors

Data flowing in streams from stage S1 to the 
final stage Sk

Control of data flow : synchronous or 
asynchronous

S1 S2 Sk• • • •

33
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Synchronous Pipeline     

All transfers simultaneous 

One task or operation enters the pipeline per cycle

Processors reservation table : diagonal

44
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Time Space Utilization of Pipeline

S1

S2

S3

T1

T1

T1

T2

T2

T2

T3

T3

T4

1 2 3 4

Time (in pipeline cycles)

Full pipeline after 4 cycles
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Asynchronous Pipeline     

Transfers performed when individual processors are ready

Handshaking protocol between processors

Mainly used in multiprocessor systems with message-passing

55
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Pipeline Clock and Timing      

Si Si+1

τ τm d

Clock cycle of the pipeline : τ

Latch delay : d
τ = max {τm } + d

Pipeline frequency : f 

f = 1 / τ

66
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Speedup and Efficiency       

k-stage pipeline processes  n tasks  in  k + (n-1) clock 
cycles:

k cycles for the first task and n-1 cycles 
for the remaining n-1 tasks

Total time to process n tasks 

Tk = [ k + (n-1)] τ

For the non-pipelined processor  

T1 = n k τ

Speedup factor

Sk =
T1

Tk
=

n k τ
[ k + (n-1)] τ

=
n k 

k + (n-1)

77
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Efficiency and Throughput Efficiency and Throughput 

Efficiency of the k-stages pipeline :

Ek =
Sk

k =
n

k + (n-1)

Pipeline throughput (the number of tasks per unit time) :
note equivalence to IPC

Hk = n
[ k + (n-1)] τ

= n f 
k + (n-1)

1010

CS211  14

Pipeline Performance: Example
• Task has 4 subtasks with time: t1=60, t2=50, t3=90, and 

t4=80 ns (nanoseconds)
• latch delay = 10
• Pipeline cycle time = 90+10 = 100 ns
• For non-pipelined execution

– time = 60+50+90+80 = 280 ns
• Speedup for above case is: 280/100 = 2.8 !!
• Pipeline Time for 1000 tasks = 1000 + 4-1= 1003*100 ns
• Sequential time = 1000*280ns
• Throughput= 1000/1003
• What is the problem here ?
• How to improve performance ?

CS211  15

Non-linear pipelines and pipeline control 
algorithms

• Can have non-linear path in pipeline…
– How to schedule instructions so they do no conflict 

for resources
• How does one control the pipeline at the 

microarchitecture level
– How to build a scheduler in hardware ?

• Read notes on pipeline control!!
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Instruction Pipeline

• Instruction execution process lends itself 
naturally to pipelining

– overlap the subtasks of instruction fetch, decode 
and execute
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The Five Stages of Load

• Ifetch: Instruction Fetch
– Fetch the instruction from the Instruction Memory

• Reg/Dec: Registers Fetch  and Instruction Decode
• Exec: Calculate the memory address
• Mem: Read the data from the Data Memory
• Wr: Write the data back to the register file

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5

Ifetch Reg/Dec Exec Mem WrLoad
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5 Steps of MIPS Datapath

Memory
Access

Write
Back

Instruction
Fetch

Instr. Decode
Reg. Fetch

Execute
Addr. Calc

L
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ory

Reg
File

M
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X
M

U
X
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ata
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M
U

X

Sign
Extend

4

A
dder Zero?

Next SEQ PC

A
ddress

Next PC

WB Data

Inst

RD

RS1

RS2

Imm

What do we need to do to pipeline the process ?
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5 Steps of MIPS/DLX Datapath

Memory
Access

Write
Back

Instruction
Fetch

Instr. Decode
Reg. Fetch

Execute
Addr. Calc

A
LU

M
em

ory

Reg
File
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X
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4
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B 

D
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a

• Data stationary control
– local decode for each instruction phase / pipeline stage

Next PC

A
ddress

RS1

RS2

Imm

M
U

X
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Graphically Representing Pipelines

• Can help with answering questions like:
– how many cycles does it take to execute this code?
– what is the ALU doing during cycle 4?
– use this representation to help understand datapaths
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Visualizing Pipelining

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 6 Cycle 7Cycle 5
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Conventional Pipelined Execution Representation

