
Page 1

CS211 1

CS 211: Computer Architecture

Instructor: Prof. Bhagi Narahari
Dept. of Computer Science

Course URL:
www.seas.gwu.edu/~narahari/cs211/

CS211 2

Course Summary

• Technology trends
– Density increasing
– Wire delays getting longer

» Need for simpler architectures
– Reduced instruction set is faster and simpler to

implement
• Architecture performance

– Metrics: throughput, response time, IPC, CPI
– Benchmarks

• Review of Computer Organization
– CPU components, data paths, control path
– Sample design of a processor and its data and control

path

CS211 3

Pipeline Approach to Improve System
Performance

• Analogous to fluid flow in pipelines and
assembly line in factories

• Divide process into “stages” and send tasks
into a pipeline

– Overlap computations of different tasks by
operating on them concurrently in different stages

CS211 4

Instruction Level Parallel Processors (ILP)

• early ILP - one of two orthogonal concepts:
– pipelining - vertical approach
– multiple (non-pipelined) units - horizontal approach

• progression to multiple pipelined units
• instruction issue became bottleneck, led to

– superscalar ILP processors
– Very Large Instruction Word (VLIW)

• Note: key performance metric in all ILP
processor classes is IPC (instructions per
cycle)

– this is the degree of parallelism achieved

Page 2

CS211 5

Parallelism in Pipelining Comes From
the Following Fact

• While a load/store instruction is executing at the
second pipeline stage, a new instruction can be
initiated at the first stage.

CS211 6

Computer Pipelines

• Execute billions of instructions, so
throughput is what matters

• MIPS desirable features:
– all instructions same length,
– registers located in same place in instruction

format,
– memory operands only in loads or stores

CS211 7

Linear Pipeline Processor

Linear pipeline processes a sequence of
subtasks with linear precedence
At a higher level - Sequence of processors

Data flowing in streams from stage S1 to the
final stage Sk

Control of data flow : synchronous or
asynchronous

S1 S2 Sk• • • •

33

CS211 8

Synchronous Pipeline

All transfers simultaneous

One task or operation enters the pipeline per cycle

Processors reservation table : diagonal

44

Page 3

CS211 9

Time Space Utilization of Pipeline

S1

S2

S3

T1

T1

T1

T2

T2

T2

T3

T3

T4

1 2 3 4

Time (in pipeline cycles)

Full pipeline after 4 cycles

CS211 10

Asynchronous Pipeline

Transfers performed when individual processors are ready

Handshaking protocol between processors

Mainly used in multiprocessor systems with message-passing

55

CS211 11

Pipeline Clock and Timing

Si Si+1

τ τm d

Clock cycle of the pipeline : τ

Latch delay : d
τ = max {τm } + d

Pipeline frequency : f

f = 1 / τ

66

CS211 12

Speedup and Efficiency

k-stage pipeline processes n tasks in k + (n-1) clock
cycles:

k cycles for the first task and n-1 cycles
for the remaining n-1 tasks

Total time to process n tasks

Tk = [k + (n-1)] τ

For the non-pipelined processor

T1 = n k τ

Speedup factor

Sk =
T1

Tk
=

n k τ
[k + (n-1)] τ

=
n k

k + (n-1)

77

Page 4

CS211 13

Efficiency and Throughput Efficiency and Throughput

Efficiency of the k-stages pipeline :

Ek =
Sk

k =
n

k + (n-1)

Pipeline throughput (the number of tasks per unit time) :
note equivalence to IPC

Hk = n
[k + (n-1)] τ

= n f
k + (n-1)

1010

CS211 14

Pipeline Performance: Example
• Task has 4 subtasks with time: t1=60, t2=50, t3=90, and

t4=80 ns (nanoseconds)
• latch delay = 10
• Pipeline cycle time = 90+10 = 100 ns
• For non-pipelined execution

– time = 60+50+90+80 = 280 ns
• Speedup for above case is: 280/100 = 2.8 !!
• Pipeline Time for 1000 tasks = 1000 + 4-1= 1003*100 ns
• Sequential time = 1000*280ns
• Throughput= 1000/1003
• What is the problem here ?
• How to improve performance ?

