Name:

CS2113 Quiz 1

45 minutes (you may find the bug in a fraction of this time).

If you are unsure of what any line of code below does, you may ask your TA — they cannot help you
debug or trace memory, but they can explain a line of code to you in English.

The code below is a class that has a method with TWQO BUGS that cause at least two of the
assertions below to fail.

Trace the code, like we did in class last week for the Dictionary problem, and CIRCLE the line
with the bug.

Then, fix that line so that it passes all the test cases, changing only one line of code for each
bug (i.e. do not rewrite the entire method, just fix the broken line). Hint: remember the
substring (startIndex, endIndex) method of the String class.

We will apply the following grading rubric:

e 25 points: code trace is correctly showing how memory changes over at least one test
case input. You must show a complete memory trace, even if you know where the bug
is, to receive credit here.

e 50 points: circled the correct TWO lines of code that contain the bugs that is causing the
test case to fail

e 25 points: code is correctly fixed such that all tests pass




class PersonNode {
String name;
int age;
PersonNode next;

public PersonNode (String name, int age) {
this.name = name;
this.age = age;
this.next = null;

public String getName () {
return name;

public int getAge () {
return age;

public PersonNode getNext () {
return next;

public class LinkedList {
PersonNode head;

public boolean search(String name, int age) {
PersonNode curr = head;
boolean found = true;
while (curr != null) {
if (curr.getName () .equals (name) && curr.getAge() == age)
return found;
found = false;
curr = curr.getNext();
}

return found;

public void add (PersonNode node) {
PersonNode newNode = node;

if (head == null) {
head = newNode;

} else {
PersonNode temp = head;
while (temp.next != null) {

temp = temp.next;

}

temp.next = newNode;

public String toString() {
String result = "";
PersonNode curr = head;

while (curr != null){
result += curr.getName() + " " + curr.getAge() + ", ";
curr = curr.getNext();

}

return result;



import org.junit.Test;
import static org.junit.Assert.assertEquals;

public class PersonTester {
@Test
public void testl () {
LinkedList list = new LinkedList();
list.add (new PersonNode ("Zoe", 11));

(
list.add (new PersonNode ("Kim", 12));
list.add (new PersonNode ("Ben", 13));
list.add (new PersonNode ("Ben", 10));
list.add (new PersonNode ("Joe", 14));
list.add (new PersonNode ("Sam", 15));
String expected = "Zoe 11, Kim 12, Ben 13, Ben 10, Joe 14, Sam 15";

assertEquals (expected, list.toString())

assertEquals (true, list.search("Ben", 13));
assertEquals (true, list.search("Ben", 10));
assertEquals(false, list.search("Ben", 11));
assertEquals (false, list.search("Lee", 13));

}



SCRATCH PAPER



SCRATCH PAPER