IFetch Dcd Exec Mem WB

IFetch Dcd Exec Mem WB

IFetch Dcd Exec Mem WB

IFetch Dcd Exec Mem WB

IFetch Dcd Exec Mem WB

IFetch Dcd Exec Mem WBProgram Flow

Time
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Single Cycle, Multiple Cycle, vs. Pipeline

Clk

Cycle 1

Multiple Cycle Implementation:

Ifetch Reg Exec Mem Wr

Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9 Cycle 10

Load Ifetch Reg Exec Mem Wr

Ifetch Reg Exec Mem
Load Store

Pipeline Implementation:

Ifetch Reg Exec Mem WrStore

Clk

Single Cycle Implementation:

Load Store Waste

Ifetch
R-type

Ifetch Reg Exec Mem WrR-type

Cycle 1 Cycle 2
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The Four Stages of R-type

• Ifetch: Instruction Fetch
– Fetch the instruction from the Instruction Memory

• Reg/Dec: Registers Fetch  and Instruction Decode
• Exec: 

– ALU operates on the two register operands
– Update PC

• Wr: Write the ALU output back to the register file

Cycle 1 Cycle 2 Cycle 3 Cycle 4

Ifetch Reg/Dec Exec WrR-type
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Pipelining the R-type and Load Instruction

• We have pipeline conflict or structural hazard:
– Two instructions try to write to the register file at the same 

time!
– Only one write port

Clock

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9

Ifetch Reg/Dec Exec WrR-type

Ifetch Reg/Dec Exec WrR-type

Ifetch Reg/Dec Exec Mem WrLoad

Ifetch Reg/Dec Exec WrR-type

Ifetch Reg/Dec Exec WrR-type

Ops!  We have a problem!
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Important Observation

• Each functional unit can only be used once per 
instruction

• Each functional unit must be used at the same stage 
for all instructions:

– Load uses Register File’s Write Port during  its 5th stage

– R-type uses Register File’s Write Port during its 4th stage

Ifetch Reg/Dec Exec Mem WrLoad
1 2 3 4 5

Ifetch Reg/Dec Exec WrR-type
1 2 3 4

° 2 ways to solve this pipeline hazard.
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Solution 1: Insert “Bubble” into the Pipeline

• Insert a “bubble” into the pipeline to prevent 2 writes 
at the same cycle

– The control logic can be complex.
– Lose instruction fetch and issue opportunity.

• No instruction is started in Cycle 6!

Clock

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9

Ifetch Reg/Dec Exec WrR-type

Ifetch Reg/Dec Exec

Ifetch Reg/Dec Exec Mem WrLoad

Ifetch Reg/Dec Exec WrR-type
Ifetch Reg/Dec Exec WrR-type Pipeline

Bubble

Ifetch Reg/Dec Exec Wr
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Solution 2: Delay R-type’s Write by One Cycle
• Delay R-type’s register write by one cycle:

– Now R-type instructions also use Reg File’s write port at 
Stage 5

– Mem stage is a NOOP stage: nothing is being done.

Clock

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9

Ifetch Reg/Dec Mem WrR-type

Ifetch Reg/Dec Mem WrR-type

Ifetch Reg/Dec Exec Mem WrLoad

Ifetch Reg/Dec Mem WrR-type

Ifetch Reg/Dec Mem WrR-type

Ifetch Reg/Dec Exec WrR-type Mem

Exec

Exec

Exec

Exec

1 2 3 4 5
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Announcements

• Staughton Hall:
– Room 307 access code: 22569
– Username: s307
– Passwd:      s307

– Timing: 7am-9pm M-F
• Team partners for programming assignments

– Teams of 3 persons
– Select team partner and inform instructor by Oct 1st

CS211  30

Why Pipeline?

• Suppose we execute 100 instructions
• Single Cycle Machine

– 45 ns/cycle  x 1 CPI x 100 inst = 4500 ns
• Multicycle Machine

– 10 ns/cycle x 4.6 CPI (due to inst mix) x 100 inst = 4600 ns
• Ideal pipelined machine

– 10 ns/cycle x (1 CPI x 100 inst + 4 cycle drain) = 1040 ns
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Why Pipeline? Because the resources are there!

