
A Novel ReRAM-based Processing-in-Memory
Architecture for Graph Computing

Lei Han† Zhaoyan Shen† Zili Shao† H. Howie Huang‡ Tao Li∗

†Department of Computing, Hong Kong Polytechnic University
‡Department of Electrical and Computer Engineering, George Washington University

∗Department of Electrical and Computer Engineering, University of Florida

Abstract—Graph algorithms such as breadth-first search (BFS)
have been gaining ever-increasing importance in the era of Big
Data. However, the memory bandwidth remains the key perfor-
mance bottleneck for graph processing. To address this problem,
we utilize processing-in-memory (PIM), combined with non-
volatile metal-oxide resistive random access memory (ReRAM),
to improve the performance of both computation and I/O. The
idea is to integrate the computation logic into the memory in
which the data accesses are located. We propose and implement
a new ReRAM-based processing-in-memory architecture called
RPBFS, in which graphs can be processed and persistently
stored. We also design an efficient graph traversal scheme.
Benefited from low data movement overhead and bank-level
parallel computation, RPBFS shows a significant performance
improvement compared with both the CPU-based and GPU-
based BFS implementations. On a suite of real world graphs,
our architecture yields up to 33.8× speedup.

I. INTRODUCTION

The use of graph-based computation is ubiquitous in analyz-

ing and understanding social networks, complex engineering

systems and metabolic networks. Common graph-theoretic

algorithms such as graph traversal have been gaining ever-

increasing importance in these application areas. However,

data movement between the processor and memory limits

graph computation performance due to irregular memory ac-

cesses. Recently processing-in-memory techniques show great

potential to address the memory wall challenge by integrating

the computation logic within or near memory, thereby mini-

mizing the speed mismatch for data-intensive applications.

Metal-oxide resistive random access memory (ReRAM)

crossbar array, which can perform both computation and

memory functions, is attractive, especially for matrix-vector

multiplication. Considering the fact that the size of cells keeps

shrinking, enhancing the density of ReRAM memory has been

studied [1]. Furthermore, ReRAM has been considered as main

memory thanks to the low read latency, higher endurance, and

energy efficiency [2].

We study the problem of graph traversal in this work. In

particular, breadth-first search (BFS) refers to a method of

exploring all the vertices in a graph. Although very simple,

it is challenging for BFS to achieve good performance in

traditional computation system due to the fact that current

architectures heavily penalize memory-intensive random ac-

cesses. The memory bandwidth is the bottleneck that hinders

the graph traversal performance. In [3], the authors demon-

strate that increasing computation cores is inefficient because

higher performance would require bigger memory bandwidth.

GPU can offer massive parallelism for high-performance graph

computing but it needs to utilize memory hierarchy well.

Accessing a shared memory is several orders of magnitude

faster than that on a global memory. Beyond that, BFS im-

plementation needs additional data structures. In recent GPU

works [4] [5] [6], indispensable vertex arrays are maintained

in global memory since the inspection data of the preceding

level can be presented anywhere, which aggravates the amount

of memory access.

Performance limitations of traditional graph processing plat-

forms have been studied recently. [7] [8] have shown that the

graph processing on optimized conventional systems results

in a low IPC value. The main bottleneck, memory access,

which suffers from poor temporal locality, has been identified.

To maximize the available memory bandwidth, [3] integrates

PIM technology into 3D-stacked memory. [9] proposes an

accelerator architecture to reduce the irregular access patterns

and asymmetric convergence. Although they are architectural

accelerators for graph analysis, they can not make graphs

persistently stored and ignore the optimization on graph layout.

In this work, we propose a novel ReRAM-based main

memory PIM architecture (RPBFS) that is optimized for graph

travel problems. In this architecture, a portion of memory

banks called graph banks are used to store compressed sparse

graph data, while a master bank is selected to record the

metadata of graph banks and manage the graph traversal

procedure. Due to the non-volatility of ReRAM, a graph is

persistently stored and scattered over multiple graph banks. To

accelerate graph traversal and keep it accurate, we propose an

efficient scheme that can alleviate the impact of data move-

ment on traversal performance. In our design, the accesses

to adjacent vertex are constrained in the corresponding graph

bank. The data movement in the internal bus among memory

banks is only related to the vertex bitmap, which is smaller

compared with other solutions. We have conducted a series

of experiments and the results show significant improvement

across a wide variety of graphs compared with the state-of-

the-art CPU-based and GPU-based parallel solutions.

