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Abstract—Cloud data centers leverage virtualization to share
commodity hardware resources, where virtual machines (VMs)
achieve fault isolation by containing VM failures within the
virtualization boundary. However, hypervisor failure induced by
soft errors will most likely affect multiple, if not all, VMs on a
single physical host. Existing fault detection techniques are not
well equipped to handle such hypervisor failures. In this paper, we
propose a new soft error detection framework, Xentry (a sentry
on soft error for Xen), that focuses on limiting error propagation
within and from the hypervisor. In particular, we have designed
a VM transition detection technique to identify incorrect control
flow before VM execution resumes, and a runtime detection
technique to shorten detection latency. This framework requires
no hardware modification and has been implemented in the Xen
hypervisor. The experiment results show that Xentry incurs very
small performance overhead and detects over 99% of the injected
faults.

Keywords—Virtualization, Error detection, Hypervisor

I. INTRODUCTION

Cloud service providers, such as Amazon EC2 and Win-
dows Azure, utilize virtualization technology to provide
infrastructure-as-a-service (IaaS). Commodity machines in
those data centers are susceptible to hardware errors including
soft errors (or transient faults). Unfortunately, the virtualization
layer especially the hypervisor is not protected against soft
errors that are temporary hardware errors caused by manufac-
turing defects, particle strikes, etc. [1]. These errors undermine
hypervisor reliability for three reasons.

First of all, while fault isolation is provided among VMs,
soft errors that occur during hypervisor executions cannot be
isolated. They may lead to system-level failures and affect all
the VMs as a result of error propagation. Second, soft errors
are not uncommon, as several recent studies have presented
non-trivial soft error rates in large-scale computer systems [2–
4]. The soft error rate per processor is expected to increase by
10 to 100 fold when semiconductor manufacturing technology
advances from 45 to 11 nm [5]. Third, as the hypervisor in
virtualized systems becomes frequently and heavily utilized,
this allows the hypervisor to become increasingly vulnerable
to soft errors. For example, when four VMs are running on a
physical server, the hypervisor can be activated about 650,000
times per second. Recent works also suggest to use dedicated
CPU cores for the hypervisor to improve the performance of
I/O intensive workloads, and these I/O cores in most cases are
fully utilized [6,7].

Many fault tolerance techniques have been proposed at
the application level [8–11], the OS level [12], the VM
level [13,14] and the hardware level [15,16]. Fig. 1 shows
a typical virtualized system, where multiple components (in
solid boxes) can be protected by the proposed techniques.
At the hardware level, soft errors can be detected using dual
modular redundancy (DMR) [15,16]. However, DMR is hard to
find in commodity servers because it requires extra hardware
modules and incurs performance and energy overheads due
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Fig. 1: Soft errors in the hardware may propagate to various levels.
Fault tolerance techniques have been proposed for applications, OS,
and hardware (solid boxes). The hypervisor is often not protected
(dashed box). Soft errors may lead to hypervisor failures.

to synchronization and verification. At the application and
OS level, current techniques are usually designed to detect
soft errors when they occur in the context of applications or
OSes. At the VM level, periodically checkpointing a VM is a
common practice to achieve fault tolerance, but the overhead
of checkpointing all the VMs is prohibitively high.

The hypervisor (shown as a dashed box in Fig. 1) is left
unprotected. Some work has begun to study low-cost fault tol-
erance techniques to handle hypervisor failures. For example,
ReHype [17] re-initiates the hypervisor upon failures while
preserving VM states. However, without effective detection
techniques, simply rebooting the hypervisor cannot recover
from a large number of VM failures and data corruptions.

In this work, we propose that an effective error detection
technique is the key to improve the reliability of the hypervisor.
In particular, we aim to address three major challenges in this
paper: 1) A high detection coverage is required to detect as
many faults as possible. 2) Soft error propagation should be
limited to minimize the impact of failures. Soft errors should
be detected during hypervisor executions as early as possible,
ideally before VMs resume. And 3) the performance overhead
should be as low as possible. Since the hypervisor is activated
frequently, the detection should complete quickly so that the
application performance will not be affected.

To this end, we propose an error detection framework
Xentry that is designed to enable the hypervisor to monitor
possible occurrences of soft errors in runtime. Xentry utilizes
two detection techniques: VM transition detection is designed
to prevent soft error propagation across the virtualization
boundary, and runtime detection asserts hardware and software
checks during hypervisor executions to shorten the detection
latency. Xentry is implemented as a light-weight software layer
between the hypervisor and VMs, while relying on hardware
supports to collect runtime data for error detection. The
evaluation results show that our framework can achieve very
high coverage (up to 99.4%) and incur very low performance
overhead to the applications (2.5% on average). Our framework
effectively limits soft error propagation by detecting 92.6%
of soft error propagation that may have caused silent data
corruptions. It can also detect errors with short detection
latency (about 95% of detected faults are detected within less

2014 43rd International Conference on Parallel Processing

0190-3918/14 $31.00 © 2014 IEEE

DOI 10.1109/ICPP.2014.43

341

2014 43rd International Conference on Parallel Processing

0190-3918/14 $31.00 © 2014 IEEE

DOI 10.1109/ICPP.2014.43

341

2014 43rd International Conference on Parallel Processing

0190-3918/14 $31.00 © 2014 IEEE

DOI 10.1109/ICPP.2014.43

341

2014 43rd International Conference on Parallel Processing

0190-3918/14 $31.00 © 2014 IEEE

DOI 10.1109/ICPP.2014.43

341

2014 43rd International Conference on Parallel Processing

0190-3918/14 $31.00 © 2014 IEEE

DOI 10.1109/ICPP.2014.43

341

2014 43rd International Conference on Parallel Processing

0190-3918/14 $31.00 © 2014 IEEE

DOI 10.1109/ICPP.2014.43

341



than 700 instructions).