CS211 15

Non-linear pipelines and pipeline control
algorithms

• Can have non-linear path in pipeline…
– How to schedule instructions so they do no conflict

for resources
• How does one control the pipeline at the

microarchitecture level
– How to build a scheduler in hardware ?

• Read notes on pipeline control!!

CS211 16

Instruction Pipeline

• Instruction execution process lends itself
naturally to pipelining

– overlap the subtasks of instruction fetch, decode
and execute

Page 5

CS211 17

The Five Stages of Load

• Ifetch: Instruction Fetch
– Fetch the instruction from the Instruction Memory

• Reg/Dec: Registers Fetch and Instruction Decode
• Exec: Calculate the memory address
• Mem: Read the data from the Data Memory
• Wr: Write the data back to the register file

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5

Ifetch Reg/Dec Exec Mem WrLoad

CS211 18

5 Steps of MIPS Datapath

Memory
Access

Write
Back

Instruction
Fetch

Instr. Decode
Reg. Fetch

Execute
Addr. Calc

L
M
D

A
LU

M
U

X

M
em

ory

Reg
File

M
U

X
M

U
X

D
ata

M
em

ory

M
U

X

Sign
Extend

4

A
dder Zero?

Next SEQ PC

A
ddress

Next PC

WB Data

Inst

RD

RS1

RS2

Imm

What do we need to do to pipeline the process ?

CS211 19

5 Steps of MIPS/DLX Datapath

Memory
Access

Write
Back

Instruction
Fetch

Instr. Decode
Reg. Fetch

Execute
Addr. Calc

A
LU

M
em

ory

Reg
File

M
U

X
M

U
X

D
ata

M
em

ory

M
U

X

Sign
Extend

Zero?

IF/ID

ID
/EX

M
EM

/W
B

EX
/M

EM

4

A
dder

Next SEQ PC Next SEQ PC

RD RD RD W
B

D
at

a

• Data stationary control
– local decode for each instruction phase / pipeline stage

Next PC

A
ddress

RS1

RS2

Imm

M
U

X

CS211 20

Graphically Representing Pipelines

• Can help with answering questions like:
– how many cycles does it take to execute this code?
– what is the ALU doing during cycle 4?
– use this representation to help understand datapaths

Page 6

CS211 21

Visualizing Pipelining

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 6 Cycle 7Cycle 5

CS211 22

Conventional Pipelined Execution Representation

IFetch Dcd Exec Mem WB

IFetch Dcd Exec Mem WB

IFetch Dcd Exec Mem WB

IFetch Dcd Exec Mem WB

IFetch Dcd Exec Mem WB

IFetch Dcd Exec Mem WBProgram Flow

Time

CS211 23

Single Cycle, Multiple Cycle, vs. Pipeline

Clk

Cycle 1

Multiple Cycle Implementation:

Ifetch Reg Exec Mem Wr

Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9 Cycle 10

Load Ifetch Reg Exec Mem Wr

Ifetch Reg Exec Mem
Load Store

Pipeline Implementation:

Ifetch Reg Exec Mem WrStore

Clk

Single Cycle Implementation:

Load Store Waste

Ifetch
R-type

Ifetch Reg Exec Mem WrR-type

Cycle 1 Cycle 2

CS211 24

The Four Stages of R-type

• Ifetch: Instruction Fetch
– Fetch the instruction from the Instruction Memory

• Reg/Dec: Registers Fetch and Instruction Decode
• Exec:

– ALU operates on the two register operands
– Update PC

• Wr: Write the ALU output back to the register file

Cycle 1 Cycle 2 Cycle 3 Cycle 4

Ifetch Reg/Dec Exec WrR-type

Page 7

CS211 25

Pipelining the R-type and Load Instruction

• We have pipeline conflict or structural hazard:
– Two instructions try to write to the register file at the same

time!
– Only one write port

Clock

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9

Ifetch Reg/Dec Exec WrR-type

Ifetch Reg/Dec Exec WrR-type

Ifetch Reg/Dec Exec Mem WrLoad

Ifetch Reg/Dec Exec WrR-type

Ifetch Reg/Dec Exec WrR-type

Ops! We have a problem!