To the best of our knowledge, this is the first work to explore

graph traversal on ReRAM crossbars, which we believe can

benefit other graph algorithms, such as single-source shortest978-1-5386-1768-7/17/$31.00 2017 IEEE

VRead

0

0

Wi1 Wij WinWiiWW 111111 WWWWWWijijjjWWWWWW WinnWW

R R R

S1 Sj Sn

Fig. 1: Overview of ReRAM crossbar.

path which can be solved by BFS. We conclude our contribu-

tions in this paper as follows:

• We design a new ReRAM-based main memory archi-

tecture with a set of peripheral circuits. ReRAM-based

memory banks are separated to graph banks and master

bank for accelerating graph traversal.

• We develop a novel mapping layout to store graph on

ReRAM crossbars and to maximize computation capa-

bility.

• We design algorithms for graph bank and master bank,

respectively. Data movement is minimized and bank-level

parallelism is explored to effectively accelerate graph

traversal.

• We evaluate our proposed scheme with a variety of

real world graphs and the results show the performance

improvement of 33.8× compared with the state-of-the-

art CPU-based solution and 16.0× with the GPU-based

solution.

II. PRELIMINARIES

A. Breadth-First Search

Breadth-First Search starts the traversal from a given source

vertex and systematically explores a graph to discover every

vertex. According to frontiers queue initialized with the source

vertex, BFS explores their adjacent vertices and marks them

as visited with shortest depth.

Top-down BFS aiming to identify unvisited adjacent vertices

of frontiers is a traditional traversal algorithm. The direction

from top-down can be switched to bottom-up in a later state,

which performs traversal more efficiently when the current

frontiers are large [10] [4].

B. ReRAM Basics

A metal-oxide ReRAM cell consists of a top metal elec-

trode, a metal-oxide resistive switch, and a bottom electrode.

An ReRAM array can be interconnected as a dense crossbar

architecture without transistors, which suits better for main

memory due to the small area size of ReRAM cell. Figure

1 shows an area-efficient ReRAM crossbar array. If the input

voltages V1, V2, ..., Vn are applied on the wordlines in the

arrays, and the conductances Wi,j of cells are programmed,

the current Sj at the end of jth bitline represents the sum

result of dot product operations,
∑

Vi ·Wi,j . In our design, if

WDD - Wordline Decider and Driver
SA - Sense Amplifier
S+A - Shift and Add
MR - Metadata Register ReRAM

Crossbar

Compute Capable Controller

Cache
(Partial Bitmap)

ReRAM
Crossbar

W
D

D
W

D
D

W
D

D
W

D
D

S+A S+A

ReRAM
Crossbar

S+A

ReRAM
Crossbar

SA SA

MR

MR - Metad

Graph
Bank

ata Register

Graph
Bank

Graph
Bank

Graph
Bank

Graph
Bank

(Master)

Graph
Bank

Status Bitmap

Shared Space

Fig. 2: RPBFS architecture.

the voltage of the selected wordline is set to 1, while others

are set to 0, the results in bitlines are the exact conductances

of cells which can identify adjacency vertices.

C. Processing-In-Memory

Processing-in-memory closely couples storage and compu-

tation capability to alleviate the bandwidth bottleneck be-

tween logic and memory. Moving computation logic to the

place where data resides can reduce the energy cost as well.

Driven by the 3D-stacking technology in recent years, PIM

is resurgent by putting logic layer into 3D stacked memories

[3]. Recently, with the development of emerging memory, the

inherent computation capability of non-volatile memory can be

directly integrated into the existing circuit design to implement

in-memory computing without 3D-stacking technology [11].

III. RERAM-BASED PIM ARCHITECTURE FOR BFS

A novel ReRAM-based processing-in-memory architecture

for breadth-first search (RPBFS), which can efficiently acceler-

ate graph traversal by leveraging data layout in crossbar arrays

and the PIM architecture, is proposed. Figure 2 depicts an

overview of our design. Our architecture partitions ReRAM-

based memory bank into two types: master bank and graph

bank.

