Hartenberg - Denavit Method

Roger E. Kaufman

The George Washington University
© 2002

Screw Connections

\square Four parameters are needed to describe a screw connection between two links.
\square Any revolute or prismatic connection is a limiting case of a screw connection.
\square A hinge is a screw with zero pitch
\square A prismatic (sliding) joint is a screw with infinite pitch

- A ball joint can be modeled as 3 intersecting revolutes.

Symbolic Representation of Mechanisms

A mechanism can be viewed as a sequence of connections.
\square Each connection consists of a pair and is characterized by a pair variable.
\square There are six lower pairs (with area contact)-

- Revolute

R
[Prismatic
\square Screw
\square Cylindric

- Spheric
\square Planar
P

C
S_{L} (where L is the lead of the screw)

G (For globular)
F (For flati)

Symbolic Representation of Mechanisms

\square As limiting cases of the screw pair we can consider revolutes and prismatic joints as special cases:
\square Screw S_{L} (where L is the lead of the screw)
Revolute $R=S_{0}$ (A screw with zero lead)
\square Prismatic $P=S_{\infty}$ (A screw with infinite lead)

Symbolic Representation of Mechanisms

We can write the two halves of a pair as
$\square R^{+}$and R
$\square S_{L^{+}}$and S_{L}
$\square \mathrm{P}^{+}$and P^{-}
and so forth.
[Lower pairs are invertible so it doesn't really matter which half is the plus or minus half.

Symbolic Representation of Mechanisms

I Relative motion between pair elements describes the relative motion between the links carrying the elements.
That relative motion is described by the pair variables.
\square These are variables such as \square for rotation and s for translation.

Symbolic Representation of Mechanisms

\square We can give a symbolic description to a simple closed kinematic chain like a four-bar

as $R_{1} R_{2} R_{3} R_{4}$ or $R_{1} R_{4} R_{3} R_{2}$ and so forth.

Symbolic Representation of Mechanisms

\square A compound closed kinematic chain like the sixbar below could be described symbolically by giving two independent loops that include all the pairs. For instance,

as $R_{6} R_{3} R_{1} R_{5} \quad$ \& $R_{1} R_{2} R_{7} R_{4} R_{3}$ for example.

Symbolic Representation of Mechanisms

These are both examples of closed kinematic chains.

\square A typical robot would be an example of an open kinematic chain.

Symbolic Representation of Mechanisms

I In a simple closed kinematic chain each link connects to two and only two other links.
In a compound closed chain some links hook to more than two others.

Description of a Simple Chain

\square Relative positions of the successive pair axes on a link can be described by use of the unique common perpendicular between the pair axes.

Description of a Simple Chain

Coordinate systems are fixed in each joint using a simple convention.
\square The z axes are chosen to define the orientations of the revolute, screw, or prismatic pairs

Description of a Simple Chain

T. The x axis at a joint is chosen to lie along the common perpendicular from a point H on the previous z axis to the current one on the link.
] The length of that common perpendicular from z_{k} to z_{k+1} is called a_{k}

Description of a Simple Chain

[] A general link has a "Dual Angle" $\square\left(a_{1}, \square_{1}\right)$ between the vectors z_{1} and z_{2}.
(] By that I mean that there could be both an offiset a_{1} and a twist angle \square_{1} (measured about the x axis in a plane perpendicular to the common normal).
\square (Because of the right-hand rule the angle \square_{1} shown is negative.)

Description of a Simple Chain

\square Finally, the y axis is
chosen so as to give a right-handed rectangular coordinate system.

Description of a Simple Chain

] Here is what the situation looks like so far for two typical links of a spatial chain.
\square To clarify the numbering conventions used, they were chosen as links \#1 and \#2.

Description of a Simple Chain

\square The offset along the z_{1} axis between the origin o_{1} and the point H_{1} is called s_{1}.

Description of a Simple Chain

F Finally, the
rotation angle between the x_{1} and x_{2} axes (and measured about the z_{1} axis) is called \square_{1}.

Description of a Simple Chain

\square Thus the x_{1} and x_{2} axes subtend a second "dual angle" $\square\left(s_{1}, \square_{1}\right)$ between them.

Description of a Simple Chain

I In this way, a rectangular cartesian coordinate system is uniquely specified in each link.