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Inst 0

Inst 1

Inst 2

Inst 4

Inst 3

A
L

UIm Reg Dm Reg

A
L

UIm Reg Dm Reg

A
L

UIm Reg Dm Reg

A
L

UIm Reg Dm Reg

A
L

UIm Reg Dm Reg
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Speed Up Equation for Pipelining

pipelined

dunpipeline

 TimeCycle
 TimeCycle

  
CPI stall Pipeline  CPI Ideal

depth Pipeline  CPI Ideal  Speedup ×
+

×
=

pipelined

dunpipeline

 TimeCycle
 TimeCycle

  
CPI stall Pipeline  1

depth Pipeline  Speedup ×
+

=

Instper  cycles Stall Average  CPI Ideal  CPIpipelined +=

For simple RISC pipeline, CPI = 1:
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Can pipelining get us into trouble?
• Yes: Pipeline Hazards

– structural hazards: attempt to use the same resource two 
different ways at the same time

» E.g., combined washer/dryer would be a structural 
hazard or folder busy doing something else (watching 
TV)

– data hazards: attempt to use item before it is ready
» E.g., one sock of pair in dryer and one in washer; 

can’t fold until get sock from washer through dryer
» instruction depends on result of prior instruction still 

in the pipeline
– control hazards: attempt to make a decision before 

condition is evaulated
» E.g., washing football uniforms and need to get 

proper detergent level; need to see after dryer before 
next load in

» branch instructions
• Can always resolve hazards by waiting

– pipeline control must detect the hazard
– take action (or delay action) to resolve hazards
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Its Not That Easy for Computers

• Limits to pipelining: Hazards prevent next 
instruction from executing during its designated 
clock cycle and introduce stall cycles which 
increase CPI

– Structural hazards: HW cannot support this combination 
of instructions - two dogs fighting for the same bone

– Data hazards: Instruction depends on result of prior 
instruction still in the pipeline

– Control hazards: Caused by delay between the fetching 
of instructions and decisions about changes in control 
flow (branches and jumps).
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One Memory Port/Structural Hazards

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Load

Instr 1

Instr 2

Instr 3

Instr 4

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 6 Cycle 7Cycle 5

Reg A
LU DMemIfetch Reg
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One Memory Port/Structural Hazards

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Load

Instr 1

Instr 2

Stall

Instr 3

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 6 Cycle 7Cycle 5

Reg A
LU DMemIfetch Reg

Bubble Bubble Bubble BubbleBubble
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Example: Dual-port vs. Single-port

• Machine A: Dual ported memory (“Harvard Architecture”)
• Machine B: Single ported memory, but its pipelined 

implementation has a 1.05 times faster clock rate
• Ideal CPI = 1 for both
• Loads are 40% of instructions executed

SpeedUpA = Pipeline Depth/(1 + 0) x (clockunpipe/clockpipe)
= Pipeline Depth

SpeedUpB = Pipeline Depth/(1 + 0.4 x 1) x (clockunpipe/(clockunpipe / 1.05)
= (Pipeline Depth/1.4) x  1.05
= 0.75 x Pipeline Depth

SpeedUpA / SpeedUpB = Pipeline Depth/(0.75 x Pipeline Depth) = 1.33

• Machine A is 1.33 times faster 
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Data Dependencies

• True dependencies and False dependencies
– false implies we can remove the dependency
– true implies we are stuck with it!

• Three types of data dependencies defined in 
terms of how succeeding instruction depends 
on preceding instruction

– RAW: Read after Write or Flow dependency
– WAR: Write after Read or anti-dependency
– WAW: Write after Write
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• Read After Write (RAW)
InstrJ tries to read operand before InstrI writes it

• Caused by a “Dependence” (in compiler 
nomenclature).  This hazard results from an actual 
need for communication.

Three Generic Data Hazards

I: add r1,r2,r3
J: sub r4,r1,r3
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RAW Dependency

• Example program (a) with two instructions
– i1:  load  r1, a;
– i2: add r2, r1,r1;

• Program (b) with two instructions
– i1: mul r1, r4, r5;
– i2: add r2, r1, r1;

• Both cases we cannot read in i2 until i1 has 
completed writing the result

– In (a) this is due to load-use dependency
– In (b) this is due to define-use dependency
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• Write After Read (WAR)
InstrJ writes operand before InstrI reads it

• Called an “anti-dependence” by compiler writers.
This results from reuse of the name “r1”.