Master bank can be arbitrarily selected from memory banks

to schedule expansion task for breadth-first traversal. Due to

the limited size of ReRAM crossbars, a graph could hardly be

stored in a single memory bank so that multiple graph banks

are involved. The master bank stores corresponding metadata

of graph banks, including vertex range information, and the

starting row number of ReRAM crossbars.

A graph with several millions vertices and edges is mapped

to multiple graph banks. Normally a graph can be represented

with the Compressed Sparse Row (CSR) format to accelerate

arithmetic operations. In order to keep the advantage of this

format, the graph bank stores the adjacency list of CSR in

contiguous cells. In this way, the adjacent vertices of one

vertex are mapped to multiple cells one by one in ReRAM

crossbar arrays. The adjacent vertices of one vertex may

involve multiple rows if it is a hub vertex whose out-degree

is large [4]. A pointer is needed to indicate row index and

column index of adjacent vertices in ReRAM crossbar, which

is similar to the indices pointer in the CSR format. We use

location pointer [row index, column index] to replace the

original indices pointer in order to identify the adjacency list

in crossbar array. Both of adjacent list and location pointers

are stored in one crossbar to keep correspondence. This way,

the corresponding starting row number of adjacent list and

location pointers of a crossbar array in each graph bank are

recorded by the master bank.

This section describes the details of RPBFS microarchitec-

ture and discusses how to map a graph on ReRAM crossbar.

A. Microarchitecture

A ReRAM-based main memory chip is composed of a

number of memory banks, as shown in Figure 2. All the

banks are interconnected in a Mesh network way for on-chip

communication. They share one EDRAM (Enhanced dynamic

random access memory) that stores the status bitmap of all

the vertices in an expansion level. In each memory bank,

an integrated controller with computing capability is used

to decode instructions and provide control signals to all the

peripheral circuits. Intermediate data is stored on the cache

in memory banks. In our RPBFS architecture, the difference

between graph bank and master bank is that the controller in

graph bank maintains its own partition of frontier bitmap and

and status bitmap, while master records the sum of the newly-

visited vertices for scheduling. To efficiently traverse a graph,

a number of digital components should be orchestrated with

ReRAM crossbars. WDD is the wordline decoder and writing

driver, which is used to access graph data. Sense amplifier

(SA) implements the similar function of ADC, which can

provide high precision control. Two ReRAM crossbars share

one SA in order to reduce area overhead. Due to the limited

precision of ReRAM cell, shift-and-adds (S+A) is provided

to support higher precision for large-scale graph. The add

results are then sent to the controller to determine whether

these vertices have been traversed or not.

B. Storing Graph in ReRAM Crossbar Array

In each graph bank, a partition of adjacency list on a

graph with the corresponding location pointers are stored in

ReRAM crossbars. In RPBFS architecture, the adjacency list

of one vertex is mapped to ReRAM cells one by one. The

location pointers including row index and column index are

used to indicate the corresponding adjacent vertices. We map

the corresponding location pointers below to adjacency list

and keep correspondence between them in a crossbar. Figure

3 shows an example of graph G and its CSR representation.

Suppose that there are 6 × 6 ReRAM cells in one crossbar,

and each cell can store one vertex, the first memory bank

in Figure 4 could therefore demonstrate the mapping data

from V ertex 0 to V ertex 5. We map adjacency list of this

graph to crossbar arrays in a matrix way (indicated within

red line). Location pointers are stored every two cells for row

and column index, respectively. V ertex 5 has five adjacent

vertices (indicated by red color), but the third row in ReRAM

crossbar does not have enough cells to store all of them,

so its adjacency V ertex 6 and V ertex 9 are stored in

the fourth row. The last two rows store the corresponding

location pointers in this crossbar. The location pointer of

V ertex 5 can be attained by calculating the offset from the

starting location pointer: [(V ertex number× 2)/row size+
starting row, (V ertex number × 2)%column size], where
row size and column size refer to the dimensions of cells

in the ReRAM crossbar, starting row refers to the starting

row number of the location pointers. In order to completely

obtain the adjacent vertices of V ertex 5, it also needs to get

the location pointer of the prior vertex. The location pointer of

V ertex 4 is [2, 2], so the cells after location [2, 2] to [3, 1]
are adjacent vertices of V ertex 5.