CS211 26

Important Observation

• Each functional unit can only be used once per
instruction

• Each functional unit must be used at the same stage
for all instructions:

– Load uses Register File’s Write Port during its 5th stage

– R-type uses Register File’s Write Port during its 4th stage

Ifetch Reg/Dec Exec Mem WrLoad
1 2 3 4 5

Ifetch Reg/Dec Exec WrR-type
1 2 3 4

° 2 ways to solve this pipeline hazard.

CS211 27

Solution 1: Insert “Bubble” into the Pipeline

• Insert a “bubble” into the pipeline to prevent 2 writes
at the same cycle

– The control logic can be complex.
– Lose instruction fetch and issue opportunity.

• No instruction is started in Cycle 6!

Clock

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9

Ifetch Reg/Dec Exec WrR-type

Ifetch Reg/Dec Exec

Ifetch Reg/Dec Exec Mem WrLoad

Ifetch Reg/Dec Exec WrR-type
Ifetch Reg/Dec Exec WrR-type Pipeline

Bubble

Ifetch Reg/Dec Exec Wr

CS211 28

Solution 2: Delay R-type’s Write by One Cycle
• Delay R-type’s register write by one cycle:

– Now R-type instructions also use Reg File’s write port at
Stage 5

– Mem stage is a NOOP stage: nothing is being done.

Clock

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9

Ifetch Reg/Dec Mem WrR-type

Ifetch Reg/Dec Mem WrR-type

Ifetch Reg/Dec Exec Mem WrLoad

Ifetch Reg/Dec Mem WrR-type

Ifetch Reg/Dec Mem WrR-type

Ifetch Reg/Dec Exec WrR-type Mem

Exec

Exec

Exec

Exec

1 2 3 4 5

Page 8

CS211 29

Announcements

• Staughton Hall:
– Room 307 access code: 22569
– Username: s307
– Passwd: s307

– Timing: 7am-9pm M-F
• Team partners for programming assignments

– Teams of 3 persons
– Select team partner and inform instructor by Oct 1st

CS211 30

Why Pipeline?

• Suppose we execute 100 instructions
• Single Cycle Machine

– 45 ns/cycle x 1 CPI x 100 inst = 4500 ns
• Multicycle Machine

– 10 ns/cycle x 4.6 CPI (due to inst mix) x 100 inst = 4600 ns
• Ideal pipelined machine

– 10 ns/cycle x (1 CPI x 100 inst + 4 cycle drain) = 1040 ns

CS211 31

Why Pipeline? Because the resources are there!

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Inst 0

Inst 1

Inst 2

Inst 4

Inst 3

A
L

UIm Reg Dm Reg

A
L

UIm Reg Dm Reg

A
L

UIm Reg Dm Reg

A
L

UIm Reg Dm Reg

A
L

UIm Reg Dm Reg

CS211 32

Speed Up Equation for Pipelining

pipelined

dunpipeline

 TimeCycle
 TimeCycle

CPI stall Pipeline CPI Ideal

depth Pipeline CPI Ideal Speedup ×
+

×
=

pipelined

dunpipeline

 TimeCycle
 TimeCycle

CPI stall Pipeline 1

depth Pipeline Speedup ×
+

=

Instper cycles Stall Average CPI Ideal CPIpipelined +=

For simple RISC pipeline, CPI = 1:

Page 9

CS211 33

Can pipelining get us into trouble?
• Yes: Pipeline Hazards

– structural hazards: attempt to use the same resource two
different ways at the same time

» E.g., combined washer/dryer would be a structural
hazard or folder busy doing something else (watching
TV)