• Can’t happen in MIPS 5 stage pipeline because:
– All instructions take 5 stages, and
– Reads are always in stage 2, and 
– Writes are always in stage 5

I: sub r4,r1,r3 
J: add r1,r2,r3
K: mul r6,r1,r7

Three Generic Data Hazards
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Three Generic Data Hazards

• Write After Write (WAW)
InstrJ writes operand before InstrI writes it.

• Called an “output dependence” by compiler writers
This also results from the reuse of name “r1”.

• Can’t happen in MIPS 5 stage pipeline because: 
– All instructions take 5 stages, and 
– Writes are always in stage 5

• Will see WAR and WAW in later more complicated 
pipes

I: sub r1,r4,r3 
J: add r1,r2,r3
K: mul r6,r1,r7
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WAR  and WAW Dependency
• Example program (a):

– i1: mul r1, r2, r3;
– i2: add r2, r4, r5;

• Example program (b):
– i1: mul r1, r2, r3;
– i2: add r1, r4, r5;

• both cases we have dependence between i1 and i2
– in (a) due to r2 must be read before it is written into
– in (b) due to r1 must be written by i2 after it has been written

into by i1
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What to do with WAR and WAW ?
• Problem:

– i1: mul r1, r2, r3;
– i2: add r2, r4, r5;

• Is this really a dependence/hazard ?
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What to do with WAR and WAW

• Solution:  Rename Registers
– i1: mul r1, r2, r3;
– i2: add r6, r4, r5;

• Register renaming can solve many of these 
false dependencies

– note the role that the compiler plays in this
– specifically, the register allocation process--i.e., the 

process that assigns registers to variables
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Hazard Detection in H/W

• Suppose instruction i is about to be issued and a 
predecessor instruction j  is in the instruction pipeline

• How to detect and store potential hazard information
– Note that hazards in machine code are based on register 

usage
– Keep track of results in registers and their usage

» Constructing a register data flow graph
• For each instruction  i construct set of Read registers 

and Write registers
– Rregs(i) is set of registers that instruction i reads from
– Wregs(i) is set of registers that instruction i writes to
– Use these to define the 3 types of data hazards
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Hazard Detection in Hardware

• A RAW hazard exists on register ρ if ρ ∈ Rregs( i ) ∩ Wregs( j )
– Keep a record of pending writes (for inst's in the pipe) and 

compare with operand regs of current instruction.  
– When instruction issues, reserve its result register.  
– When on operation completes, remove its write reservation.

• A WAW hazard exists on register ρ if ρ ∈ Wregs( i  ) ∩ Wregs( j )
• A WAR hazard exists on register ρ if ρ ∈ Wregs( i  ) ∩ Rregs( j )
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Internal Forwarding: Getting rid of some 
hazards

• In some cases the data needed by the next 
instruction at the ALU stage has been 
computed by the ALU (or some stage defining 
it) but has not been written back to the 
registers

• Can we “forward” this result by bypassing 
stages ?
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I
n
s
t
r.

O
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d
e
r

add r1,r2,r3

sub r4,r1,r3

and r6,r1,r7

or   r8,r1,r9

xor r10,r1,r11

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Data Hazard on R1

Time (clock cycles)

IF ID/RF EX MEM WB
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Time (clock cycles)

Forwarding to Avoid Data Hazard

I
n
s
t

r.

O
r
d
e
r

add r1,r2,r3

sub r4,r1,r3

and r6,r1,r7

or   r8,r1,r9

xor r10,r1,r11

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg
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Internal Forwarding of Instructions

• Forward result from ALU/Execute unit to 
execute unit in next stage

• Also can be used in cases of memory access
• in some cases, operand fetched from memory has 

been computed previously by the program
– can we “forward” this result to a later stage thus 

avoiding an extra read from memory ?
– Who does this ?

• Internal forwarding cases
– Stage i to Stage i+k in pipeline
– store-load forwarding
– load-store forwarding
– store-store forwarding
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HW Change for Forwarding

M
EM

/W
R

ID
/EX

EX
/M

EM
 

Data
Memory

A
LU

m
ux

m
ux

Registers

NextPC

Immediate

m
ux
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What about memory operations?