To the best of our knowledge, this is the first work that
provides soft error detection in the hypervisor and runs as a
thin software layer that is transparent to the applications. The
key difference from previous works is that Xentry can detect
soft errors before they propagate to guest VMs. This feature is
very important for effective error detection and recovery. Also,
as many prior works require hardware modifications [15,16],
our software-only approach is a low-cost solution that can be
easily utilized in current data centers. We are in the progress
of preparing the source code for public release.

This paper is organized as follows. In Section II, we explain
the basics of hypervisor operations and the reasons why the
hypervisor should be protected from soft errors. Section III
describes our detection framework and techniques. In Section
IV, we discuss the major implementation issues. In Section V,
we evaluate the proposed framework in terms of performance
and effectiveness, and in section VI analyze undetected faults
for future improvement. Section VII discusses related works
and Section VIII concludes.

II. BACKGROUND AND MOTIVATION

In this paper, our study focuses on soft errors in CPU while
the hypervisor code is running (soft errors in the hypervisor
context). In this section, we first discuss the impact of soft
error propagation on system reliability. Then, we show that
the hypervisor is vulnerable to soft errors.

A. The Impact of Soft Errors Propagation

Fig. 2 shows the typical execution flow of hypervisor and
VM activities. CPU can either be in the VM context or the
hypervisor context. A hypervisor execution can be activated
to perform privileged operations such as I/O operations. After
the execution is done, the VM context will be loaded back
and the VM execution resumes. The VM transitions between
VM executions and hypervisor executions can be done with
hardware support (hardware-assisted virtualization, e.g. Intel
VMX [18] and AMD SVM [19]) or with pure software support
(e.g. Xen para-virtualization). In Intel VMX, the VM execution
is called guest mode and the hypervisor execution is called host
mode. The transition from guest mode to host mode is VM
exit, and the transition from host mode to guest mode is VM
entry. For convenience, we use these terminologies to describe
operations in virtual environments.
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Fig. 2: Hypervisor and VM executions. Soft errors in guest mode
can be isolated. Soft errors in host mode can cause system failures
(Path 1). Soft errors in host mode can propagate across VM entry to
VMs and applications (Path 2)

Soft errors in guest mode are likely to be isolated, but
those in host mode may propagate through VM entry to VM

executions. In this paper, we focus on soft errors in host
mode. Hypervisor activities consist of many high-privilege
and low-level operations such as context switching and in-
terrupt handling. Soft errors may propagate through these
operations, compromising the reliability of the whole system.
We identified two typical soft error propagation behaviors: 1)
propagating errors within host mode and 2) propagating errors
across VM entries.

The first type of soft error propagates within host mode,
and causes hypervisor failures before VM entry. As a result,
all VMs are affected. Path 1 in Fig. 2 illustrates this case.
One example is that an error occurs in the instruction pointer
pointing to an invalid instruction. Although these soft errors
cause hypervisor failures, they do not propagate to guest mode.
If they can be detected and recovered in time, there is a good
chance that hypervisor failures can be isolated and VM states
can be preserved.

The second type of soft error propagates across VM entry
to guest mode, and causes failures or data corruptions in VMs
or applications. Path 2 in Fig. 2 illustrates this case. If this
is a VM running user applications, failures are likely within
this VM. If this is a control VM that the hypervisor utilizes
to manage other VMs (e.g., Dom0 in the Xen hypervisor),
the whole system will be affected. One example of this case
is an error in the hypervisor execution emulating a privileged
instruction for VMs, such as cpuid. When a VM is executing
this instruction, a general protection exception is triggered and
then trapped by the hypervisor. cpuid is then carried out in
the hypervisor context. The results of this instruction (hold
in eax, ebx, ecx, edx) will be written into the VM’s VCPU
structure. An error may change the instruction flow and may
result in an incorrect output of cpuid instruction (e.g. eax). This
does not cause any failures immediately in the hypervisor. But
when the VM is using the incorrect (eax) value later on, a
fatal failure will likely occur in the VM. Compared with the
first type of behavior, the second type is more complicated
since errors originate in the hypervisor but actual failures or
data corruptions are in VMs. This can easily lead to incorrect
diagnosis and unsuccessful recovery.

In this paper, we call the first type of soft error propagation
short latency errors, and the second type of soft error propa-
gation long latency errors. Note that, in this paper, we differ-
entiate long latency errors and short latency errors according
to the fact that if errors propagate across VM transitions rather
than the duration of error propagation. An effective detection
framework should detect both types of soft errors as early as
possible to minimize the impact of error propagation.

B. High Frequency/Utilization of Hypervisor Activities

Hypervisor activities are very frequent, which make the
hypervisor vulnerable to soft errors. To demonstrate this, we
measure the number of hypervisor activities every second
while applications are running in four VMs. Applications
are chosen from SPEC2006 [20] and PARSEC [21] suite
to represent CPU, memory, and I/O workloads. The details
about the benchmark suites are explained in Section V. We
conduct this experiment on both para-virtualization mode and
hardware-assisted virtualization mode. A box plot is generated
to show the statistics of the frequency of hypervisor activities
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Fig. 3: The frequency of hypervisor activities. The central line on
the box is the median; the box represents the data points between
the 25th and 75th percentiles.; the lines extend to the maximum and
minimum data points

in Fig. 3. As shown in the figure, the activation frequency is
generally very high for both hardware-assisted virtualization
and para-virtualization. For para-virtualization, the activation
frequency is between 5,000/s and 100,000/s. The peak acti-
vation frequency is at about 650,000/s when freqmine is run-
ning. Para-virtualization has generally higher frequencies than
hardware assisted virtualization. This is most likely because
para-virtualization provides more interfaces to VMs through
hypercalls that cause more hypervisor executions. But even in
hardware-assisted virtualization mode, the activation frequency
remains high. Most of them are between 2,000/s and 10,000/s.

On the other hand, the CPU utilization of the hypervisor is
high in many cloud computing applications with I/O intensive
workloads. Recent works have proposed using dedicated cores
to run hypervisor operations for I/O intensive applications
[6,7]. These dedicated cores offload hypervisor operations
from guest VMs’ CPUs. While this approach increases the
performance of guest VMs, the dedicated cores are often fully
utilized. As a result, the hypervisor running in these cores is
particularly vulnerable to soft errors.

Consolidated server in data centers are expected to host
tens or even hundreds of VMs. The chance of soft errors in
CPUs affecting the hypervisor should not be ignored.

III. XENTRY FRAMEWORK

Xentry detects soft errors by identifying various error
propagation behaviors as early as possible. Xentry specifically
addresses three challenges mentioned in Section I. First, a high
coverage is achieved by detecting various error propagation
behaviors covering both short and long latency errors. Second,
soft error propagation is limited by detecting long latency
errors before VM executions resume. Third, a low overhead is
achieved by leveraging hardware support for data collection.

Error behaviors are evident changes in control flow or data
that are visible at the hypervisor software level. Specifically,
we classify error behaviors into three types: 1) incorrect control
flow (different from invalid control flow) , 2) fatal system
corruptions and 3) data corruptions. Long latency errors usu-
ally cause incorrect control flow and data corruptions. Short
latency errors usually cause fatal system corruptions and data
corruptions. Xentry identifies all three behaviors to detect both
types of soft errors.

Fig. 4 illustrates the structure of Xentry. There are two main
components: VM transition detection and runtime detection.
VM transition detection is enabled at every VM entry to
identify incorrect control flow. It limits soft error propagation
by detecting long latency errors. Runtime detection is always
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Fig. 4: Xentry fault detection framework

enabled while systems are running. It identifies fatal system
corruptions and data corruptions to detect both long latency
errors and short latency errors. Runtime detection improves
the detection coverage and helps shorten the detection latency.
The following subsections describe two techniques in detail.

A. Runtime Detection

Runtime detection monitors error behaviors along with
hypervisor executions. It utilizes fatal hardware exceptions
to monitor fatal system corruptions, and utilizes software
assertions to monitor data corruptions.

Fatal system corruptions would halt the system due
to corruptions in critical system states (such as invalid in-
struction pointers or memory addresses). For example, fatal
system corruptions may be caused directly by fetching an
invalid instruction. They may also be caused by complicated
error propagation involving data corruptions and control flow
changes. Fatal system corruptions are usually reported by
hardware exceptions, which can be used for error detection.

Fatal hardware exceptions are utilized to detect fatal
corruptions. Hardware exceptions (e.g. fatal page fault and
invalid opcode) are generated by hardware platforms, making
them good candidates as a low-cost detection approach. While
failures may cause exceptions, exceptions do not necessarily
indicate failures. Some exceptions are legal in correct execu-
tions, such as minor/major page faults and general protection
exceptions. Therefore, hardware exceptions should be parsed
first to filter out non-fatal ones. Another issue is that hard-
ware exceptions cannot prevent soft error from propagating.
They may occur before or after soft errors propagate to VM
executions. The path 2 in Fig. 2 illustrates this case. It has
been shown that hardware exceptions are strong indicators
of hardware errors in applications and OS [22,23]. However,
they usually do not emphasize on the strict detection latency
requirement and limiting the soft errors propagation. We only
use hardware exceptions to shorten the detection latency, and
use VM transition detection for limiting soft error propagation.

Data corruptions. Soft errors may corrupt hypervisor
variables. They are very common during error propagation. For
instance, values in the registers may be changed, the destina-
tions of memory accesses may be altered, or the instructions
that operate on variables may be modified. Detecting data
corruptions can help to improve the detection coverage when
soft errors are not manifested in incorrect control flow.

Different from computation intensive applications, hyper-
visor activities involve less computations but more memory
accesses, branches, etc. These operations are more difficult to
verify than computations. Therefore, checking the computation
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to detect errors (e.g. [24]) may not be effective in the hyper-
visor. Further, there are many variables in the hypervisor, and
verifying all of them is too expensive. This has to be done by
strategically selecting critical variables that reflect the correct
execution of the hypervisor.

Software assertions are predicates that are manually in-
serted in the hypervisor code to detect data corruptions. To
resolve two issues discussed above, software assertions must
be inserted strategically with the consideration of the context.

Specifically, we use two types of assertions in hypervisors.
The first type assertion applies on values with clearly defined
boundaries. For example, Xen hypervisor may need to obtain
the value of asynchronous interrupt or exception number before
return to the guest VCPU context. This value has a predefined
boundary (the number of available exceptions and interrupts).
Checking this number may identify the errors in the code of
obtaining this value. The code is shown in Listing 1.

Listing 1: Assertion Example 1: Valid Range

1 //clean up pending exceptions, and put them to VCPUs
2 int trap;
3 ....
4 for (trap = FIRST; trap < LAST; ++ trap) {
5 //obtain trap number
6 }
7 ASSERT ( trap <= LAST )
8 //put the trap number to VCPU

The second type of assertion applies on conditions that
are critical to the correct executions. For examples, when the
hypervisor changes a physical CPU to idle mode, its current
virtual CPU (VCPU) should have already been in the idle
mode (if without software bugs). Verifying the VCPU mode
can detect errors in previous operations in this VCPU. The
code is shown in Listing 2.

Selectively checking these data verifies both the checked
variables and previous operations related to them. Therefore,
the actual coverage of software assertions is broader than
just the checked variables. Note that software assertions are
designed to improve the detection coverage and to reduce
the detection latency, rather than providing 100% coverage.
Currently we leverage the assertions in the hypervisor code
that are used for debugging and not used in normal execution.
Error-free executions should not trigger any of these assertions,
so they can be used as signs of soft errors. We plan to
investigate more formal methods to identify critical values and
integrate more assertions in the hypervisor code in future work.