15

14

13

12

11

17

16 10

5

2

3

0

1

9 6

7

18

8
19

4

Adjacency list

1 2 5 0 2 7 9 0 1 5 12 4 5 3 11 0 2 3 6 9

0 1 2 3 4 5

5 8

6

1 8 18 6 7 9 10 19 1 5 8 18 8 11 15 4 10 12 16 2

7 8 9

11 15

14 15 13 15 10 12 13 14 16 17 11 15 18 15 18 7 9 16 17 19 8 18

10 11 12

13 14 15 16 17 18 19

Fig. 3: An example graph G with adjacency list.

Partial frontiers
& status bitmap
Partial frontiers
& status bitmap

Graph Bank

Partial frontiers
& status bitmap
Partial frontiers
& status bitmap

Graph Bank
Four

Graph Bank
Two

Intermediate resultIntermediate result

Master
Bank

Partial frontiers
& status bitmap
Partial frontiers
& status bitmap

Partial frontiers
& status bitmap
Partial frontiers
& status bitmap

Graph Bank
One

Partial frontiers
& status bitmap
Partial frontiers
& status bitmap

Graph Bank
Three

Fig. 4: The layout of graph G involved with multiple banks.

C. Graph Layout in Multiple Crossbar Arrays

To efficiently traverse a big graph, multiple ReRAM mem-

ory banks should coordinate together. This is well illustrated

with the example shown in Figure 3. The adjacency list of

graph G are mapped to multiple memory banks.

Figure 4 shows the mapping of graph G involved with

multiple memory banks. Due to the symmetrical structure,

here we arbitrarily select a memory bank as the master bank.

In this example, the first three banks store adjacency list of six

vertices. The fourth graph bank only stores adjacency lists of

last two vertices, and the location pointers are stored in third

row. The rest rows could store other data. In master bank, the

first row data (0, 5, 0, 4) represents that the range of vertex

number in first graph bank is from V ertex 0 to V ertex 5
(indicated within blue line), and “0” and “4” mean the starting

row number of adjacency list and location pointer respectively

(indicated within green line). Suppose that this graph traversal

starts V ertex 5, the first graph bank calculates and checks

the location pointer of V ertex 5 and prior V ertex 4 to

determine the exact location of its adjacency list. The next

step is to attain the adjacent vertices of V ertex 5 from the

coordinate [2, 2] to [3, 1] in crossbar by activating wordline

No.2 and No.3 and filtering the results of bitlines according

to the offset. Since the expansion of frontiers is sequential

in our design, each activating wordline operation may attain

adjacent vertices of contiguous frontiers. For example, the

whole adjacent vertices of V ertex 4 and extra partial adjacent

vertices of V ertex 5 are attained after activating wordline

No.2. The controller caches the extra adjacent vertices for

next frontier expansion task if it hits. Moreover, the space of

ReRAM memory can be effectively utilized by adopting this

dynamic graph data organization. Multiple graphs can share

same ReRAM crossbars for parallel traversal.

IV. BREADTH-FIRST SEARCH ON RERAM-BASED MAIN

MEMORY

In this section, we briefly describe BFS traversal algorithm

employed in our RPBFS architecture with accompanying

pseudo-code. To implement BFS traversal, there are three

stages from data storage to hardware execution: graph map-

ping, graph initialization and BFS traversal.

A. Graph Mapping

A ReRAM memory bank is selected to be master bank for

a graph, and multiple memory banks are used as graph banks

to store the adjacency list. After finishing the adjacency list

mapping in one graph bank, master bank records the graph

banks information including the vertex range information, the

starting row number of the adjacency list, and the correspond-

ing locations. If there are some updates to a persistent graph,

both related graph banks and master bank should be updated.