A B

op Rd Ra Rb

op Rd Ra Rb

Rd 

to reg
file

R

Rd 

º If instructions are initiated in order and 
operations always occur in the same stage,  
there can be no hazards between  memory 
operations!

º What does delaying WB on arithmetic  
operations cost?    

– cycles ?
– hardware ?

º What about data dependence on loads?
R1 <- R4 + R5
R2 <- Mem[ R2 + I ]
R3 <- R2 + R1

⇒ “Delayed Loads”
º Can recognize this in decode stage and 

introduce bubble while stalling fetch stage 
º Tricky situation:

R1 <- Mem[ R2 + I ]
Mem[R3+34] <- R1

Handle with bypass in memory stage!

D

Mem

T
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Internal Data Forwarding 

Store-load forwarding 

Memory
M

Access Unit

R1 R2

STO M,R1 LD R2,M

Memory
M

Access Unit

R1 R2

STO M,R1 MOVE  R2,R1

3838
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Internal Data Forwarding 

Load-load forwarding

Memory
M

Access Unit

R1 R2

LD  R1,M LD R2,M

Memory
M

Access Unit

R1 R2

LD R1,M MOVE  R2,R1

3939
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Internal Data Forwarding 

Store-store forwarding 

Memory
M

Access Unit

R1 R2

STO  M, R1 STO M,R2

Memory
M

Access Unit

R1 R2

STO M,R2

4040



Page 15

CS211  57

Time (clock cycles)

I
n
s
t
r.

O
r
d
e
r

lw r1, 0(r2)

sub r4,r1,r6

and r6,r1,r7

or   r8,r1,r9

Data Hazard Even with Forwarding

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg
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Data Hazard Even with Forwarding

Time (clock cycles)

or   r8,r1,r9

I
n
s
t
r.

O
r
d
e
r

lw r1, 0(r2)

sub r4,r1,r6

and r6,r1,r7

Reg A
LU DMemIfetch Reg

RegIfetch A
LU DMem RegBubble

Ifetch A
LU DMem RegBubble Reg

Ifetch

A
LU DMemBubble Reg
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Try producing fast code for
a = b + c;
d = e – f;

assuming a, b, c, d ,e, and f in memory. 
Slow code:

LW Rb,b
LW Rc,c
ADD Ra,Rb,Rc
SW  a,Ra 
LW Re,e 
LW Rf,f
SUB Rd,Re,Rf
SW d,Rd

Software Scheduling to Avoid Load 
Hazards

Fast code:
LW Rb,b
LW Rc,c
LW Re,e 
ADD Ra,Rb,Rc
LW Rf,f
SW  a,Ra 
SUB Rd,Re,Rf
SW d,Rd CS211  60

Branching and Effects   Branching and Effects   

Pipeline effectiveness reduced by data dependence and 
branch instructions

Branch target : The next instruction to be executed

Delay slot : Time necessary to perform branching

*  Loading, decoding, issuing of several next instructions lost
*  Flushing the complete pipeline 

Predicting : Branching may be predicted

*  Based on instruction code (lookahead)
*  Branch history      

4545
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Control Hazard on Branches
Three Stage Stall

10: beq r1,r3,36

14: and r2,r3,r5 

18: or  r6,r1,r7

22: add r8,r1,r9

36: xor r10,r1,r11

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg
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Branch Stall Impact

• If CPI = 1, 30% branch, 
Stall 3 cycles => new CPI = 1.9!

• Two part solution:
– Determine branch taken or not sooner, AND
– Compute taken branch address earlier

• MIPS branch tests if register = 0 or ≠ 0
• MIPS  Solution:

– Move Zero test to ID/RF stage
– Adder to calculate new PC in ID/RF stage
– 1 clock cycle penalty for branch versus 3
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Pipelined MIPS (DLX)  Datapath

Memory
Access

Write
Back

Instruction
Fetch

Instr. Decode
Reg. Fetch

Execute
Addr. Calc.
This is the correct 1 cycle
latency implementation!
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Four Branch Hazard Alternatives

#1: Stall until branch direction is clear – flushing pipe
#2: Predict Branch Not Taken

– Execute successor instructions in sequence
– “Squash” instructions in pipeline if branch actually taken
– Advantage of late pipeline state update
– 47% DLX branches not taken on average
– PC+4 already calculated, so use it to get next instruction