Listing 2: Assertion Example 2: Critical Conditions

1 void put cpu idle loop(){
2 struct vcpu ∗v = current vcpu;
3 ...
4 //verify VCPU is idle before idle its physical cpu
5 ASSERT(is idle vcpu(v));
6 //put physical cpu to idle
7 ...
8 }

B. VM Transition Detection

Incorrect control flow. Before long latency errors prop-
agate to VM executions, they may have already altered the

original control flow to a valid but incorrect one. That is,
the branch outcome is one of the legitimate instruction, but
not the correct one depending on the branch condition. For
example, for a if branch whose condition is true, the next
instruction in correct control flow should be the one after if
statement, but errors change it to the one after else statement.
In either case, executed instructions are still valid. This is
different from invalid control flow in which branch outcome
is not a legitimate instruction (e.g. instructions that are not in
the blocks after if or else).

Incorrect control flow will result in a set of detectable
patterns, such as different memory operations are conducted,
different numbers of instructions are executed, etc. Fig. 5
shows two examples of such incorrect control flow. In Fig.
5 (a), an error adds extra dynamic instructions into the correct
executions. The fault in the condition variable of a loop, rcx,
adds extra instructions to the original instruction trace. In Fig.
5 (b), an error changes the original branch target to a valid
but incorrect one, resulting in an incorrect control flow that is
usually not exercised in fault free executions. For both cases,
all instructions including branch targets are valid. Therefore,
only verifying the validness of control flows as in prior works
[25,26] cannot identify such errors.
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(b) Incorrect Branch Target

Fig. 5: Examples of incorrect control flows

Machine learning based detection. To detect incorrect
control flow, we develop VM transition detection based on
machine learning approaches. It captures dynamic characteris-
tics of hypervisor executions using a number of features, and
automatically identifies incorrect control flow.

The key to detect incorrect control flow is identifying
dynamic patterns of hypervisor executions. That is, detection
techniques must be able to infer the overall correctness of
a hypervisor execution given its context (e.g., the reasons of
hypervisor executions), rather than just to check the validness
of branch targets or other instructions.

The differences between incorrect and original control
flows are subtle. These differences should be identified by an
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automatic method rather than manual examination. Machine
learning algorithms are proven to be effective to identify
hidden patterns in a large amount of data. Therefore, we design
VM transition detection based on machine learning algorithms.

Machine learning methods are usually considered as heavy
weight approaches involving extensive computations. More-
over, the unique role of the hypervisor causes additional con-
straints to design machine learning based detection techniques.
Using them in the hypervisor raises concerns about overhead
and effectiveness. In the following, we discuss the design of
VM transition detection with emphasis on the solutions of
resolving these issues. The design of VM transition detection
based on machine learning algorithms mainly consists of three
aspects: 1) choosing the features that characterize dynamic
execution behaviors; 2) selecting a machine learning method to
classify the incorrect and correct behaviors; and 3) constructing
the model for detection.

Selecting Features. Features are the information we collect
to characterize the dynamic patterns of incorrect control flow.
There are two basic principles when we select features: 1)
The selected features must be able to characterize the dynamic
patterns of control flow that cannot be revealed by static
analysis (what to collect). 2) the features must be easy to
collect with low overhead (how to collect).

Hypervisor executions are activated to serve requests from
VMs and hardware with carefully defined VM exit reasons.
These VM exit reasons can be considered as one factor
characterizing hypervisor executions. Hypervisor executions
contain many low level operations involving branch instruc-
tions, memory accesses, etc. The statistics of these operations
may be used to characterize hypervisor executions as well.

The data described above can be easily collected by
offline analysis. But for error detection, we must be able
to collect them while the hypervisor is running with a low
run-time overhead. Hardware performance counters as built-
in components in most current systems can help to gather
runtime statistics [18,19]. Using performance counters does
not require significant modifications to the hypervisor, and
can help to achieve low performance overhead. Therefore,
we mainly leverage performance counters to collect most of
features. Most systems have at least four performance counters
that can collect runtime data. Combining VM exit reasons, we
have five features to characterize execution patterns.

We summarize all selected features in Table I. As we
discussed, VM exit reason is the most relevant feature. In full
virtualization, this information can be obtained from the virtual
machine control structure (VMCS). In para-virtualization, this
information can be represented by function handler, and ob-
tained using software implementation. The details of obtaining
this feature is discussed in Section IV. We use performance
counters to collect other four features: 1) the number of read
memory accesses; 2) the number of write memory accesses; 3)
the number of retired instructions; and 4) the number of branch
instructions. These features characterize dynamic patterns in
memory accesses, the lengths of hypervisor executions and
control flow. These four events are basic performance moni-
toring events that are available in most x86 processors.

Note that these selected features do not explicitly represent
control flow, but they implicitly capture the patterns of control

flow from instruction patterns and memory access patterns.
Moreover, they can capture more dynamic characteristics that
control flows cannot do.

TABLE I: Selected features for VM transition detection
Features H/W & S/W Support Synonyms

VM exit reason Xentry VMER

# of committed instructions INST RETIRED RT

# of branch instructions BR INST RETIRED BR

# of read memory access MEM INST RETIRED.LOADS RM

# of write memory access MEM INST RETIRED.STORES WM

Selecting machine learning methods. VM transition de-
tection requires a light-weight algorithm to maintain low
performance overhead. Many computation intensive machine
learning methods are not suitable because of this very reason,
e.g., the support vector machines (SVM). They require floating
point and matrix computation which are too expensive for
the hypervisor. The selected machine learning method should
be able to generate simple (yet effective) models that can be
implemented at a low cost.

On the other hand, the selected method should be able to
achieve high accuracy without assuming distribution models. It
is difficult to accurately predict soft error distributions. This is
different from works that do not specifically address soft-error-
induced failures. For example, [27] assumes certain probability
distribution of data so that the generative models can be used.
However, without the assumption of distribution, the generative
models will suffer from low accuracy. In addition, the gener-
ative models involve a number of floating point and matrix
computations, so they are too expensive for low overhead
implementation. Therefore, the probability-based classifiers are
not appropriate in this study.

Considering both requirements listed above, we use Deci-
sion Tree as our machine learning method. Decision Tree uses
a tree-like model, consisting of a set of rules, to classify input
data. The decision making process is a set of simple integer
comparisons and therefore can be easily implemented with low
overhead. Decision Tree also does not require any assumptions
on the error probability model.

Constructing decision trees. Decision tree partitions input
data (e.g. features collected from performance counters in our
case) based on a set of rules (a set of branch conditions in our
case) into classes (correct or incorrect in our case). Decision
tree represents these rules using a tree-like structure where the
leave nodes are classification results and edges represent rules
of classifying features. In this section, we discuss in detail how
to construct a decision tree.

A set of training input data are used to construct a decision
tree, and their classification results (classes) are also given.
The goal of construction process is identifying a set of rules
(a tree) that can correctly classify all input data into their given
classes. It may be difficult to find a tree that can achieve 100%
correctness, so the process may stop after specified conditions
(e.g. accuracy) are achieved.

A naive way to construct a tree is to recursively go through
each feature and randomly partition data into smaller sets
until specified conditions (e.g. accuracy) are satisfied. For
example, one can partition a data set by specifying a rule,
10 < memorywriteaccess < 30, into two groups (true or
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Fig. 6: A sample decision tree

false) as illustrated in Fig. 6. This splitting can be recursively
conducted till the specified condition is satisfied (e.g. 99% of
data are correctly classified). A tree can be built by combining
all rules that are used to split data sets. However, random
partition may lead to skewed trees and over-fitting issues. The
worst case is each small set only contains one data point,
resulting in an overly large tree.

Alternatively, the random partition process can be op-
timized using entropy in information theory. Intuitively, a
set of data with similar features have a low entropy. The
splitting procedure during tree construction aims to maximize
the expected deduction D in entropy, which is the informa-
tion volume per node. Assuming a binary decision tree, the
function D is defined as D(T, TL, TR) = Entropy(T )−(PL ·
Entropy(TL) + PR · Entropy(TR)), where T is the original
dataset, and TL and TR are datasets split into left and right
tree respectively. PL and PR means the ratio of data points in
T go to TL and TR respectively.

We use an example to illustrate our rule constructing
procedure. We first collect statistics of incorrect and correct
hypervisor executions. Each sample contains five features and
one label (correct or incorrect). These data are used as a
training data set to build the decision tree.

We iterate through each feature to select a cut point to
split the dataset. Suppose a dataset T have 15 data points,
10 of them are correct and 5 of them are incorrect. The
entropy of T relative to this classification is Entropy(T ) =
−(10/15) log2(10/15)−(5/15) log2(5/15) = 0.276. We want
to choose a cut point on RT such that D is maximized. Assume
that there are two choices, cutting at RT=100 and 200. When
RT=100, TL has 7 data points, 5 of them are correct and 2
of them are incorrect; TR has 8 data points, 5 of them are
correct and 3 of them are incorrect. When RT=200, TL has 10
data points, all of them are correct; TR has 5 data points, all
of them are incorrect. The information gain D are 0.004 and
0.276 when cutting at 100 and 200, respectively. Thus, RT=200
will be selected as the cutting point to separate the dataset. The
process will be repeated with different statistics until reaching
the desired quality or all cases are tested. Fig. 6 shows a
resulting tree using the aforementioned learning process. The
tree can be summarized in a set of rules and can be utilized
to identify incorrect control flows.

When building a decision tree, investigating all features
may be time consuming. In addition, optimizing the selection
at each single node does not guarantee an optimized global
result. Therefore, we use the random tree algorithm, an alter-
native decision tree building process with extra randomization
factors [28], to generate rules. More specifically, when the

random tree method deciding a split, it randomly choses and
considers �log2(number of features)�+1 features at each node,
which is three in our case.

To construct the VM transition fault detector, we need to
collect training data set consisting of both correct execution
data and incorrect execution data. We use a full system
simulator to construct our model that will be explained later. To
collect the performance counter statistics, we analyze the traces
of fault injection runs that are generated by the simulator.
We use the five features to characterize hypervisor execution
behaviors, and both tree algorithms to generate detection rules.
We conduct about 23,400 fault injections and fault-free runs to
collect training samples. Each sample contains a label (correct
or incorrect) and the statistics of five features. In total, the
training data set contains 12,024 samples (10,280 samples are
labeled as correct, and 1,744 are labeled as incorrect). These
data are used to construct the classification tree model. We
then conduct another set of fault injections (about 17,700)
and fault-free runs to obtain the testing data set. In total,
the testing data set contains 6,596 samples (5,295 samples
are correct and 1,301 samples are incorrect). We utilize the
implementation of machine learning algorithms in WEKA
[28] to construct models. The results show that the random
tree algorithm achieves slightly high accuracy (98.6%) than
decision tree (96.1%). Random tree induces some randomness
when partitioning the features. The slightly higher accuracy
may be resulted from the better partitioning caused by the
induced randomness. These results show that the proposed
classification method with selected features are effective as
an error detection technique. Due to the space limit, we omit
the evaluation results and discussions on various features, tree
depth, and training set size.

IV. IMPLEMENTATION

We implement Xentry in Xen 4.1.2. It contains about
2,000 lines of source code. Its static code size is much
smaller than nested virtualization (5,500 lines of source code
in [29]). Because VM transition detection is only enabled at
the beginning and the end of hypervisor executions, its runtime
overhead is also smaller than nested virtualization. The runtime
detection of Xentry can be implemented by inserting assertions
in software. The major implementation issues come from VM
transition detection. The hypervisor runs at the lowest level
at the software stack in virtual environments. It is difficult to
employ existing software tools (such as redundant processes
using fork() in OS Kernel [10,11]) to implement detection
techniques.

Xentry is implemented by only modifying the hypervisor
software so that it can be easily deployed in various systems.
Xentry functions as an interface between the hypervisor and
other domains (guest VMs and hardware). It intercepts all VM
exits to prepare for data collection by instructing performance
counters, and then allows original hypervisor execution to
continue. It enables VM transition detection at every VM
entry. Conceptually, this implementation is similar to shim,
which is a method to solve software compatibility issues [30].
To implement the framework, three major practical issues
should be addressed: 1) intercepting hypervisor executions; 2)
accessing performance counters on each hypervisor execution;
3) enabling VM transition detection.
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Intercepting hypervisor executions. Xentry needs to in-
tercept all hypervisor executions to obtain VM exit reasons
and to instruct performance counters. VM exit reasons falls
into five categories: 1) Common interrupts that are generated
by hardware devices such as disk and network devices. The
interface of handling these interrupts in Xen is do irq();
2) Interrupts generated by Advanced Programmable Interrupt
Controller (APIC) such as performance counter interrupts and
inter-processor interrupts. There are ten interrupt handlers in
this category; 3) Software interrupt and tasklet: these are
handled by two Xen functions do softirq() and do tasklet(). 4)
Exceptions: 19 exceptions are handled by exception handlers
respectively; 5) Hypercalls: there are 38 hypercalls in current
Xen 4.1.2. The hypercall is triggered by calling the hypervisor
page where the hypercall handlers are registered. We replace
the hypercall page entries with Xentry. There are small pieces
of codes that are not covered by Xentry, including the code
of Xentry itself and VM transition handling such as stack
operations. In this case, we rely on the hardware exceptions
and the software assertions.

Accessing performance counters. Performance counters are
initialized on all processors when the system is booted. Data
collection is only enabled at VM exit. On each VM exit,
performance counters start to collect data right before the orig-
inal entry function is called. At each VM entry, performance
counters are disabled and data are collected by Xentry. Logical
cores do not share performance counters, so data are accurate
even if simultaneous multi-threading is enabled [18].

Enabling VM transition detection. VM transition detec-
tion is applied after original hypervisor executions relinquish
control to Xentry. The rules generated by Random Tree are
essentially a series of branches with conditions, which can be
easily implemented.

After a fault is detected, proper recovery procedures should
be enabled. It is possible to re-initialize the hypervisor to
recover from soft errors [17]. Also, it may be possible to
develop new techniques with even lower overhead (e.g., stop
and re-initiate hypervisor executions with errors). In this paper,
we mainly focus on the implementation of detection methods,
leaving integrating the recovery techniques as our future works.

V. EVALUATION

A. Experiment Infrastructure

To evaluate performance overhead, we use a single-socket
server equipped with a 4-core Intel Xeon E5506 processors (8
logical cores), 12GB memory and 1 TB SATA disk. Four guest
VMs are running the same benchmarks. Each VM is assigned
with 1 VCPU and 2GB memory.

To evaluate the detection effectiveness, we conduct fault
injections based on a full system simulator. Fault injection is
a common method for evaluating fault tolerance techniques.
In this work, we use a full system simulators, Simics [31], to
conduct fault injections. Simics can accurately simulate system
behaviors. It have been widely used in academia and industry
for fault injection, software debugging, etc. Compared with
real systems, simulation provides better capabilities in terms
of controlling and monitoring fault injection processes.

We develop our fault injection framework as the modules
that run in Simics. The simulated system is configured with

a 4-core 64-bit processor (each core is comparable to a Intel
Pentium-4 64-bit processor), 2GB memory, 60GB disk, Xen
4.1.2 and Debian 6 with Linux kernel 2.6.32. We configure
one Dom0 with one VCPU and two para-virtualized DomUs
each of which is assigned with one VCPU, 512MB memory
and a 10GB virtual disk.

We select a wide range of benchmarks from PARSEC
[21], SPEC2006 [20] and Postmark [32] to exercise I/O (e.g.,
postmark, freqmine from PARSEC and x264 from PARSEC),
CPU (e.g., canneal from PARSEC, bzip2 from SPEC2006),
and memory (e.g., mcf from SPEC2006). The reason that we
select these benchmarks is to exercise different functions of the
hypervisor, because the hypervisor is the software under test
rather than the benchmarks. When conducting fault injections,
the same benchmarks are running in two DomUs in parallel.

B. Fault Model

In this paper, we focus on soft errors in CPU because
combinational logic circuits in CPU are usually not protected
by ECC or parity checking. Note that even if the circuits are
protected by ECC, uncorrected errors may still occur when
the number of errors are beyond the ECC capabilities. We
currently use the single bit-flip fault model in the architectural
register state, including general purpose registers, instruction
and stack pointers and flags. We adopt the common practice
that assumes one single-bit flip soft error may occur at a time.
Note that since soft errors are random events, it is very unlikely
that two single-bit flip errors occur in CPU concurrently.

Soft errors may occur before reading or writing a register.
Soft errors will not be activated if they occur before new-values
are written (non-activated errors). Non-activated errors do not
affect the system correctness even without any fault tolerance
techniques, and the execution behaviors are as same as correct
executions. Only soft errors occurring before reading registers
can be activated (activated errors).

We randomly select the regions when applications are
running as injection points. On each fault injection run, only
one fault is injected. After a fault is injected, we allow the
simulation to continue to observe if it can be detected.

C. Performance Overhead

Faults are rare events. Systems are running in fault-free
mode for most of the time. Therefore, the low performance
overhead in fault-free mode is very important. We evaluate
the performance overhead of Xentry in the fault free mode.
Each benchmark is executed for 10 times. After each run, the
average running times of four VMs are collected.
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Fig. 7: Normalized performance overhead of Xentry

The average and maximum performance overheads are
shown in Fig. 7. The shaded box is the overhead of solely
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using runtime detection, and the empty box is the overhead
of using both runtime detection and VM transition detection.
The numbers are normalized to the average run time with
an unmodified Xen 4.1.2 hypervisor. It is not surprising to
see runtime detection only incur very small overhead, since
only selected variables are verified. The overhead of runtime
detection and VM transition overhead is also low. Four bench-
marks, mcf, bzip2, freqmine, and canneal all have performance
overheads lower than than 1%. The average overhead can be
as low as 0.19% for bzip2. The postmark shows highest perfor-
mance overhead (11.7% maximum). But the average overhead
is 2.5%. Overall, Xentry can achieve low overhead mainly
for two reasons: 1) we leverage existing hardware supports
to offload heavy tasks such as data collection (performance
counters) and runtime error monitoring (hardware exceptions);
2) VM transition detection is designed with low complexity
so that the classification results can be quickly obtained by
traversing limited branches.

D. Overall Detection Coverage

We evaluate the overall detection effectiveness of Xentry
using fault injection experiments. We conduct 30,000 fault
injections, and about 17,700 injected errors cause failures or
data corruptions. We summarize the results of these errors by
the detection techniques.
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Fig. 8: Overall detection results

Fig. 8 shows the overall detection results. To show the
result distribution more clearly, the y-axis starts from 70%. As
the figure shows, the overall detection coverage is up to 99.4%,
and the average is 97.6%. Most of errors (85.1%) are detected
by the hardware exceptions because fatal system corruptions
are common in hypervisor low-level operations. About 5.2% of
injected faults on average are detected by software assertions.
6.9% of injected faults are detected by the VM transition
detection, and these faults are all long latency errors that
otherwise propagate to VM executions without our framework.
The results suggest that the proposed detection techniques are
effective in detecting various error behaviors, and the overall
coverage is high.

E. Detecting Long Latency Errors

Long latency errors propagate across VM entry to guest
mode. Based on our fault injection results, long latency
errors may cause four types of consequences: 1) one VM
failure: faults propagate to a VM, and hang or crash this
VM; 2) all VM failure: faults propagate to the control VM or
next hypervisor executions, and cause system failures affecting
all VMs; 3) APP crash: faults propagate to the application
running in the VM, and cause applications to exit abnormally
such as segmentation faults; 4) APP SDC: faults propagate to
the application running in the VM, and the application exits

normally. But the result produced by the application is different
from the one produced by the correct execution. Since there
is no visible failures involved in this case, it is extremely
harmful for systems. As we explained previously, existing
methods have difficulties to detect, diagnose, or recover from
such faults. Our framework can detect these faults.
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Fig. 9: Detection coverage of long latency errors

Fig. 9 shows the percentage of long latency errors that can
be detected by our framework. The results are grouped ac-
cording to the consequences if these errors were not detected.
VM transition detection can successfully detect 92.6% of APP
SDC cases and 96.8% of APP crash cases. We discuss the
undetected cases in next section. Note that all cases in Fig.
9 are very difficult to detect with existing approaches. On the
other hand, our framework can detect them with high coverage
and low overhead, especially for SDC cases.

F. Detection Latency

The detection latency is measured by the number of instruc-
tions between error activation and detection. We utilize three
techniques to detect error behaviors. We collect the detection
latencies for all detected cases and group them according to
detection techniques.
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Fig. 10: CDF of detection latency

Fig. 10 shows the cumulative distribution of the detection
latency. While most of cases (95%) detected by VM transition
detection have less than 700 instructions, hardware exceptions
and software assertions have generally shorter latencies. These
results suggest that the later two techniques can help to reduce
the detection latencies. Note that detection latencies shown
here are varied, but all these faults are detected before starting
VM executions.

Above results show that Xentry is an effective and low-
cost detection framework. Xentry is able to achieve the three
goals described in the beginning of Section III. Moreover,
application SDCs are usually difficult to detect, but Xentry
can effectively detect 92.6% of them.

VI. DISCUSSION

Undetected Faults. There are a small percentage of unde-
tected faults and the distributions are shown in Table II. We
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analyze the undetected faults to identify the reasons. Apart
from the errors that are mis-classified by the VM transition
detection (10%), we find that the majority of undetected faults
do not change the original control path. Rather, the errors
only change data values. We find that two types of operations
are more evident than others. The first case is stack values
(20%). Errors corrupt the stack, and therefore incorrect values
are pushed to or restored from the stack. This is difficult
to detect since errors are activated after VM entry. Some
of such errors may be captured by inserting more software
assertions, but not all of them. These faults can be detected
with more expensive approaches such as selective redundancy
at software level or compiler level. Specifically, the values
can be duplicated when they are pushed on to the stack, and
verified when they are popped from the stack. The duplication
can be done by adding instructions to the hypervisor directly
in software or in compiler. The second case is timing values
(53%). When guest VMs need to obtain system times, the
hypervisor sends time values to the requesting domains. The
time related values cannot be verified by directly duplicating
instructions, since replicated rdtsc instructions may not gen-
erate exact same values. However, duplication may still help
to check the correctness of time-related values. For example,
two adjacent rdtsc may have a small variation in their output
values. Checking this variation may help detect errors.

TABLE II: Undetected faults

Mis-Classify Stack Values Time Values Other Values
10% 20% 53% 17%

False Positive. Due to the statistical nature of machine
learning algorithms, false positive cases usually cannot be
avoided. In our system, this may cause unnecessary recov-
ery. To minimize the overhead, Xentry need to utilize light-
weight software recovery solutions. Hypervisor executions are
performed with carefully defined reasons and data structures
(e.g. VCPU and domain data structures). It may be possible
to recover hypervisor executions by preserving and restoring
those data structures and activation reasons upon positive
detection. In fact, some hypercall failures can be recovered
by re-execution [17], which can be leveraged to further reduce
the overhead. We assume that the recovery techniques will
preserve the critical hypervisor data (e.g. VCPU and domain
information) and the VM exit reason by making a redundant
copy at every VM exit. If there is a positive detection (correct
or false), these critical data and the VM exit reason will be
restored and the hypervisor execution is re-initiated.

Since this paper focuses on the error detection techniques,
we leave the implementation of the recovery technique as
future work. In this work, we conduct the experiments to
estimate the overhead of such technique, and then use these
data to estimate the performance overhead of false positive
cases. We measure that copying critical data structures will
take about 1,900ns in a Xeon E5506 2.13GHz CPU. Recovery
includes restoring the critical hypervisor data and re-executing
the hypervisor execution, essentially doubling the original ex-
ecution time. We collect a trace of hypervisor executions using
the physical system setup described in Section V. We use the
false positive rate (0.7%) obtained in Section III to randomly
select hypervisor executions as false positive cases. This is
repeated by 100 times for each application. Then, we estimate
the overhead of fault-free executions (with false positive cases)

with respect to Xen executions. We also measure the CPU
utilization of the Xen when VMs are running using OProfile
[33], and then calculate the overhead of recovery with respect
to applications.

As Fig. 11 shows, the overheads for each application are
very small (2.7% on average) and the difference between
the maximum and minimum overheads are less than 0.03%.
Mcf and bzip2 have even smaller overheads, and both are
about 1.6%. Postmark has the highest overhead 6.3%. This
experiment shows that false positive cases can be handled with
reasonable overhead if Xentry were combined with a light-
weighted recovery approach.
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Fig. 11: Recovery overhead with False Positive Cases

VII. RELATED WORKS

Behavior Based Detection: Abnormal behaviors have been
used to detect errors in previous works [22,25,26,34,35]. For
example, SWAT [22] uses several symptoms such as high OS
activities and fatal traps to detect errors in the application
context. A hardware checkpointing mechanism is assumed for
error diagnosis and recovery. Control flow violation can also be
considered as one type of error behavior that is used for error
detection [25,26]. Another group of works utilize classification
methods to automatically identify faults [27,36]. An approach
with two stages of classification is utilized to identify faults
in high performance computing applications [27]. A Markov
model is utilized in [36] to identify the abnormal behaviors in
large-scale distributed systems.

Xentry also falls into this category. One major difference is
that Xentry is specifically designed for hypervisor focusing on
isolating error propagation. This capability is very important
in the hypervisor context to prevent from multiple VM failures
and data corruptions. Previous works cannot achieve this.
Moreover, the machine learning approach is carefully designed
to satisfy unique requirements of the hypervisor. Unlike [27],
it does not rely on specific distribution model, and still can
achieve high accuracy and low false positive rate. Also, Xentry
is designed based on unique hypervisor error behaviors. To
detect long latency errors, it captures dynamic patterns of
control flow to verify its correctness. This can capture errors
that cannot be identified by simply checking control flow
validness as in [27,36].

Redundancy: Redundancy can be implemented in hard-
ware [15,16,25], software [10,11] or compiler [8,9]. Hard-
ware redundancy generally incurs significant performance and
energy overheads as well as high design and production
cost. They are often not available in commodity processors.
Redundancy can also be implemented in the software level
[10,11], leveraging tools from operating systems, such as
fork() in PLR [10] and ptrace in RAFT [11]. These tools
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are not available in the hypervisor. Redundancy can also be
implemented in compilers [8,9]. The performance overhead is
generally high (38% in DAFT [9] and 19% in SRMT [8]).
More importantly, the hypervisor executions consist of many
low-level operations such as handling interrupts and emulating
instructions. These low-level events are not handled in those
compiler based methods.

Checkpoint/Restart: Recovery techniques have been pro-
posed in the VM and the application level. At the VM level,
checkpointing is a common technique to improve reliability.
VM level checkpointing schemes save the VM state which
can be recovered in the same or a different server later on
[14,37]. However, checkpointing involves intensive memory
and I/O operations, which incur significant performance over-
head and resource contention. Checkpointing procedures may
briefly pause the protected VM to dump VM memory data.
Even if the pause may be very short (in ms), it periodically
causes downtime or delay in service. Therefore, they are often
designed for protecting a single VM rather than all VMs
across whole data centers. The application-level checkpointing
schemes, e.g., MPI checkpointing/restart schemes [38], are
only suitable for specific applications.

Hypervisor Fault Tolerance: Most of previous works do
not focus on the hypervisor reliability with a few of exceptions.
For example, ReHype re-vitalizes the hypervisor upon failures
based on micro-reboot techniques [17]. It is transparent to
applications and incurs minimum overhead in fault-error runs.
It relies on effective detection techniques. Soft errors in the
hypervisor context may propagate to VM executions and cause
VM failures, applications failures, or silent data corruptions.
Our detection framework can effectively detect these errors
within short detection latencies and prevent them from cor-
rupting VM executions. Therefore, our work is orthogonal to
ReHype. Tinychecker [39] uses nested virtualization technique
and is designed to detect malicious hypervisor behaviors that
are caused by software bugs. In contrast to Tinychecker,
Xentry focuses on hardware errors and leverages hardware
performance counters to monitor VM transition behaviors. It
is less intrusive to the hypervisor, incurs less overhead, and
minimizes the chance of the framework being affected.

VIII. CONCLUSION

In this paper, we have designed Xentry, a soft error
detection framework, in the hypervisor. Xentry detects close
to 99% of faults. Particularly, we have designed VM transition
detection based on machine learning algorithms to identify
incorrect control flow. It effectively limits soft error propa-
gation by detecting 92.6% of SDCs. Xentry greatly improves
fault isolation capability in the virtual systems. Because Xentry
leverages existing hardware support for data collection in
runtime, the performance overhead is very low. Xentry is
designed for hypervisors and can be easily implemented and
deployed in many virtualized data centers. In future work, we
plan to develop new techniques to further increase the detection
coverage and reduce the false positive rate.
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