B. Graph Initialization

In BFS initialization stage, the status bitmap is initialized

with a source vertex. Algorithm 1 and Algorithm 2 give the

pseudo-code of initialization stage of master and graph banks

respectively. Since master bank is fully interconnected with

all the graph banks, it sends the corresponding vertex range

information and starting row number to graph banks. Then it

creates a vertex status bitmap (F SB) in shared memory, as

well as updates it with a source vertex s (line 3). The last step

is to record the sum of frontier for next level expansion in

order to determine whether the traversal has been finished.

Algorithm 1 BFS in master bank.

Input: Source vertex s.
BFS initialization:

1: Send the corresponding vertex range and the starting row number to each
graph bank.

2: Full status bitmap in Shared Memory FSB ←− ∅

3: FSB[s] ←− 1
4: The sum of frontiers for next level expansion frontier sum ←− 1

BFS traversal:

1: while frontier sum 6= 0 do

2: Send start cmd to all graph banks
3: frontier sum ←− 0
4: Waiting for frontier num, finish cmd from each graph bank
5: for each frontier num do

6: frontier sum ←− frontier sum + frontier num
7: end for

8: end while

Algorithm 2 BFS in graph bank.

BFS Initialization:

1: Save the vertex range and the starting row number in register.
2: Partial prior status bitmap in cache PPSB ←− ∅

3: Partial status bitmap in cache PSB ←− ∅

4: Partial frontier bitmap in cache PFB ←− ∅

BFS Traversal:

1: Waiting for start cmd from master bank
2: PSB ←− FSB
3: PFB ←− PSB ⊗ PPSB
4: The number of frontiers in PFB frontier num ←− 0
5: for each u is non-zero in PFB do

6: frontier num ←− frontier num + 1
7: Get location pointer of u in crossbar arrays
8: Get adjacent vertices {A} in crossbar arrays
9: for each v in A do

10: FSB[v] ←− 1
11: end for

12: end for

13: PPSB ←− PSB
14: Output(PFB)
15: PFB ←− ∅

16: Send frontier num, finish cmd to master bank

The initialization stage in graph bank is shown in Algorithm

2, each graph bank saves the corresponding vertex range

information and starting row number in registers for accel-

erating expansion. Moreover, according to the vertex range

information, each graph bank generates its own empty partial

bitmaps for performing a sub-graph traversal procedure (line

2-4).

C. BFS Traversal

In this stage, the master collaborates with graph banks to

finish BFS traversal, which guarantees the BFS level syn-

chronization. In Algorithm 1, if the frontier sum for the next

level expansion is not equal to zero, the master bank sends

start cmd to inform all the graph banks to traverse this graph.

After resetting the frontier sum, the master bank waits until

it receives the finish cmd along with the partial frontier

number from all the graph banks (line 4). Pile those partial

frontier numbers on the frontier sum, the master determines

whether the graph traversal has been finished.

Graph bank carries out vertex expansion in this stage,

as shown in Algorithm 2. The graph bank is listening its

command line, once it receives start cmd, a partial status

bitmap PSB is filled with FSB from the shared memory

without memory collision. The size and offset of the PSB

are determined by the vertex range information. After that,

the operation of (PSB ⊗ PPSB) generates frontiers for

the current level (line 3). For example, there are six vertices

stored on a graph bank. Assumed that the prior partial status

bitmap PPSB is “001101” in preceding level, and the latest

partial status bitmap PSB is “101111”, then the frontiers for

the current level PFB is “100010” after executing (PSB ⊗

PPSB). For each non-zero bitmap in PFB, it issues one

vertex expansion task that involves attaining location pointer

and adjacent vertices in crossbar (line 7-8). The number of

iterations of expanding adjacent vertices is bounded by the

size of PFB. The next step is to update status bitmap FSB

with adjacent vertices of the frontiers in the shared memory.

Updating this bitmap uses atomic operations since multiple

graph banks could set same bits, which is non-break for the

graph traversal. After this level expansion, the graph bank

replaces PPFB with PSB, and finally sends the frontier

number and the finish cmd to the master bank. The frontiers

in all the graph banks are the output of each level, they can

be either transferred to shared memory or flushed to local

ReRAM memory for applications use.
1) Traversal Performance Analysis : Our RPBFS architec-

ture involves multiple memory banks, thus we can utilize bank-

level parallelism to accelerate graph traversal. In each level

expansion, all the corresponding graph banks read the shared

memory without the conflict since there is no access overlap.

After that, each graph bank does computation to get frontiers

with the bound of vertex range, then expands each frontier. The

adjacent list of the frontiers are updated in shared memory,

and the atomic updates are bounded by the edge number, and

the updates overhead can be reduced by employing ILP and

merging same operations. The maximum of expansion time

is mainly determined by the maximum number of frontiers

in all the graph banks. Since the level synchronization cost in

this interconnect network architecture is tiny, therefore a graph

involved more graph banks can be discovered faster.
2) Extra Vertex Cache: Besides attaining adjacent vertices

of a specified vertex, the extra partial or entire adjacent vertices

of contiguous frontiers can also be discovered by activating

one wordline. Figure 5 presents the workflow of the extra

vertex cache. RPBFS caches the extra vertices with adjacent

vertices and the sum of them. Starting an expansion task, the

controller will check whether the frontier vertex is cached.

If it hits, the controller recalculates location pointers. Since

RPBFS expands the frontiers in order, so we use the FIFO as

cache replacement policy.

V. EXPERIMENTAL EVALUATION

In this section, we present the evaluation results of the

RPBFS architecture under various experiments.

A. Methodology

We compare our ReRAM-based graph traversal design with

the state-of-the-art CPU-based parallel implementation and

Fig. 5: The workflow of the extra vertex cache.

GPU-based solution Enterprise [4]. RPBFS is modeled by

heavily modified NVSim to simulate peripheral circuit [12],

as well as the traversal scheme attached by controller which

provides control signals to all the peripheral circuits. We

modify the simulator as a trace-based system to evaluate

performance with other solutions. The related ReRAM and

circuits timing parameters are derived from [11] [13].

The configurations of RPBFS architecture and the detailed

hardware of other platforms are illustrated in Table I. There are

four ReRAM crossbars per graph bank, each crossbar contains

1024 * 1024 ReRAM cells, and we assume that all the cells

have the same properties without IR drop effect. The ReRAM

cell is assumed as 4-bit MLC. In this part, we use eight cells

to represent a vertex, four cells to represent a location pointer.

We perform our tests on five real world workloads for

evaluation. The Amazon product co-purchasing network (AM)

graph has 400 thousand vertices and 3.2 million edges,

Wikipedia talk network (WT) has 2.39 million vertices and

5 million edges. The web graph of Berkeley and Stanford

(WB) has more than 7.6 million edges but only 685 thousand

vertices. Two related small graphs, email communication net-

work from Enron (ER) only has 36 thousand vertices and 367

thousand edges, and Slashdot social network (SD) with 82

thousand vertices plus 948 thousand edges are also tested. All

the graphs are represented by compressed sparse row (CSR)

format and mapped to ReRAM memory. We perform sorting

operation on these graphs and set the starting vertex number

being 0. These pre-processing operations do not change graph

topology. All the graph data is loaded into ReRAM-based main

memory, DRAM memory and GPU global memory ahead

respectively, the timing starts when the source vertex is given

and ends when search is completed. We use traversed edges

per second (TEPS) to evaluate traversal performance. We

firstly show the performance speedup with crossbar scalability.

We map the graphs to the ReRAM crossbar with the scale of

256*1024, 512*1024 and 1024*1204 cells respectively. After

that, we compare our RPBFS algorithm with other direction-

optimizing solutions which have been proved that they perform

better than top-down algorithm in traditional platforms.

B. Performance Results

1) Performance Comparison: Figure 6 shows the scalabil-

ity of RPBFS. When the scale of ReRAM crossbar decreases,

more graph banks are involved. For big graphs WT and WB,

TABLE I: The Configurations of RPBFS Architecture and

Hardware.

Controller 16 registers; one Core at 1.2GHz

Cache 512KB

Shared Memory 4MB

Internal Bus 50GB/s

ReRAM-based memory

16 Banks/chip; 4 Crossbars/Bank;
1024*1024 Cells/Crossbar;

tRCD-tCL-tRP-tWR 18-9.8-0.5-30 (ns)

CPU Cores Inter Core2 Q9550 with 2.83GHz

CPU L1 Cache 32KB SRAM

CPU L2 Cache 6144KB SRAM

Main Memory 4GB with two channels

Graphics Card GTX TITAN X with 3072 CUDA cores

the small scale crossbar outperforms the bigger scale up to

2.7× and 2.3×. This is because like WT whose proportion

of node number and edge number accounts for around 50%,

the frontiers is sufficient in each level so more graph banks

perform expansion tasks with the small scale crossbars. While

in ER and SD just with several thousands vertices and edges,

the performance improvement with small scale crossbars is

not obvious due to the low parallelism and the insufficient

frontiers.

Fig. 6: Performance with the scalability of RPBFS.

Figure 7 compares our RPBFS solution with GPU-based

framework Enterprise and CPU-based 64-thread parallelism

implementations respectively. RPBFS architecture performs

up to 16.0× better than Enterprise, and up to 33.8× better

than CPU-based solution. This is because our RPBFS wraps

the adjacent list access within memory banks and the data

movement in the internal bus is only the vertex bitmap, we

reduce the data movement overhead compared with accessing

the adjacent list from global memory or main memory.

2) Impact of Extra Vertex Cache: The extra vertex cache

technique can accelerate adjacency expansion. We tested dif-

ferent size of extra adjacent lists. The performance improves

3.9% from five entries to ten, while 0.77% from ten to

fifteen. The more extra vertex cache can improve hit ratio

of continuous frontiers, but it also incurs more vertex ID

comparison latency.

Fig. 7: Performance of RPBFS and direction-optimizing GPU-

based and CPU-based solutions.

VI. CONCLUSION

In this work, we propose a novel ReRAM-based processing-

in-memory architecture for breadth-first search, which acceler-

ates big graph traversal by reducing data movement overhead.

Benefited from graph distribution in ReRAM crossbars and

efficient graph traversal algorithms among memory banks, our

architecture can effectively achieve performance improvement

compared with other techniques.

VII. ACKNOWLEDGMENTS

The work described in this paper is partially supported by

the grants from the Research Grants Council of the Hong

Kong Special Administrative Region, China (GRF 152138/14E

and GRF 152736/16E and GRF 152223/15E), and National

Natural Science Foundation of China (Project 61373049), and

the Hong Kong Polytechnic University (4-BCBB).

REFERENCES

[1] F. Alibart and et al., “High precision tuning of state for memristive
devices by adaptable variation-tolerant algorithm,” in Nanotechnology,
2012.

[2] C. Xu and et al., “Overcoming the challenges of crossbar resistive
memory architectures,” in HPCA, 2015.

[3] J. Ahn and et al., “A scalable processing-in-memory accelerator for
parallel graph processing,” in ISCA, 2015.

[4] H. Liu and et al., “Enterprise: Breadth-first graph traversal on gpus,” in
SC, 2015.

[5] L. Luo and et al., “An effective gpu implementation of breadth-first
search,” in DCA, 2010.

[6] P. Harish and et al., “Accelerating large graph algorithms on the gpu
using cuda,” in HiPC, 2007.

[7] S. Beamer and et al., “Locality exists in graph processing: Workload
characterization on an ivy bridge server,” in IISWC, 2015.

[8] L. Nai and et al., “Graphbig: Understanding graph computing in the
context of industrial solutions,” in SC, 2015.

[9] M. M. Ozdal and et al., “Energy efficient architecture for graph analytics
accelerators,” in ISCA, 2016.

[10] S. Beamer and et al., “Direction-optimizing breadth-first search,” in
Scientific Programming, 2013.

[11] P. Chi and et al., “Prime: A novel processing-in-memory architecture for
neural network computation in reram-based main memory,” in ISCA,
2016.

[12] X. Dong and et al., “Nvsim: A circuit-level performance, energy, and
area model for emerging non-volatile memory,” in Emerging Memory
Technologies, 2014.

[13] A. Shafiee and et al., “Isaac: A convolutional neural network accelerator
with in-situ analog arithmetic in crossbars,” in ISCA, 2016.