– data hazards: attempt to use item before it is ready
» E.g., one sock of pair in dryer and one in washer;

can’t fold until get sock from washer through dryer
» instruction depends on result of prior instruction still

in the pipeline
– control hazards: attempt to make a decision before

condition is evaulated
» E.g., washing football uniforms and need to get

proper detergent level; need to see after dryer before
next load in

» branch instructions
• Can always resolve hazards by waiting

– pipeline control must detect the hazard
– take action (or delay action) to resolve hazards

CS211 34

Its Not That Easy for Computers

• Limits to pipelining: Hazards prevent next
instruction from executing during its designated
clock cycle and introduce stall cycles which
increase CPI

– Structural hazards: HW cannot support this combination
of instructions - two dogs fighting for the same bone

– Data hazards: Instruction depends on result of prior
instruction still in the pipeline

– Control hazards: Caused by delay between the fetching
of instructions and decisions about changes in control
flow (branches and jumps).

CS211 35

One Memory Port/Structural Hazards

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Load

Instr 1

Instr 2

Instr 3

Instr 4

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 6 Cycle 7Cycle 5

Reg A
LU DMemIfetch Reg

CS211 36

One Memory Port/Structural Hazards

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Load

Instr 1

Instr 2

Stall

Instr 3

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 6 Cycle 7Cycle 5

Reg A
LU DMemIfetch Reg

Bubble Bubble Bubble BubbleBubble

Page 10

CS211 37

Example: Dual-port vs. Single-port

• Machine A: Dual ported memory (“Harvard Architecture”)
• Machine B: Single ported memory, but its pipelined

implementation has a 1.05 times faster clock rate
• Ideal CPI = 1 for both
• Loads are 40% of instructions executed

SpeedUpA = Pipeline Depth/(1 + 0) x (clockunpipe/clockpipe)
= Pipeline Depth

SpeedUpB = Pipeline Depth/(1 + 0.4 x 1) x (clockunpipe/(clockunpipe / 1.05)
= (Pipeline Depth/1.4) x 1.05
= 0.75 x Pipeline Depth

SpeedUpA / SpeedUpB = Pipeline Depth/(0.75 x Pipeline Depth) = 1.33

• Machine A is 1.33 times faster

CS211 38

Data Dependencies

• True dependencies and False dependencies
– false implies we can remove the dependency
– true implies we are stuck with it!

• Three types of data dependencies defined in
terms of how succeeding instruction depends
on preceding instruction

– RAW: Read after Write or Flow dependency
– WAR: Write after Read or anti-dependency
– WAW: Write after Write

CS211 39

• Read After Write (RAW)
InstrJ tries to read operand before InstrI writes it

• Caused by a “Dependence” (in compiler
nomenclature). This hazard results from an actual
need for communication.

Three Generic Data Hazards

I: add r1,r2,r3
J: sub r4,r1,r3

CS211 40

RAW Dependency

• Example program (a) with two instructions
– i1: load r1, a;
– i2: add r2, r1,r1;

• Program (b) with two instructions
– i1: mul r1, r4, r5;
– i2: add r2, r1, r1;

• Both cases we cannot read in i2 until i1 has
completed writing the result

– In (a) this is due to load-use dependency
– In (b) this is due to define-use dependency

Page 11

CS211 41

• Write After Read (WAR)
InstrJ writes operand before InstrI reads it

• Called an “anti-dependence” by compiler writers.
This results from reuse of the name “r1”.

• Can’t happen in MIPS 5 stage pipeline because:
– All instructions take 5 stages, and
– Reads are always in stage 2, and
– Writes are always in stage 5

I: sub r4,r1,r3
J: add r1,r2,r3
K: mul r6,r1,r7

Three Generic Data Hazards

CS211 42

Three Generic Data Hazards

• Write After Write (WAW)
InstrJ writes operand before InstrI writes it.

• Called an “output dependence” by compiler writers
This also results from the reuse of name “r1”.

• Can’t happen in MIPS 5 stage pipeline because:
– All instructions take 5 stages, and
– Writes are always in stage 5

• Will see WAR and WAW in later more complicated
pipes

I: sub r1,r4,r3
J: add r1,r2,r3
K: mul r6,r1,r7

CS211 43

WAR and WAW Dependency
• Example program (a):

– i1: mul r1, r2, r3;
– i2: add r2, r4, r5;

• Example program (b):
– i1: mul r1, r2, r3;
– i2: add r1, r4, r5;

• both cases we have dependence between i1 and i2
– in (a) due to r2 must be read before it is written into
– in (b) due to r1 must be written by i2 after it has been written

into by i1

CS211 44

What to do with WAR and WAW ?
• Problem:

– i1: mul r1, r2, r3;
– i2: add r2, r4, r5;

• Is this really a dependence/hazard ?

Page 12

CS211 45

What to do with WAR and WAW

• Solution: Rename Registers
– i1: mul r1, r2, r3;
– i2: add r6, r4, r5;

• Register renaming can solve many of these
false dependencies

– note the role that the compiler plays in this
– specifically, the register allocation process--i.e., the

process that assigns registers to variables

CS211 46

Hazard Detection in H/W

• Suppose instruction i is about to be issued and a
predecessor instruction j is in the instruction pipeline

• How to detect and store potential hazard information
– Note that hazards in machine code are based on register

usage
– Keep track of results in registers and their usage

» Constructing a register data flow graph
• For each instruction i construct set of Read registers

and Write registers
– Rregs(i) is set of registers that instruction i reads from
– Wregs(i) is set of registers that instruction i writes to
– Use these to define the 3 types of data hazards

CS211 47

Hazard Detection in Hardware

• A RAW hazard exists on register ρ if ρ ∈ Rregs(i) ∩ Wregs(j)
– Keep a record of pending writes (for inst's in the pipe) and

compare with operand regs of current instruction.
– When instruction issues, reserve its result register.
– When on operation completes, remove its write reservation.

• A WAW hazard exists on register ρ if ρ ∈ Wregs(i) ∩ Wregs(j)
• A WAR hazard exists on register ρ if ρ ∈ Wregs(i) ∩ Rregs(j)

CS211 48

Internal Forwarding: Getting rid of some
hazards

• In some cases the data needed by the next
instruction at the ALU stage has been
computed by the ALU (or some stage defining
it) but has not been written back to the
registers

• Can we “forward” this result by bypassing
stages ?

Page 13

CS211 49

I
n
s
t
r.

O
r
d
e
r

add r1,r2,r3

sub r4,r1,r3

and r6,r1,r7

or r8,r1,r9

xor r10,r1,r11

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Data Hazard on R1

Time (clock cycles)

IF ID/RF EX MEM WB

CS211 50

Time (clock cycles)

Forwarding to Avoid Data Hazard

I
n
s
t

r.

O
r
d
e
r

add r1,r2,r3

sub r4,r1,r3

and r6,r1,r7

or r8,r1,r9

xor r10,r1,r11

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

CS211 51

Internal Forwarding of Instructions

• Forward result from ALU/Execute unit to
execute unit in next stage

• Also can be used in cases of memory access
• in some cases, operand fetched from memory has

been computed previously by the program
– can we “forward” this result to a later stage thus

avoiding an extra read from memory ?
– Who does this ?

• Internal forwarding cases
– Stage i to Stage i+k in pipeline
– store-load forwarding
– load-store forwarding
– store-store forwarding

CS211 52

HW Change for Forwarding

M
EM

/W
R

ID
/EX

EX
/M

EM

Data
Memory

A
LU

m
ux

m
ux

Registers

NextPC

Immediate

m
ux

Page 14

CS211 53

What about memory operations?

A B

op Rd Ra Rb

op Rd Ra Rb

Rd

to reg
file

R

Rd

º If instructions are initiated in order and
operations always occur in the same stage,
there can be no hazards between memory
operations!

º What does delaying WB on arithmetic
operations cost?

– cycles ?
– hardware ?

º What about data dependence on loads?
R1 <- R4 + R5
R2 <- Mem[R2 + I]
R3 <- R2 + R1

⇒ “Delayed Loads”
º Can recognize this in decode stage and

introduce bubble while stalling fetch stage
º Tricky situation:

R1 <- Mem[R2 + I]
Mem[R3+34] <- R1

Handle with bypass in memory stage!