Description of a Simple Chain

[. The relative positions of
successive links is expressed in terms of the four parameters of the two dual angles $\square\left(\mathrm{s}_{1}, \square_{1}\right) ; \square\left(\mathrm{a}_{1}, \square_{1}\right)$
[] These uniquely define the relative positions of
successive systems

Description of a Simple Chain

7) For generality, we can assume the joints are all made up of screw pairs, (shown
symbolicaly as $S_{L k)}$

Description of a Simple Chain

4. In a screw the parameters \square_{k} and s_{k} would be related by the lead of the screw.
$\frac{\square \square_{k}}{2 \square}=\frac{\square s_{k}}{L_{k}}$

Description of a Simple Chain

\square For a revolute pair ($\mathrm{L}_{\mathrm{k}}=0$) only the parameter \square_{k} varies.

Description of a Simple Chain

\square For a prismatic
pair ($L_{k}=\infty$)
only the
parameter s_{k}
varies.

Description of a Simple Chain

\square Thus we can write a general equation for a simple closed chain of screws in the following symbolic form:

\square Here, the identity symbol I is used to indicate that when you work your way around the closed chain you get back to the start.
[Later, when this is expressed with matrices, it will have the same function mathematically.

A brief digression...

\square How many degrees-offfreedom does a four-link four-revolute linkage have?
\square If you think of it as a planar four-bar you automatically think "One degree-offreedom".

A brief digression...

\square Using the basic planar D.O.E. formula we get

$$
\begin{aligned}
\text { D.O.F. } & =3(n \square 1) \square 2 j \\
& =3(4 \square 1) \square 2 * 4 \\
& =+1
\end{aligned}
$$

A brief digression...

IWhat if we think of these links as being general, spatial links connected by revolutes?
\square In space, a revolute joint removes five relative degrees-of-freedom and leaves only one.

A brief digression...

So if we have four bodies connected by revolutes the degrees-of-freedom should be:

$$
\begin{aligned}
\text { D.O.F. } & =6(n \square 1) \square 5 R \\
& =6(4 \square 1) \square 5 * 4 \\
& =18 \square 20 \\
& =\square 2
\end{aligned}
$$

IIn other words, a general
 spatial four-bar is massively over-constrained!

A brief digression...

\square It turns out that there are only three four revolute linkages that exist and can move with one degree of freedom. These are
The planar four-revolute mechanism (commonly known as "the four-bar")
[The spherical four-revolute mechanism
\square The Bennett mechanism

A brief digression...

\square Planar four-bars are unique in that all four revolute axes are parallel to one another and perpendicular to the plane of motion.
\square The axes all intersect at infinity.
\square That is why the mechanisms work even though the formula shows them having minus two degrees of freedom!

A brief digression...

Spherical four-bars are also uniquely proportioned.
\square All four revolute axes intersect at a common point.
They have a lot in common with their planar cousins.
[They are just mapped onto a sphere
[] That is why they also work even though the formula shows them having minus two degrees of freedom!

A brief digression...

[] Here's what a fairly general spherical fourbar looks like:

A brief digression...

[Here's what the most common specialcase spherical four-bar looks like:

A brief digression...

T- This is the "Hooke" or "Cardan" universal joint

A brief digression...

I A Hooke joint is a special case four-revolute spherical linkage with all four of it's spherical angles equal to $\overline{/} / 2$

A brief digression...

T. The Bennett mechanism is a singularly useless special case spherical mechanism.

A brief digression...

[. It's opposite sides are equal in length and the twists of opposite links are the same.
\square Thus, it has a lot in common with a planar parallelogram linkage.

A brief digression...

[] The Bennett mechanism has one interesting virtuenamely it has no dead center positions.
\square When all the x axes are collinear, the output torque is produced by bending and torsion stresses in the connecting rod and frame

Symbolic Representation Example

\square Now that you know a little bit about spatial four-revolute linkages, let's see how we can analyze them using the HartenbergDenavit method.

Symbolic Representation Example

[Here's a planar four-bar for example. \square The z axes are all oriented with the same sense.

Symbolic Representation Example

\square Successive common perpendiculars form the four x axes.

Symbolic Representation Example

\square They axes aren't shown but would complete the four right-handed coordinate systems.

Symbolic Representation Example

\square Note that the $x_{1} y_{1} z_{1}$ system is fixed in link 1 , the $x_{2} y_{2} z_{2}$ system is fixed in link 2 , and so on.