#3: Predict Branch Taken
– 53% DLX branches taken on average
– But haven’t calculated branch target address in DLX

» DLX still incurs 1 cycle branch penalty
» Other machines: branch target known before outcome
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Four Branch Hazard Alternatives

#4: Delayed Branch
– Define branch to take place AFTER a following instruction

branch instruction
sequential successor1
sequential successor2
........
sequential successorn

branch target if taken

– 1 slot delay allows proper decision and branch target 
address in 5 stage pipeline

– DLX uses this

Branch delay of length n

CS211  66
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Delayed Branch
• Where to get instructions to fill branch delay slot?

– Before branch instruction
– From the target address: only valuable when branch taken
– From fall through: only valuable when branch not taken
– Cancelling branches allow more slots to be filled

• Compiler effectiveness for single branch delay slot:
– Fills about 60% of branch delay slots
– About 80% of instructions executed in branch delay slots useful 

in computation
– About 50% (60% x 80%) of slots usefully filled

• Delayed Branch downside: 7-8 stage pipelines, multiple 
instructions issued per clock (superscalar)
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Evaluating Branch Alternatives

Scheduling Branch CPI speedup v. speedup v.
scheme penalty unpipelined stall

Stall pipeline 3 1.42 3.5 1.0
Predict taken 1 1.14 4.4 1.26
Predict not taken 1 1.09 4.5 1.29
Delayed branch 0.5 1.07 4.6 1.31

Conditional & Unconditional = 14%, 65% change PC

Pipeline speedup = Pipeline depth
1 +Branch frequency ×Branch penalty
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Designing a Pipelined Processor

• Go back and examine your datapath and control 
diagram

• associated resources with states
• ensure that flows do not conflict, or figure out how 

to resolve
• assert control in appropriate stage
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Pipelining the Load Instruction

• The five independent functional units in the pipeline 
datapath are:

– Instruction Memory for the Ifetch stage
– Register File’s Read ports (bus A and busB) for the Reg/Dec 

stage
– ALU for the Exec stage
– Data Memory for the Mem stage
– Register File’s Write port (bus W) for the Wr stage

Clock

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7

Ifetch Reg/Dec Exec Mem Wr1st lw

Ifetch Reg/Dec Exec Mem Wr2nd lw

Ifetch Reg/Dec Exec Mem Wr3rd lw
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Summary : 
Control and Pipelining

• Just overlap tasks; easy if tasks are independent
• Speed Up ≤ Pipeline Depth; if ideal CPI is 1, then:

• Hazards limit performance on computers:
– Structural: need more HW resources
– Data (RAW,WAR,WAW): need forwarding, compiler 

scheduling
– Control: delayed branch, prediction

pipelined

dunpipeline

 TimeCycle
 TimeCycle

  
CPI stall Pipeline  1

depth Pipeline  Speedup ×
+

=
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Summary #1/2: Pipelining
• What makes it easy

– all instructions are the same length
– just a few instruction formats
– memory operands appear only in loads and stores

• What makes it hard? HAZARDS!
– structural hazards:   suppose we had only one memory
– control hazards:  need to worry about branch instructions
– data hazards:  an instruction depends on a previous 

instruction
• Pipelines pass control information down the pipe just 

as data moves down pipe
• Forwarding/Stalls handled by local control
• Exceptions stop the pipeline
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Summary #2/2

• Pipelines pass control information down the pipe 
just as data moves down pipe

• Forwarding/Stalls handled by local control
• Exceptions stop the pipeline
• MIPS I instruction set architecture made pipeline 

visible (delayed branch, delayed load)
• More performance from deeper pipelines, 

parallelism 
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ILP Processors

• whereas pipelined processors work like an 
assembly line, both VLIW and Superscalar 
processors operate basically in parallel, 
making use of a number of concurrently 
working execution units (EU)
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Introduction to ILP

• What is ILP?
– Processor and Compiler design techniques that 

speed up execution by causing individual machine 
operations to execute in parallel

• ILP is transparent to the user
– Multiple operations executed in parallel even 

though the system is handed a single program 
written with a sequential processor in mind

• Same execution hardware as a normal RISC 
machine

– May be more than one of any given type of 
hardware