D

Mem

T

CS211 54

Internal Data Forwarding

Store-load forwarding

Memory
M

Access Unit

R1 R2

STO M,R1 LD R2,M

Memory
M

Access Unit

R1 R2

STO M,R1 MOVE R2,R1

3838

CS211 55

Internal Data Forwarding

Load-load forwarding

Memory
M

Access Unit

R1 R2

LD R1,M LD R2,M

Memory
M

Access Unit

R1 R2

LD R1,M MOVE R2,R1

3939

CS211 56

Internal Data Forwarding

Store-store forwarding

Memory
M

Access Unit

R1 R2

STO M, R1 STO M,R2

Memory
M

Access Unit

R1 R2

STO M,R2

4040

Page 15

CS211 57

Time (clock cycles)

I
n
s
t
r.

O
r
d
e
r

lw r1, 0(r2)

sub r4,r1,r6

and r6,r1,r7

or r8,r1,r9

Data Hazard Even with Forwarding

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

CS211 58

Data Hazard Even with Forwarding

Time (clock cycles)

or r8,r1,r9

I
n
s
t
r.

O
r
d
e
r

lw r1, 0(r2)

sub r4,r1,r6

and r6,r1,r7

Reg A
LU DMemIfetch Reg

RegIfetch A
LU DMem RegBubble

Ifetch A
LU DMem RegBubble Reg

Ifetch

A
LU DMemBubble Reg

CS211 59

Try producing fast code for
a = b + c;
d = e – f;

assuming a, b, c, d ,e, and f in memory.
Slow code:

LW Rb,b
LW Rc,c
ADD Ra,Rb,Rc
SW a,Ra
LW Re,e
LW Rf,f
SUB Rd,Re,Rf
SW d,Rd

Software Scheduling to Avoid Load
Hazards

Fast code:
LW Rb,b
LW Rc,c
LW Re,e
ADD Ra,Rb,Rc
LW Rf,f
SW a,Ra
SUB Rd,Re,Rf
SW d,Rd CS211 60

Branching and Effects Branching and Effects

Pipeline effectiveness reduced by data dependence and
branch instructions

Branch target : The next instruction to be executed

Delay slot : Time necessary to perform branching

* Loading, decoding, issuing of several next instructions lost
* Flushing the complete pipeline

Predicting : Branching may be predicted

* Based on instruction code (lookahead)
* Branch history

4545

Page 16

CS211 61

Control Hazard on Branches
Three Stage Stall

10: beq r1,r3,36

14: and r2,r3,r5

18: or r6,r1,r7

22: add r8,r1,r9

36: xor r10,r1,r11

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

CS211 62

Branch Stall Impact

• If CPI = 1, 30% branch,
Stall 3 cycles => new CPI = 1.9!

• Two part solution:
– Determine branch taken or not sooner, AND
– Compute taken branch address earlier

• MIPS branch tests if register = 0 or ≠ 0
• MIPS Solution:

– Move Zero test to ID/RF stage
– Adder to calculate new PC in ID/RF stage
– 1 clock cycle penalty for branch versus 3

CS211 63

Pipelined MIPS (DLX) Datapath

Memory
Access

Write
Back

Instruction
Fetch

Instr. Decode
Reg. Fetch

Execute
Addr. Calc.
This is the correct 1 cycle
latency implementation!

CS211 64

Four Branch Hazard Alternatives

#1: Stall until branch direction is clear – flushing pipe
#2: Predict Branch Not Taken

– Execute successor instructions in sequence
– “Squash” instructions in pipeline if branch actually taken
– Advantage of late pipeline state update
– 47% DLX branches not taken on average
– PC+4 already calculated, so use it to get next instruction

#3: Predict Branch Taken
– 53% DLX branches taken on average
– But haven’t calculated branch target address in DLX

» DLX still incurs 1 cycle branch penalty
» Other machines: branch target known before outcome

Page 17

CS211 65

Four Branch Hazard Alternatives

#4: Delayed Branch
– Define branch to take place AFTER a following instruction

branch instruction
sequential successor1
sequential successor2
........
sequential successorn

branch target if taken

– 1 slot delay allows proper decision and branch target
address in 5 stage pipeline

– DLX uses this

Branch delay of length n

CS211 66

CS211 67

Delayed Branch
• Where to get instructions to fill branch delay slot?

– Before branch instruction
– From the target address: only valuable when branch taken
– From fall through: only valuable when branch not taken
– Cancelling branches allow more slots to be filled

• Compiler effectiveness for single branch delay slot:
– Fills about 60% of branch delay slots
– About 80% of instructions executed in branch delay slots useful

in computation
– About 50% (60% x 80%) of slots usefully filled

• Delayed Branch downside: 7-8 stage pipelines, multiple
instructions issued per clock (superscalar)

CS211 68

Evaluating Branch Alternatives

Scheduling Branch CPI speedup v. speedup v.
scheme penalty unpipelined stall

Stall pipeline 3 1.42 3.5 1.0
Predict taken 1 1.14 4.4 1.26
Predict not taken 1 1.09 4.5 1.29
Delayed branch 0.5 1.07 4.6 1.31

Conditional & Unconditional = 14%, 65% change PC

Pipeline speedup = Pipeline depth
1 +Branch frequency ×Branch penalty

Page 18

CS211 69

Designing a Pipelined Processor

• Go back and examine your datapath and control
diagram

• associated resources with states
• ensure that flows do not conflict, or figure out how

to resolve
• assert control in appropriate stage

CS211 70

Pipelining the Load Instruction

• The five independent functional units in the pipeline
datapath are:

– Instruction Memory for the Ifetch stage
– Register File’s Read ports (bus A and busB) for the Reg/Dec

stage
– ALU for the Exec stage
– Data Memory for the Mem stage
– Register File’s Write port (bus W) for the Wr stage

Clock

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7

Ifetch Reg/Dec Exec Mem Wr1st lw

Ifetch Reg/Dec Exec Mem Wr2nd lw

Ifetch Reg/Dec Exec Mem Wr3rd lw

CS211 71

Summary :
Control and Pipelining

• Just overlap tasks; easy if tasks are independent
• Speed Up ≤ Pipeline Depth; if ideal CPI is 1, then:

• Hazards limit performance on computers:
– Structural: need more HW resources
– Data (RAW,WAR,WAW): need forwarding, compiler

scheduling
– Control: delayed branch, prediction

pipelined

dunpipeline

 TimeCycle
 TimeCycle

CPI stall Pipeline 1

depth Pipeline Speedup ×
+

=

CS211 72

Summary #1/2: Pipelining
• What makes it easy

– all instructions are the same length
– just a few instruction formats
– memory operands appear only in loads and stores

• What makes it hard? HAZARDS!
– structural hazards: suppose we had only one memory
– control hazards: need to worry about branch instructions
– data hazards: an instruction depends on a previous

instruction
• Pipelines pass control information down the pipe just

as data moves down pipe
• Forwarding/Stalls handled by local control
• Exceptions stop the pipeline

Page 19

CS211 73

Summary #2/2

• Pipelines pass control information down the pipe
just as data moves down pipe

• Forwarding/Stalls handled by local control
• Exceptions stop the pipeline
• MIPS I instruction set architecture made pipeline

visible (delayed branch, delayed load)
• More performance from deeper pipelines,

parallelism

CS211 74

ILP Processors

• whereas pipelined processors work like an
assembly line, both VLIW and Superscalar
processors operate basically in parallel,
making use of a number of concurrently
working execution units (EU)

CS211 75

Introduction to ILP

• What is ILP?
– Processor and Compiler design techniques that

speed up execution by causing individual machine
operations to execute in parallel

• ILP is transparent to the user
– Multiple operations executed in parallel even

though the system is handed a single program
written with a sequential processor in mind

• Same execution hardware as a normal RISC
machine

– May be more than one of any given type of
hardware