Symbolic Representation Example

[Here's the symbolic equation for this planar four-bar:

Symbolic Representation Example

\square Comparing it with the general form we see that the four pairs are the four revolutes $R_{1} R_{2} R_{3}$ and R_{1}.

Symbolic Representation Example

\square The link lengths are the parameters a_{1}, a_{2}, a_{3}, and a_{4} and are the distances between the z axes measured along the common perpendiculars.

Symbolic Representation Example

\square The angles \square are all zero since the axes are all parallel.

Symbolic Representation Example

\square The angles $\square_{1}, \square_{2}, \square_{3}$, and Π_{4} are the pair variables of the revolute joints.

Symbolic Representation Example

The s distances are also all zero, since the successive x axes were chosen so as to intersect.

Another Symbolic Representation Example

[Let's now look at a spherical four-revolute mechanism:

Another Symbolic Representation Example

II In this case, all the z axes intersect.
\square For this reason, all the a and s parameters are zero.

Another Symbolic Representation Example

\square The angles \square define the link dimensions.

Another Symbolic Representation Example

\square The angles \square are the pair variables of the revolutes.

Another Symbolic Representation Example

\square The Hooke joint is a special case of this with $\square_{2}=\square_{3}=\square_{4}=90^{\circ}$

Another Symbolic Representation Example

\square The symbolic equation for the Hooke universal joint is:

Another Symbolic Representation Example

[The Bennett mechanism has opposite links with equal twists (\square and \square) and equal lengths (a and b).

Another Symbolic Representation Example

The Bennett mechanism's x axes all intersect, so the s parameters are all zero.
\square Again, the pair variables are the \square 's.

Another Symbolic Representation Example

The symbolic equation for the Bennett mechanism

\square An additional condition is that

$$
\frac{a}{\sin \square}= \pm \frac{b}{\sin \square}
$$

Carrying out the Matrix Method of Analysis

\square Once a linkage has been described by a symbolic equation, the coordinate transformation from one link's coordinate system to the next may be represented by a 4×4 matrix involving the four parameters a, $\bar{\square}, \square$, and s.

Carrying out the Matrix Method of Analysis

\square This coordinate transformation from system $k+1$ to system k can be shown to be in the form:

Carrying out the Matrix Method of Analysis

\square Multiplying together matrices of this form in the right order can take you from one coordinate system to the next as you go around the loops of a closed-loop kinematic chain.

Carrying out the Matrix Method of Analysis

\square For instance, to go from the coordinate system on link 3 to the coordinate system on link 1 you would perform the matrix multiplication $\mathrm{A}_{1} \mathrm{~A}_{2}$

Carrying out the Matrix Method of Analysis

\square For the four-link examples given earlier (planar and spherical four revolutes or the Bennett mechanism), $\mathrm{A}_{1} \mathrm{~A}_{2} \mathrm{~A}_{3} \mathrm{~A}_{4}$ would take you around the closed loop of the mechanism and back to the starting number one coordinate system.

Carrying out the Matrix Method of Analysis

\square Since you are back to the original \#1 coordinate system, the product of these transformation matrices must be the identity matrix.

$$
I=\begin{array}{cccc}
A_{1} & A_{2} & A_{3} & A_{4}
\end{array}=I
$$

Carrying out the Matrix Method of Analysis

Carrying out the Matrix Method of Analysis

\square All the remaining displacement relations relating the pair variables can then be extracted from this matrix equation:

$$
A_{1} A_{2} A_{3} A_{4}=I
$$

Example: Analysis of the Hooke Joint

Carrying out the Matrix Method of Analysis

\square To reduce the number of matrix products involved, both sides of this equation can be multiplied by the inverse matrix A_{1}^{-1}.

$$
\begin{gathered}
A_{1}^{-1} A_{1} A_{2} A_{3} A_{4}=A_{1}^{-1} I=A_{1}^{-1} \\
A_{2} A_{3} A_{4}=A_{1}^{-1}
\end{gathered}
$$

Carrying out the Matrix Method of Analysis

\square The inverse matrix $A_{1}{ }^{-1}$ in this case can be obtained by simply interchanging rows and columns in A_{1} and is simply:

$A_{1}^{\square_{1}}=$| \square | 0 | 0 | 0 |
| :---: | :---: | :---: | :---: |
| \square | $\cos \square_{1}$ | $\sin \square_{1}$ | 0 |
| \square | | | |
| \square | $\square \cos \square_{1} \sin \square_{1}$ | $\cos \square_{1} \cos \square_{1}$ | $\sin \square_{1}[$ |
| (\square) | $\sin \square_{1} \sin \square_{1}$ | $\square \sin \square_{1} \cos \square_{1}$ | $\cos \square_{1}[$ |

Carrying out the Matrix Method of Analysis

\square After carrying out the matrix products we get:

Carrying out the Matrix Method of Analysis

\square Corresponding elements in both matrices must be equal.

Carrying out the Matrix Method of Analysis

\square Suppose that \square_{1} is the input variable and is known.
\square We seek relations giving \square_{2}, \square_{3}, and \square_{4} in terms of \square_{1}.

Carrying out the Matrix Method of Analysis

\square Equating the ratios of these sets of elements gives \square_{2} in terms of \square_{1} :

$\tan \nabla_{2}=\cos \nabla_{1} \cot \square_{1}$

Carrying out the Matrix Method of Analysis

\square Equating this pair of elements gives \square_{3} in terms of \square_{1} :

$\cos \square_{3}=\sin Z_{1} \cos \square_{1}$

Carrying out the Matrix Method of Analysis

\square And equating the ratios of this pair of elements gives \square_{4} in terms of \square_{1} :

Hartenberg-Denavit Homework

[. The illustration shows an RRCRC saw drive mechanism reproduced from an article in Machine Design Magazine for Sept 24, 1964.

Hartenberg-Denavit Homework:

[] Choose an appropriate coordinate system, take note of special proportions (such as 90° angles, zero lengths, etc. and derive the output versus input relation from the Hartenberg-Denavit matrix equation
$\left[A_{3}\right]\left[A_{4}\right]\left[A_{3}\right]\left[A_{2}\right]\left[A_{1}\right]=[1]$

More Hartenberg-Denavit

 Homework: (based on shigley \& Uicker)[] The Hooke joint consists of two yokes (which are the driving and driven members) and a cross which is the connecting link.

More Hartenberg-Denavit

Homework: (based on Shigley \& Uicker)

\square One disadvantage of this joint is that the velocity ratio fluctuates during rotation.
\square This is a polar angular velocity diagram for one complete rotation of the driver and driven links of the joint.

More Hartenberg-Denavit

Homework: (based on shigiley \& Uicker)

\square Since the driver is assumed to have a constant angular velocity, its polar diagram is a circle.
\square The diagram for the output is an ellipse which crosses the driver circle at four places.

More Hartenberg-Denavit

Homework: (based on Shigley \& Uickern)

\square This means there are four instants during each rotation when the angular velocities of the two shafts are equal.
\square The rest of the time, the output rotates faster or slower.

More Hartenberg-Denavit

 Homework: (based on shigley \& Uicker)Think of the drive shaft as having an inertia load at each end- the flywheel and engine spinning at constant speed at one end and the weight of the car running at high speed at the other end.

More Hartenberg-Denavit

 Homework: (based on Shigigley \& Uicherr)If a single universal joint were used in a car either the speed of the engine or the speed of the car would need to vary during each rotation of the drive sheft.

More Hartenberg-Denavit

Homework: (based on Shigiley \& Uicker)

[Both inertias resist this so the tires would need to slip and the parts of the power transmission would be highly stressed.

More Hartenberg-Denavit Offeviosis (based on shigley \& Uicker)

To attain a uniform angular velocity ratio, actual drive shafts use a pair of universal joints arranged in one of these two configurations.
This causes the speed fluctuations to cancel and a uniform velocity ratio from input to output.

More Hartenberg-Denavit

Homework: (pased on Shigigley \& Uicker)

\square Using the Hartenberg-Denavit method, develop an expression for the ratio of $\square_{2 /} \square_{4}$ in terms of the angle of shaft misalignment.

More Hartenberg-Denavit Homework: (based on Shigley \& Uicker)

[]. Then use that expression to develop a table showing the ratio of the output angular velocity to the input angular velocity for a single universal joint at running at shaft misalignments of $0^{\circ}, 5^{\circ}, 10^{\circ}, 15^{\circ}, 30^{\circ}$, and 45°.
[(Data can be plotted at 15° increments if you like over just 90° rotation of the input shaft.)

More Hartenberg-Denavit

Homework: (based on Shigley \& Uicker)

[. If the differences between the maximum and minimum ratios is expressed as a percent and plotted against the shaft angle a curve such as this one will result:

