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Abstract—Software vulnerabilities are a common attack vec-
tor for cyber adversaries. This problem has been exacerbated
by the wealth of open-source software projects, as code is
often copy-pasted to new locations. This causes a serious
problem when a new security vulnerability is discovered in a
particular software project, as it may potentially affect many
others. Discovering vulnerable code reuse in source code is
known as vulnerable code clone detection. This is a very
challenging problem as the cloned code has the potential to
be modified, sometimes significantly, from the original code,
while still retaining the underlying vulnerability. Existing
vulnerable clone detection techniques are either too strict,
missing vulnerabilities when they have subtle modifications,
or are too narrow, applicable only to a small number of
vulnerability types. In this work we present VGRAPH, a
technique for identifying vulnerable code clones, which is
more robust to code modification, while still remaining
generic to all vulnerability types. VGRAPHs are represen-
tations of vulnerable source code comprising three graph-
based components representing code property relationships
extracted from the contextual code, the vulnerable code,
and the patched code. We develop a matching algorithm
utilizing these three graph-based components which is able
to identify vulnerable code clones with a precision of 98%
and recall of 97%. Even for highly modified code clones, we
are able to identify over 100 more vulnerable clones than
the best performing comparison work ReDeBug. When we
apply our technique to several versions of popular software
packages (e.g., FFMpeg, OpenSSL), we are able to identify
10 vulnerabilities which were silently patched and are not
listed in the National Vulnerability Database.
Index Terms—vulnerability, code clone, source code, static
analysis, software security

1. Introduction
In 2019 there were over 17,000 new vulnerabilities

published in the National Vulnerability Database (NVD)
[4]. In the last five years alone, there have been over
60,000 new additions into the NVD, including the vul-
nerability exploited in the high profile Equifax hack of
2017, which exposed personal data of over 145 million
Americans [20]. In a time when our personal and profes-
sional lives, as well as critical infrastructure, all rely on
computer systems and consequently computer software, it
is imperative that we find a way to identify vulnerabil-
ities in source code before they are exploited by cyber
adversaries.

Exacerbating the problem of vulnerable code is the
growth of popular open-source software packages dis-
tributed freely on the Internet. At the time of writing this,
the most popular source code repository GitHub [2] has
over 20 million public source code projects, and 36 million
registered users. The purpose of open-source code is to
allow for the open distribution and reuse of computer soft-
ware. Unfortunately, this leads to an increase in vulnerable
code clones, which occur when unknowingly vulnerable
code is copy-pasted from one location to another. When
the vulnerability is discovered and patched, there is no
guarantee that all occurrences of that vulnerability in all
other locations within and across various projects and
versions are patched as well. This means the source code
with the vulnerable code clones will likely go unpatched,
leaving them at risk for malicious exploitation.

Existing techniques for vulnerable code clone detec-
tion fall into two main categories: code similarity [16]
[14] [12] [17] [19] [9], and functional similarity [18] [25]
[23] [27] [28] [5] [24]. In code similarity approaches,
target source code is compared against a set of known
vulnerable code samples, and determined to be vulner-
able if a threshold of similarity is met. Code similarity
approaches are typically classified based on four types of
detection coverage [21]: type-1 (identical), type-2 (syntac-
tically equivalent), type-3 (syntactically similar), and type-
4 (semantically similar). Existing code similarity tech-
niques perform well when detecting identical (type-1) or
syntactically equivalent (type-2) code clones, but suffer
when the code has increased modification, such as the
addition and deletion of lines of code (type-3 and type-
4).

On the other hand, functional similarity approaches
seek to generate abstract functional patterns of code which
model vulnerable behavior. If the functional patterns are
simple, the techniques suffer from low accuracy as they
generate many false positives. Conversely, if the functional
patterns are complex, they have the capability to identify
vulnerable code clones with significant modifications, up
to and including type-4 code clones. However, due to the
complexity of building such a pattern, these techniques
are typically specialized to only a small class of vulner-
abilities, or to a particular source code project, rendering
them ineffective as general-purpose vulnerable code clone
detection techniques.

A recent study [10] of 35 software projects found that
50-60% of all vulnerable code clones were the result of
type-3 syntactically similar code clones. However, existing
techniques suffer to detect type-3 code clones, as they are



either too strict, covering only identical or near-identical
code clones, or too narrow, spanning only a few vulnera-
bility classes or source code projects.

In this work we introduce VGRAPH, a code-similarity
style technique which is capable of identifying highly
modified vulnerable code clones, while remaining generic
to all vulnerability types. VGRAPH abstracts vulnerabili-
ties in source code to the graph domain, allowing for the
ability to identify key relationships between textual ele-
ments that are not directly discernible from the text alone.
Additionally, we utilize not only the vulnerable code, but
also the patched code, to identify specific relationships
in the graph that are tied directly to the vulnerable code
segment, the patched code segment, and the contextual
code of a particular vulnerability. By separating the vul-
nerability representation into these three components, we
are able to develop our matching algorithm to tolerate
modifications at each level independently, providing more
robust detection of modified vulnerable code clones.

We build a database of VGRAPHs by mining vulner-
able and patched source code for 8 popular open source
projects from GitHub [2], resulting in VGRAPHs for 711
vulnerabilities (CVEs) spanning 51 vulnerability types
(CWEs). We download an additional 5,566 vulnerable
and patched code clones from different versions of the
source code as our test dataset. Our evaluation shows that
VGRAPH is able to accurately identify vulnerabilities in
the test dataset with an F1 score of 97%. When detecting
highly modified vulnerable code clones, VGRAPH is able
to achieve an F1 score of 85% compared to 74% and 50%
by state-of-art vulnerable code clone detection systems
ReDeBug [11] and VUDDY [14] respectively.

To evaluate real-world applicability, we utilize the
VGRAPH system to identify previously unknown vulnera-
ble code clones. We apply our method on several versions
of popular software packages FFmpeg and OpenSSL,
and identify 10 vulnerable code clones that were silently
patched and are not listed in the NVD.

In summary, we make the following contributions:

• A novel graph-based source code vulnerability
representation containing key relationships be-
tween the vulnerable code, the patched code, and
the vulnerability context, which is generic to all
vulnerability types.

• A matching algorithm capable of identifying
highly modified vulnerable code clones while still
retaining the ability to differentiate between vul-
nerable and patched code samples.

• A framework for generating VGRAPHs in a data-
driven and automated way allowing for the meth-
ods to scale to newly published vulnerabilities
with ease.

The remainder of this paper is organized as follows.
Section 2 will discuss the background and related work.
Section 3 will provide a high level overview of the
VGRAPH system. Section 4 will discuss our approach to
modeling source code and our novel VGRAPH represen-
tation. Section 5 will discuss our technique for detecting
vulnerable code clones. Section 6 will explain how we
acquire our vulnerable code samples in an automated way.
Section 7 will discuss our evaluation and experimental

1 void foo() {
2 int x = intput();
3 if (x > MIN) {
4 int y = x * 10;
5 output(y);
6 }
7 }

(a) Vulnerable code as the call to output(y) has an unchecked
upper bound on the variable y.

1 void foo() {
2 int x = intput();
3 if (x > MIN) {
4 int y = x * 10;
5 if (y < MAX)
6 output(y);
7 }
8 }

(b) Patched code as the variable y is checked against the upper
bound MAX prior to the call output(y).

Figure 1: An example of a source code function in both
the vulnerable state and the patched state.

results. Section 8 will discuss some limitations and future
work and Section 9 will conclude the work.

2. Background and Related Work

A vulnerability in source code can be defined as any
weakness of the code which can be exploited to perform
unauthorized actions. For example, Figure 1 shows a syn-
thetic function foo both before (Figure 1a) and after (Fig-
ure 1b) a vulnerability was discovered and patched. Both
versions of the function read some input into a variable
x on line 2. Then, both compare that input value against
some variable MIN , and if x is larger then they will
proceed inside the conditional statement. Both versions
then perform some transformation of x into the variable
y. Next, in the vulnerable version of foo, the value of y is
simply passed to the output function. Differently, in the
patched version of foo, the value of y is first compared
against some variable MAX , and is only passed to the
output function provided that y is less than MAX . Based
on both the vulnerable version and the patch version of
the function, we can infer that the function output is only
defined on values less than MAX , and is not safe to use
with values above that limit. Thus, the vulnerability in this
case was the omitted upper-bounds check on the value
passed to the function output.

When vulnerabilities are discovered in software, they
go through a process where they are assigned a Common
Vulnerability Enumeration (CVE) identifier. This uniquely
identifies the instance of a particular vulnerability, and
is tied to specific versions of a software product. Ad-
ditionally, CVEs are associated with Common Weakness
Enumeration (CWE) identifiers, which represent different
classes of vulnerabilities, such as improper input valida-
tion (CWE-200), out-of-bounds read (CWE-125), and use-
after-free (CWE-416).

2.1. Clone Type Taxonomy

To compare the coverage of code clone detection
techniques, we use the standard clone type taxonomy as



1 void foo() {
2 // comment line
3 int x = intput();
4 if (x > MIN) {
5 int y = x * 10;
6 output(y);
7 }
8 }

(a) Type-1

1 void foo() {
2 int x = intput();
3 if (x > minimum) {
4 int y = x * 10;
5 output(y);
6 }
7 }

(b) Type-2

1 void foo() {
2 int x = intput();
3 if (x > MIN) {
4 int z = x;
5 int y = x * 10;
6 output(y);
7 }
8 }

(c) Type-3

1 void foo() {
2 int x = intput();
3 if (x > MIN) {
4 int y=0;
5 for(int i=0;i<10;i++){
6 y=y+x
7 }
8 output(y);
9 }

10 }

(d) Type-4

Figure 2: Example of type-1 through type-4 code clones of the source code introduced in Figure 1.

introduced in [21]:
Type-1: Identical code except changes to whitespace

and comment lines.
Type-2: Syntactically identical code with modifica-

tions to identifiers, literals, types, whitespace, and com-
ments.

Type-3: Syntactically similar code with addition
and/or deletion of lines, as well as modification to identi-
fiers, literals, types, whitespace, and comments.

Type-4: Syntactically different code with the same
functionality (i.e., semantically similar)

Figure 2 shows an example of each type of code clone
for the vulnerable function introduced in Figure 1a. The
type-1 code clone has a single comment line added on line
2. The type-2 clone has the bounds check variable MIN
renamed to minimum on line 3. The type-3 code clone
defines an additional variable z and initializes it to the
value of x on line 4. The Type-4 code clone has replaced
the y = x ∗ 10 multiplication statement instead with a
series of 10 addition operations on lines 5-7. Note that
each example represents a pure clone, meaning it only has
the modification most associated with each type. However,
based on the definitions, each clone type can also include
the modifications associated with the types below it. For
example, in the type-3 code clone, we could also rename
the variable MIN to minimum, and it would still be
considered a type-3 clone.

Type 1-3 clones can be thought of as clones which
are textually similar, while type-4 clones are functionally
similar. The related works can be broadly categorized
based on these two similarity measures.

2.2. Textual Similarity Techniques

The textual similarity techniques generally involve
dividing a program into individual units (e.g., files, func-
tions, tokens, etc), and performing a similarity measure-
ment against a set of known vulnerable code samples. In
general, these approaches perform well at detecting type-1
and type-2 code clones, but fail to detect type-3 and type-
4 code clones. For example, VUDDY [14] is a technique
which relies on hashing vulnerable functions to allow for
a quick table lookup to determine if a target function is
vulnerable. VUDDY is able to detect type-1 and type-2
vulnerable code clones, but it will fail to detect type-3 and
type-4 clones.

As textual similarity techniques grow more abstract
in order to detect type-3 vulnerable code clones, they
often have a severe decrease in accuracy. This is due to

the fact that a patched function is often itself a type-
3 code clone of the vulnerable function. Therefore, any
techniques that do not take into account information from
the patch will suffer from the inability to differentiate
between vulnerable code clones and patched code clones.

SourcerCC [22], CPMiner [16], and CCFinder [13] are
all code clone detection techniques which tokenize source
code and identify clones based on some measure of token
overlap. In each case, however, their applicability to vul-
nerable code clone detection is inhibited since they do not
take into account information from the patch. Similarly,
DECKARD [12] builds abstract syntax trees (AST) from
the code and identifies similar subtree structures as clones,
but again suffers from the inability to differentiate between
vulnerable and patched code.

On the other hand, a recent work ReDeBug [11] is
a technique which does use the information in both the
vulnerable code and the patched code. ReDeBug performs
sequence based matching utilizing the diff files associated
with a particular vulnerability. A diff file contains the
lines that were explicitly modified during the transition
of the code from vulnerable to patched, as well as some
context code within close textual proximity. This allows
ReDeBug to detect some type-3 clones, however if the
code modification is near the location of the lines modified
during the patch process, this technique will fail to detect
the vulnerable clone.

Because there are so many different textual similarity
techniques, each with their own strengths and weaknesses,
VulPecker [17] developed a technique which identifies
a vulnerability-to-similarity-algorithm mapping. This way
each algorithm can be applied to the vulnerabilities to
which they are best suited. However, this approach is
still limited by the underlying accuracy of the similarity
algorithms, and only achieves a recall score of 60%,
meaning many vulnerable clones were left undetected.

2.3. Functional Similarity Techniques

The functional similarity techniques are markedly dif-
ferent from the textual similarity techniques discussed
previously as they attempt to model functional patterns
indicative of vulnerable code, rather than using the textual
contents of the code directly. This means these techniques
are better suited to identifying type-3 and type-4 vulner-
able code clones. However, in general, these techniques
are either exceedingly noisy with many false positives and
false negatives, or very narrow in scope as they apply to
only specific vulnerability types, or are tied to particular
source code projects.



The simplest functional similarity approaches are
based on manually defined patterns of functionality which
have been deemed vulnerable or unsafe based on software
security experts. These patterns exist in many open-source
vulnerability discovery tools such as FlawFinder [24] and
the Rough Auditing Tool For Security (RATS) [5]. Due to
the simplicity of the functionality defined in the patterns,
these techniques often have many false positives and false
negatives. In addition, they require an expert to manually
define the functional patterns of vulnerable code.

Other techniques resort to identifying anomalous func-
tionality as a proxy for vulnerable functionality. Yam-
aguchi et al. [29] [26] identifies anomalous input valida-
tion routines according to other functions in the same code
repository. Chang et al. [8] identifies similar missing con-
ditions by mining program dependence graphs (PDG) and
identifying outliers. Not only are these techniques tied to
a specific class of vulnerability, but their results are based
on individual code repositories, and information gleaned
from one project is likely not applicable to another.

In other related works, Yamaguchi et al. [28], [27] [25]
extrapolates known vulnerabilities by mining information
from Abstract Syntax Trees (AST) and Code Property
Graphs (CPG). Based on a seed vulnerability, they use
graph traversals to extrapolate to new vulnerable code
clones. While these techniques are capable of identifying
type-4 code clones, they are highly coupled to the type
of vulnerabilities being extrapolated, as well as the code
repositories on which the analysis is run.

VulDeePecker [18] introduced a deep learning frame-
work for learning the features necessary to identify vul-
nerable source code functionality. However this requires a
robust dataset so that the machine learning algorithm can
accurately learn the vulnerable functional pattern. Because
of this requirement, their method was only evaluated on
two vulnerability classes, and would require significant
manual effort to extend to additional types.

2.4. VGRAPH Comparison

Comparatively, VGRAPH is a textual similarity vulner-
able code clone detection system, with emphasis placed on
accurately detecting type-3 code clones, while remaining
generic to all vulnerability types. Our technique is most
similar to ReDeBug, as we focus on the lines of source
code that are modified during the patching process. How-
ever, unlike ReDeBug, we utilize a graph representation
of the code rather than direct sequences of text, which
allows for more robust detection of type-3 clones as
the underlying text can change while the resulting graph
structure remains the same. Our technique is generic to
all vulnerability types and can be applied across many
programs, contrasting the functional similarity approaches
which often only target a few vulnerability classes.

3. VGRAPH System

Prior to discussing any individual component, we will
first provide an overview of the VGRAPH vulnerable code
clone detection system. A high level system architecture
diagram is shown in Figure 3. The VGRAPH system
consists of two distinct phases: a Generation phase, and
a Detection Phase. During the Generation phase, source

Figure 3: VGRAPH Vulnerability Detection System.

code repositories are mined in an automated way to iden-
tify references to known vulnerabilities, and the relevant
source code is downloaded and cataloged. We download
both the vulnerable source code, as well as the patched
source code, as both are needed to accurately differen-
tiate between vulnerable code clones and their patched
counterparts. These pairs of vulnerable and patched code
samples are then sent to the Graph Generator, which
converts the raw source code into the highly expressive
Code Property Graph (CPG) representation [25]. We uti-
lize the open source utility Joern [3] to accomplish this.
In order to avoid expensive graph matching, the CPGs of
the vulnerable and patched code are then sampled via the
Triplet Sampler, which converts the graphs into a set of
code property triplets. These triplets are then sent to the
VGRAPH Generator, which is responsible for generating
the positive, negative, and context triplets of each vulner-
ability. This process is discussed at length in Section 4.
These triplets and their corresponding vulnerability CVE
identifier are then stored in the VGRAPH Database.

During the Detection Phase, target source code that is
to be evaluated is first converted into CPGs via the Graph
Generator and then sampled via the Triplet Sampler using
the same pipeline as during the Generation Phase. The
target triplets are then sent to the Triplet Matcher, which
performs the matching algorithm described in Section 5.
This component will detect if any of the target functions
are vulnerable code clones of any of the functions with
VGRAPHs in the VGRAPH Database.

4. Vulnerability Representation

Determining a representation for vulnerable source
code generally requires two main design choices. One
is the level of granularity (e.g., program level, file level,
function level, line level, token level), and the other is the
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Figure 4: Example Code Property Graph for the source
code function in Figure 1a.

source code representation (e.g., text, metric, tree, graph).
We discuss our choices below.

Granularity Level. We choose to operate at the line
level of granularity, meaning a vulnerability will be de-
fined as a series of lines of source code. When vulnerable
code is patched, the act of patching involves the addition,
subtraction, or modification of specific lines of code. Thus,
we believe operating at the line level of granularity is
the most logical way to represent a vulnerability if we
hope to be able to differentiate between vulnerable and
patched functions, while also being able to detect highly
modified code clones. Additionally, popular source code
repositories such as GitHub [2] make it possible to acquire
the source code for both vulnerable and patched code
samples for a wide variety of programs. This allows us
to acquire the specific source code lines which are added,
removed, or modified for a wide variety of vulnerabilities
in a reliable and automated way.

Source Code Representation. We choose to repre-
sent source code as a graph. Specifically, we choose to
utilize the Code Property Graph (CPG) [25] which is a
multigraph containing the representative nodes and edges
from the Abstract Syntax Tree (AST), Control Flow Graph
(CFG), and Program Dependence Graph (PDG). Because
vulnerabilities are highly complex, capable of manifesting
in many different ways, it is important that we have a
representation of source code that is capable of modeling a
wide variety of complex relationships. The CPG is one of
the most complex and expressive representations of source
code available, as it has the ability to simultaneously
model syntactic structure, control and data flow, and con-
trol and data dependence. An example CPG for the source
code in Figure 1a is shown in Figure 4. We can see how
the AST provides the general syntactic structure of the
source code, tokenizing each statement and categorizing
them as declaration statements (DECL), call statements
(CALL), predicate statements (PRED), etc. The CFG then
provides an ordering to the AST elements, identifying all
the possible logic traversal paths, such as the path from
the predicate statement to the variable declaration, or the
function exit. Finally, the PDG provides information on
control and data dependence between elements, such as
the data dependence between the call to the output func-
tion and the previous variable declaration of y. This source

code representation will allow us to extract relationships
between source code elements that would not be directly
discernible based on the textual contents alone. Further
discussion of the CPG including a full list of node and
edge types can be found in Appendix A.

4.1. VGRAPH Structure

Conceptually, the VGRAPH structure is the combina-
tion of elements extracted from the graph representation
of both the vulnerable function as well as the patched
function for a particular vulnerability. Each graph ele-
ment is attributed with identifiers indicating if it was
found in exclusively the vulnerable function, exclusively
the patched function, or both. This way, the VGRAPH
structure captures key relationships indicative of the vul-
nerability, the patch, and the necessary function context.

The first step in generating a VGRAPH for a particu-
lar vulnerability is to generate the Code Property Graph
of both the vulnerable function as well as the patched
function. A CPG is a directed, edge-labeled, attributed
multigraph of the form G = (V,E, λ, µ) where V is a set
of nodes, E is a set of directed edges, λ is an edge labeling
function, and µ is a node property labeling function. We
utilize the open source tool Joern [3] to accomplish this
task.

At this point, we need to identify the overlapping
graph elements so that we can extract the key relationships
related to explicitly the vulnerable and patched code.
As subgraph isomorphism is a computationally expensive
NP-complete problem, we utilize a sampling technique
where we convert the graphs into triplets of the form
(Source,Relationship,Destination), where Source is
a source node property, Destination is a destination node
property, and Relationship is the type of edge between
these two nodes as found in the CPG. For each node in the
graph, we extract the code property triplets as described in
Algorithm 1. We typically generate four separate triplets
as seen in lines 6 through 9 of the algorithm for each
edge in the CPG. Line 6 generates a triplet containing
the textual source code contents. We could stop here, but
this representation would not lend itself to type-2 and
beyond code clones, so we add additional triplets with
varying levels of abstraction. In Line 7 and 8, we abstract
the source node and destination node respectively to their
node types, rather than the textual contents. Finally, in line
9, we abstract both nodes to their type representation.

By generating the code property triplets in this manner,
we are able to not only capture the relationship between

Algorithm 1 Triplet Sampler

1: procedure TRIPLET SAMPLER(G)
2: triplets = []
3: for n1 ∈ G.nodes do
4: for n2 ∈ G.neighbors(n1) do
5: for e ∈ G.edges(n1, n2) do
6: triplets.append(n1.code, e, n2.code)
7: triplets.append(n1.type, e, n2.code)
8: triplets.append(n1.code, e, n2.type)
9: triplets.append(n1.type, e, n2.type)

10: return triplets



TABLE 1: A sample of the positive, negative, and context triplets generated for the vulnerability in Figure 1.
Positive Triplets (PT) Negative Triplets (NT) Context Triplets (CT)

(x > MIN,CONTROLS, output(y)) (y < MAX,CONTROLS, output(y)) (x = input(), DEF, x)
(y = x ∗ 10, FLOWS TO, output(y)) (y = x ∗ 10, FLOWS TO, y < MAX) (y = x ∗ 10, IS AST PARENT, x ∗ 10)

(y = x ∗ 10, FLOWS TO,Expression) (y = x ∗ 10, FLOWS TO,Condition) (x = intput(), REACHES, y = x ∗ 10)

the textual source code contents, but also the more abstract
relationships between types of source code statements.
This way, even if a piece of source code has textual
modification, there will still be triplets containing relevant
information in our VGRAPH structure.

We can now generate a VGRAPH based on the set
of vulnerable code property triplets V extracted from the
vulnerable function, and the patched code property triplets
P extracted from the patched function. We define the three
components of a VGRAPH as follows:

Positive Triplets (PT): This is the set of triplets from
the vulnerable graph which are not found in the patched
graph. Intuitively, this can be thought of as the specific
relationships in the graph which contributed to it being
vulnerable. Note that this is not strictly textual modifi-
cations, as textual modification will result in additional
changes to the graph structure, which is explicitly captured
by this approach. Formally, PT can be defined as:

PT = V \ P

Negative Triplets (NT): This is the set of triplets from
the patched graph which are not found in the vulnerable
graph. Intuitively, this can be thought of as the specific
relationships of the graph which contribute to it being
patched to a particular vulnerability. Formally, NT can be
defined as:

NT = P \ V

Context Triplets (CT): This is the set of triplets that
are shared by both the vulnerable and the patched graph.
Intuitively, these are the contextual relationships in the
function that were not modified during the transition of the
function from vulnerable to patched. As vulnerabilities are
highly context dependent, this component is very impor-
tant to represent the required context for the vulnerability
to be present. Formally, CT can be defined as:

CT = V ∩ P

These three structures combined represent a VGRAPH
for a particular vulnerability. Table 1 provides a sample of
the VGRAPH triplets generated for the example vulnerable
and patched code in Figure 1. From the table we can see
that the PT and NT accurately capture key information
as to what relationships between source code elements
are related to the function being identified as vulnerable
vs. patched. In the first row we can see that the PT and
NT capture the different control dependence relationships
on the output(y) call, with the source code x > MIN
controlling the output(y) call in the vulnerable function,
and y < MAX controlling the output(y) call in the
patched function. Similarly, in the second row we can
see that the PT and NT capture the different control flow
relationships which occur after the initialization of the y
variable, with control flowing directly to the output(y)
call in the vulnerable function, and to the bounds check
condition y < MAX in the patched function. In the third

row, we see a similar relationship to the second row for
the PT and NT, however this time more abstract. The PT
here represents control flow from the initialization of the
variable y to any expression statement, and the NT to
any condition statement. This is an accurate, yet much
more abstract representation of a key relationship that
contributes to the vulnerability determination.

Differently, in all rows of the CT column we can see
various general contextual information of the function.
The first row provides some information on how the
variable x is defined based on the call to the input
function. The second row provides some syntax-related
context between the declaration for the variable y and the
x ∗ 10 expression. The third row provides additional data
dependence context between the declaration for y and the
initialization of the variable x.

5. Vulnerability Detection

The goal of our detection algorithm is to provide an
efficient way to utilize our VGRAPH representation to
accurately identify vulnerable code clones ranging from
exact clones to highly modified clones. This means we
need an approximate matching algorithm which will not
overwhelm our results with false positives. As our core
VGRAPH representation is based on sets of graph triplets,
we are able to use highly efficient set overlap operations
to perform the bulk of the matching. Thus we develop a
Triplet Match algorithm which we discuss below.

5.1. Triplet Match

The intuition behind our triplet matching algorithm
is relatively straightforward. We expect vulnerable code
clones of a particular vulnerability represented by a
VGRAPH V G to have the following characteristics: (1)
share many context triplets with V G, (2) share many pos-
itive triplets with V G, and (3) share few negative triplets
with V G. To improve the ability to identify vulnerable
code clones in the type-2 to type-4 range, we match
triplets at each level independently (positive, negative, and
context), and allow for some level of mismatch at each
stage.

Algorithm 2 VGRAPH Vulnerability Detection

1: procedure ISVULNERABLE(V Graph, target)
2: scoreC = overlap(V Graph.CT, target)
3: if scoreC > threshC then
4: scoreP = overlap(V Graph.PT, target)
5: if scoreP > threshP then
6: scoreN = overlap(V Graph.NT, target)
7: if scoreN < scoreP then
8: return True
9: return False

Algorithm 2 provides the pseudocode for our triplet
matching algorithm. This algorithm takes as input a



1 void foo() {
2 int x = intput();
3 if (x > MIN) {
4 int z = x;
5 int y = x * 10;
6 output(y);
7 }
8 }

1 void foo() {
2 int x = intput();
3 if (x > MIN) {
4 int z = x;
5 int y = x * 10;
6 if (y < MAX){
7 output(y);
8 }
9 }

10 }

1 void foo() {
2 int x = intput();
3 if (x > MIN_2) {
4 int z = x;
5 int y = x * 10;
6 output(y);
7 }
8 }

1 void foo() {
2 int x = intput();
3 if (x > MIN_2) {
4 int z = x;
5 int y = x * 10;
6 if (y < MAX_2){
7 output(y);
8 }
9 }

10 }

(a) Vulnerable clone with sin-
gle line added.

(b) Patched clone with single
line added.

(c) Vulnerable clone with a vari-
able renamed and line added.

(d) Patched clone with a vari-
able renamed and line added.

Figure 5: Using a VGRAPH to detect type-3 vulnerable code clones and differentiate from their patched counterparts
based on clones of the source code introduced in Figure 1.

VGRAPH as well as graph triplets of an unknown target
function, and produces a binary result indicating if the
particular target function is detected as a vulnerable code
clone of the vulnerability represented by the VGRAPH.
The overlap function in the algorithm is a simple set
overlap routine which returns the ratio of the query triplets
found in the target triplets. There are two thresholds in
the algorithm, threshC and threshP . These thresholds
dictate the amount of mismatch permitted, and hence the
approximation ability of the matching algorithm. These
thresholds are determined experimentally based on our
VGRAPH dataset in Section 7. Notice that there is no
threshold for the negative triplets, as we found that simply
comparing the negative triplet score against the positive
triplet score provided the best performance.

We can see in Algorithm 2 that our matching routine
proceeds in a very hierarchical nature. This is by design,
as real world vulnerabilities are highly context dependent.
Thus, we first match against the context triplets (line
2), and only continue pursuing a match if the CT score
exceeds threshC (line 3). Next we match against the
positive triplets (line 4) and only continue if the PT score
exceeds threshP (line 5). The last step is to perform the
negative triplet matching (line 6). If the NT score is less
than the PT score (line 7) then a true result will be returned
(line 8), indicating that the target function is a vulnerable
clone of the VGRAPH. In all other cases the function will
return false, indicating that the target function is not a
vulnerable clone of the VGRAPH.

To illustrate the ability of this algorithm to detect
vulnerable code clones, we return to the example source
code provided in Figure 1, and the associated VGRAPH as
discussed in section 4. Based on this code, we generated 4

code clones, two of the vulnerable function, and two of the
patched function. Figure 5 shows the cloned source code,
the CPG of the source code with nodes highlighted ac-
cording to which elements of the VGRAPH they matched
with, and the overlap score for each VGRAPH triplet
component. Red corresponds to positive triplet matches,
green to negative triplet matches, blue to context triplet
matches, and gray to no match.

Figure 5a and Figure 5b show type-3 code clones of
the original vulnerable and patched code respectively. In
both cases, a new variable declaration is made on line 4.
We can see from the highlighted graph structure and the
overlap scores, that the VGRAPH for the original vulner-
ability matches significantly differently against these two
very similar functions. Despite the code modifications, all
positive triplets and none of the negative triplets matched
in the vulnerable function, and all of the negative triplets
and none of the positive triplets matched in the patched
function. This means, not only would our detection algo-
rithm be able to accurately detect these type-3 vulnerable
and patched code clones, but also, there is significant
room for additional modification to the function while still
maintaining the ability to detect this vulnerability.

Figure 5c and Figure 5d show another more complex
type-3 code clone pair, this time with an additional type-
2 style modification to the variables used in the critical
bounds checks. The variable MIN has been replaced with
MIN 2 in both the vulnerable and patched functions, and
MAX with MAX 2 in the patched function. Despite this
increase in modification, we can see that the VGRAPH
was again able to identify many of the critical elements
of the vulnerability in the vulnerable clone, and none of
them in the patched clone. There was significantly less



negative triplet matching in this patched function, however
the NT score was still higher than the PT score, and the
PT score was nearly 0%, indicating that our detection
algorithm would have properly labeled this function as
not-vulnerable.

It is also important to notice that in all four of these
examples the CT scores remained very high, indicating
that the required context was present for these vulnerabil-
ities to occur. This example shows that, with appropriate
thresholding on the positive, negative, and context triplet
overlap scores, the VGRAPH structure and triplet matching
algorithm is able to accurately identify the vulnerable code
clones, and, importantly, differentiate from their highly
similar patched counterparts.

6. Vulnerability Mining

Another important consideration is how to acquire
samples of vulnerable and patched source code. Many
related works manually generate a dataset of vulnerable
code samples, and, because of this, often only cover a
small number of programs and/or vulnerability types. In
addition, there is likely some bias introduced on behalf
of the researcher as to what samples are added to the
vulnerable code dataset.

We believe it is important to have an automated way to
generate vulnerable source code samples for a wide range
of programs and vulnerability types. Only when this is
the case will a code-similarity-based technique be able
to keep up with the continuous flow of new and diverse
vulnerabilities. Therefore, we utilize an approach similar
to [14] and mine content from the popular open-source
code repository GitHub [2]. Note that any version control
repository could be used, provided there is the ability to
download specific versions of files, and there exist mean-
ingful comments associated with the code modifications.

Version control software is widely utilized by de-
velopers of software projects both large and small as a
way to manage and track changes to source code. They
provide fine-grained and detailed information regarding
what changed in the code, when, and why. We leverage
this information to identify specific changes to source code
that are related to security vulnerabilities. We developed a
GitHub mining utility which downloads source code from
before and after a change was made associated with a
particular vulnerability identified by the CVE number. The
samples from before the security-relevant code modifica-
tion are labeled as vulnerable, and after, as patched. Due to
space limitations the details of the GitHub mining process
are presented in Appendix B.

It should be noted here that we make a fundamental
assumption that modifications to source code files which
reference CVEs are related to the process of patching
the vulnerability. This is consistent with a popular related
work VUDDY [14]. In addition, during our manual eval-
uation of several hundred commits related to the patching
of vulnerabilities we found this assumption to hold.

7. Evaluation

We utilize the typical metrics for accuracy comparison.
True positives (TP) represent the number of functions

which are identified as vulnerable, and are truly vulnera-
ble. False positives (FP) represent the number of function
which are identified as vulnerable, and are not vulnerable.
True negatives (TN) are the number of results classified as
not vulnerable and are truly not vulnerable. False negatives
(FN) are those functions that are labeled as not vulnerable,
but are truly vulnerable. Precision (P) is the ratio of the
true positives to all classified positive functions: P =
TP/(TP+FP ). Recall (R) is the ratio of true positives to
all labeled positive functions: R = TP/(TP + FN). F1
is an overall performance metric including both precision
and recall: F1 = 2/((1/P ) + (1/R)).

7.1. VGRAPH Database

We generated a VGRAPH Database based on 8 popular
software packages that maintain source code on GitHub.
Table 2 provides details of our VGRAPH database. In total
we generated 1031 VGRAPHs for 711 unique vulnerabil-
ities identified by their CVE number. For each CVE we
determined the CWE, or vulnerability class, and found
that our VGRAPH database covered 51 unique CWEs.

TABLE 2: VGRAPH Database Details

Repository CVEs Functions
Linux Kernel 197 269

OpenSSL 82 105
tcpdump 89 166

libtiff 31 40
FFMpeg 66 80
LibAV 58 72
QEMU 94 166

Xen 94 133
Total 711 1031

In order to determine the thresholds for our detec-
tion algorithm, we evaluated the matching characteristics
of each VGRAPH against all functions in our VGRAPH
database, with the assumption that each VGRAPH should
not detect vulnerable code clones in the vast majority
of other functions. We want to set our thresholds to the
minimum value to allow for the best ability to identify
modified code clones, but not so low as to introduce
a significant number of false positives. To that end, we
compute the Cumulative Distribution Function (CDF) of
the context triplet scores, and the positive triplet scores, for
each VGRAPH against all other functions in the database.
Figure 6 shows both of the computed CDFs. We set our
context triplet threshold, threshC , at the minimum value
where at least 99% of the true negatives fall below. This
was a score of 25% as marked in the figure with the

(a) Context Triplets (b) Positive Triplets

Figure 6: The overlap thresholds marked via the dashed
red line for the context triples and the positive triples.



red dashed line. Similarly, for the positive triplets, at the
given context triplet threshold of 25%, we again compute
the CDF, and set our positive triplet threshold, threshP ,
at the minimum value where at least 99% of the true
negatives fall below. This occurred at a score of 60% as
marked in the figure by the red dashed line. This difference
in threshold values makes sense, as the set of context
triplets typically contains many more entries than the
set of positive triplets for a particular vulnerability. This
means we can afford a less strict threshold for the context
matching compared to the positive matching. The refer-
enced thresholds of threshC = .25 and threshP = .60
were used in the remaining experiments. In Section 7.7,
we present a sensitivity analysis of these two parameters.

7.2. Test Dataset

In order to generate our test dataset, we require code
clones of the functions in our VGRAPH database. Ac-
cording to a recent study [7], the average lifespan of
a vulnerability in source code is 6.9 years. Thus, we
assume that samples of the same function at different
versions prior to the patch will still be vulnerable, pro-
vided they are well within the 6.9 year period. Similarly,
we assume that versions of a function subsequent to the
patching of a particular vulnerability will remain patched
to that vulnerability. Therefore, we again utilize GitHub,
and download samples of the functions in our VGRAPH
database at six different time intervals relative to the patch
date: immediately before, 1 month before, 1 year before,
and immediately after, 6 months after, 1 year after. We
temporally spaced our code samples in this manner in
order to extract code clones with both small modifications
(type-2 and below) to large modifications (type-3 and
above), with the assumption being that temporally distant
versions of the code are more likely to have a higher level
of modification. We then label the functions as a vulner-
able code clones if they were samples from before the
original vulnerability-patching commit, or patched code
clones if from after.

The details of the test dataset are listed in Table 3.
Our test dataset includes 2,840 vulnerable code clones
and 2,726 patched code clones, for a total of 5,566 code
clones. In some cases the vulnerabilities used to build our
VGRAPHs did not have commits to the same file at the
various time intervals, which is the reason why these two
numbers are not exactly equal.

TABLE 3: Test Dataset Details

Repository Vulnerable Clones Patched Clones
Linux Kernel 762 743

OpenSSL 310 288
tcpdump 370 349

libtiff 120 98
FFMpeg 220 233
LibAV 199 190
QEMU 483 463

Xen 376 362
Total 2840 2726

7.3. Scoring Criteria

The results generated against our test dataset can be
scored in two ways. In the simpler case, our dataset can

be labeled with a binary output of either vulnerable or
patched, in which case scoring the results is trivial. In
the more complex case we can label each sample in our
dataset on a per-CVE basis. However, this introduces a
challenge, as each sample in our dataset is labeled only
with the CVE with which it was generated. We found that,
in many cases, a function associated with a particular CVE
is also associated with other CVEs. It is also possible that
some functions may in fact be unknown vulnerable code
clones, and thus not be labeled in our test dataset.

To remedy this, we score CVE-aware techniques as
follows. For every positive result generated, it is consid-
ered a true positive under the following conditions. Con-
dition 1: The function is a labeled vulnerable code clone
and its CVE matches that of the source vulnerability. This
is the base case where the original vulnerable function was
used to identify a vulnerable code clone generated from
the same originating CVE. Condition 2: The code reposi-
tory, file name, and function name match that of the source
vulnerability, and the source vulnerability is newer than
the target function. In this case, a CVE from a particular
function identified the vulnerability in an older version
of the same function which happened to be associated
with a different CVE. Condition 3: Manual inspection
was performed and it was determined that the result is in
fact a vulnerable code clone of the source vulnerability.
This accounts for true vulnerable code clones which can
span functions and even repositories which we did not
have a label for in our test dataset. We refer to matches
associated with conditions 2 and 3 as cross-CVE clones as
one CVE is used to identify a vulnerability in a function
associated with a different CVE.

For the negative results, a false negative is scored for
every known vulnerable code clone that failed to generate
a result, and a true negative for every known patched code
clone that did not generate a result.

7.4. Detection Comparison

We compare with four state-of-art vulnerability de-
tection techniques: FlawFinder [24], RATS [5], VUDDY
[14], and ReDeBug [11]. FlawFinder and RATS are both
open-source tools used in industry for identifying bugs in
source code, and are both based on manually generated
vulnerable functional code patterns. VUDDY is a vulner-
able code clone detection technique which is based on
the hashing of source code functions and a subsequent
lookup of known vulnerable hashes. ReDeBug is a detec-
tion technique based on identifying sequences of known
vulnerable and patched code harvested from the diff files
associated with the patching process.

To compare with FlawFinder and RATS, we were able
to download the respective tools, and run them directly on
our test dataset. As these techniques do not contain any
internal notion of CVEs, we can utilize the simple scoring
criteria based on the binary label of the code samples.

To compare with VUDDY, we utilized their open web
service [6] to identify all vulnerable code clones in our test
dataset. In order to compare techniques fairly, we only cal-
culate scores for CVEs that were shared between VUDDY
and VGRAPH. This way we are comparing detection
techniques rather than database generation techniques. To
compare with ReDeBug, we were able to download the



TABLE 4: Vulnerable Clone Detection Comparison

System TP FP FN P R F1
RATS 33 23 2807 59 1 2

FlawFinder 712 663 2128 52 25 34
VUDDY 2021 117 371 95 84 89
VUDDY* 2021 27 371 99 84 91
ReDeBug 3401 94 329 97 92 94
VGRAPH 3824 63 147 98 96 97

source code, generate the required diff files using the same
functions used to generate the VGRAPH database, and
apply the detection algorithm to the test dataset. As these
three techniques are CVE-aware, we scored results of each
technique independently based on the conditions stated in
Section 7.3.

Our results from these experiments are listed in Table
4. We can immediately see that both of the functional
pattern based techniques, RATS and FlawFinder, have
fairly poor results, with F1 scores below 40%. This is
due to the fact that these systems are based on manually
generated, predefined patterns of functionality which fail
to accurately reflect most real world vulnerabilities.

Compared to RATS and FlawFinder, we can see that
VUDDY, ReDeBug, and VGRAPH are all able to identify
significantly more vulnerable code clones. Surprisingly,
VUDDY did not immediately reveal itself as the most
precise of the techniques. Upon investigation, we found
that a small number of CVEs were alerting on a large
number of functions, causing many false positives. For ex-
ample, CVE-2017-11108, a vulnerability found in a single
function of a single file in the tcpdump program, generated
342 results across 93 different functions. VUDDY uses a
similar GitHub mining technique to generate their vulner-
ability hashes, and it is likely they mistakenly associated
this particular CVE with an incorrect commit (likely a
merge commit) covering many files unrelated to the actual
vulnerability. If we disregard only two CVEs (CVE-2017-
11108 and CVE-2017-5202), VUDDYs precision is over
99%, which is the level of precision we expected out of
this hash-based technique. This test corresponds to the
VUDDY* row in Table 4. In both scenarios, however,
we can see that VUDDY performs the worst of the code
similarity style techniques, with a recall score of only
84%. Also notice that VUDDY returns significantly less
true positives than ReDeBug and VGRAPH, so the true
recall is likely much less if we were to consider the cross-
CVE results generated by the other techniques in the recall
calculation.

ReDeBug, although performing with a slight reduction
in precision compared to VUDDY, is able to identify over
1000 more vulnerable code clones than VUDDY, achiev-
ing 92% recall. ReDeBug is able to detect more vulnerable
code clones because it only considers a localized context
window around the location where the vulnerability was
patched. This allows ReDeBug to detect vulnerable code
clones with a significant amount of modifications provided
that they occur in areas outside of the context window.

The best performing vulnerable code clone detec-
tor was VGRAPH, with an F1 score of 97%. Notably,
VGRAPH is able to achieve this high score while also
returning the most true positives out of all of the tech-
niques, returning over 400 more vulnerable clones than
ReDeBug, and over 2500 more vulnerable clones than

VUDDY. Because of this, VGRAPH achieves the highest
recall, detecting 96% of the ground truth vulnerable code
clones. This improved recall is due to VGRAPHs increased
ability to accurately detect type-3 and type-4 vulnerable
code clones. Because VGRAPH captures key relationships
associated with the contextual code, vulnerable code, and
patched code, and subsequently matches on each indepen-
dently, VGRAPH is able to tolerate more modification than
the comparison works.

7.5. Code Sensitivity Analysis

In order to understand the sensitivity of these tech-
niques to modifications in both vulnerable and patched
code clones, we compute accuracy metrics specifically
for those samples in our dataset which we know have
type-2 through type-4 modifications from the original
vulnerable and patched functions. Thus, we only evaluate
the results from our test set which were scored according
to Condition 1 in the scoring criteria mentioned in Section
7.3, and do not consider the cross-CVE clones. This was
in order to isolate the results to only those clones that we
knew came from the exact same function, but at different
versions in that function’s lifetime. This is why there are
significantly less results in this experiment.

TABLE 5: Modified Code Only Detection Comparison

System TP FP FN P R F1
VUDDY 254 8 496 97 34 50
ReDeBug 464 43 286 91 62 74
VGRAPH 579 40 147 94 77 85

Table 5 shows the results for this subset of the test
data. We can now see where the additional performance
of VGRAPH is coming from. VGRAPH was able to iden-
tify twice as many modified vulnerable code clones as
VUDDY, and over 100 more than ReDeBug. Note that
VGRAPH is able to achieve this improved recall while

Figure 7: Accuracy comparison at different levels of mod-
ification in the code clones.



still remaining very precise at 94%, only slightly less than
VUDDY at 97%, and surpassing ReDeBug at 91%.

To further understand how modifications to the code
affect detection accuracy, we compute accuracy metrics at
explicit levels of modification to the original vulnerable
and patched functions. We use the Linux utility diff to
identify the number of line modifications between the test
function and the original vulnerable or patched functions.
Figure 7 plots the accuracy metrics for each of the tech-
niques ranging from one line modification up to 10 line
modifications.

We can see from these results again that VUDDY is
the most precise of the techniques, however at the expense
of recall. We can see that VGRAPH and ReDeBug are
similar in terms of precision, with VGRAPH only show-
ing a slight advantage across all levels of modification.
However, VGRAPH is consistently the most performant
with regards to the recall rate, having the highest score
at each level of modification. This results in the F1 score
for VGRAPH to outperform both techniques at all levels.

Next, we score the techniques based on code clone
type. We use the following heuristics to label the clone
type of each pair of functions. As all pairs of functions
are the same function, but from different versions of the
code, we consider each pair to be at least a type-4 code
clone, as ultimately the function is the same in the greater
application codebase, and thus likely providing similar
functionality across versions. We differentiate between
type-3 and type-4 clones by thresholding the number of
line modifications. When the number of line modifica-
tions is greater than half of the overall function size, we
consider this to be a type-4 code clone. To differentiate
between type-2 and type-3 code clones, we consider any
function pair where there exists a 1-to-1 mapping of lines
that were modified to be a type-2 clone.

Figure 8 shows the results from this experiment. We
can see that, as expected, type-4 clones are much harder
to detect than type-2 clones. Across all clone types,
VGRAPH again achieves the best F1 score due to an
improved recall rate while maintaining a reasonably high
precision.

7.6. Deep Analysis of Code Clones

In this subsection, we will analyze specific cases
where VGRAPH and the comparison works diverge.
Specifically, we found and evaluated three such cases
where VGRAPH generated a true positive, false positive,
and false negative, which were not shared by the compar-
ison works. Due to space constraints, we discuss the first
two cases below, and the false negative analysis can be
found in Appendix C.

First we will look at a case where VGRAPH accu-
rately detected a vulnerable code clone that was missed
by both VUDDY and ReDeBug. The vulnerability CVE-
2017-13012 is a buffer over-read vulnerability in a packet
processing routine of the common network utlity tcpdump.
This vulnerability was given a score of 9.8 out of a
possible 10 points, indicating that it is a very serious
vulnerability. According to the NVD it affects all versions
of tcpdump prior to version 4.9.2. This vulnerability al-
lows an attacker to read raw memory content from the

Figure 8: Accuracy comparison across code clone types.

victim machine which could contain, among other things,
usernames and plaintext passwords.

Figure 9 shows the same code segment from three
different versions of the affected function. Figure 9a con-
tains the source code as it existed when the vulnerability
was discovered. The key vulnerable code is related to
the call to ip print and EXTRACT 16BITS(&ip->ip len).
As the attacker controls the value of ip->ip len, it is
necessary to check the value of this variable prior to
its usage. The patch to this vulnerability shown in Fig-
ure 9b involved a single line addition in which a call
to ND TCHECK 16BITS(&ip->ip len) was added. Our
test dataset contained a third version of this function,
shown in Figure 9c, which existed 6 months prior to
the discovery of the vulnerability. In the code clone we
can see that the call to ND TCHECK 16BITS function
is omitted, indicating that this code is indeed vulnera-
ble to CVE-2017-13012. Additionally, we see a single
line addition ndo->ndo snaplen=ndo->ndo snapend-bp
which does not affect the core vulnerable code, as it does
not prevent the buffer over-read caused by the call to
EXTRACT 16BITS(&ip->ip len) and ip print.

VGRAPH correctly identified the code clone in Figure
9c because it was able to detect key vulnerable conditions
by matching positive triplets such as:

Source: snapend save=ndo->ndo snapend
Relationship: FLOWS TO
Destination: ip print(ndo,bp,EXTRACT 16BITS(&ip->ip len))

(1)

This triplet represents the condition of the vulnerable code
where the declaration of the snapend save variable flows
directly to the call to the ip print function.

Additionally, key negative triplets indicative of the
patch failed to match, such as:

Source: ND TCHECK 16BITS(&ip->ip len)
Relationship: DOM
Destination: ip print(ndo,bp,EXTRACT 16BITS(&ip->ip len))

(2)

This triplet represents the fact that a call to
ND TCHECK 16BITS must come before the call to



if (ndo->ndo_vflag >= 1 &&
ICMP_ERRTYPE(dp->icmp_type)){

bp += 8;
ND_PRINT((ndo, "\n\t"));
ip = (const struct ip *)bp;
snapend_save = ndo->ndo_snapend;
ip_print(ndo, bp, EXTRACT_16BITS

(&ip->ip_len));
ndo->ndo_snapend = snapend_save;

}

(a) Vulnerable code with no check on
attacker controlled variable ip->ip len.

if (ndo->ndo_vflag >= 1 &&
ICMP_ERRTYPE(dp->icmp_type))
{

bp += 8;
ND_PRINT((ndo, "\n\t"));
ip = (const struct ip *)bp;
snapend_save = ndo->ndo_snapend;
ND_TCHECK_16BITS(&ip->ip_len);
ip_print(ndo, bp, EXTRACT_16BITS

(&ip->ip_len));
ndo->ndo_snapend = snapend_save;

}

(b) Patched code with a single additional
line calling ND TCHECK 16BITS.

if (ndo->ndo_vflag >= 1 &&
ICMP_ERRTYPE(dp->icmp_type))
{

bp += 8;
ND_PRINT((ndo, "\n\t"));
ip = (const struct ip *)bp;
ndo->ndo_snaplen = ndo->

ndo_snapend - bp;
snapend_save = ndo->ndo_snapend;
ip_print(ndo, bp, EXTRACT_16BITS

(&ip->ip_len));
ndo->ndo_snapend = snapend_save;

}

(c) Vulnerable clone with a single line
addition declaring ndo->ndo snaplen.

Figure 9: Three versions of a code segment from the tcpdump function icmp print associated with CVE-2017-13012.
Only VGRAPH detected the vulnerable code clone.

ip print in the patched version. The combination of high
positive triplet score and low negative triplet allowed
VGRAPH to properly label this function as a vulnerable
code clone.

Because of the 8 line-level modifications, the hash
generated by VUDDY for this function would not match
the hash of the original function, which is the reason
why VUDDY did not detect this vulnerable code clone.
ReDeBug would have been able to tolerate most of the
modifications as they existed far away from the specific
code associated with the vulnerability. However, the single
line addition directly around the vulnerable code caused
the ReDeBug sequence-based matching algorithm to fail
and thus not detect this vulnerable code clone.

Next we will look at a case where VGRAPH generated
a false positive not shared by ReDeBug and VUDDY.
Figure 10 shows three versions of the same code seg-
ment from the Qemu program associated with CVE-
2016-4952. The vulnerable code shown in 10a allowed
an attacker to cause denial-of-service due to an out-of-
bounds array access caused by improper error checking.
The patched code shown in 10b involved adding a con-
ditional statement checking the return value of the call
to pvsci ring init data, and returning a failed state when
appropriate. Our test dataset contained a third version of
the function from several months after the vulnerability
was patched, shown in Figure 10c. We can see that the
code was updated to instead check for proper conditions
prior to the function call to pvcci ring init data. This
meant that it was no longer necessary to check the return
value of the call to pvsci ring init data, and thus the
conditional statement added in the original patch was
removed.

Although the version of the code in Figure 10c is
patched to the original vulnerability, VGRAPH incorrectly
classified it as vulnerable to CVE-2016-4952. We can see
that a large part of the code from the original vulnerable
function exists in this patched version. This caused many
positive triplets to match, such as:

Source: pvscsi ring init data(&s->rings, rc)
Relationship: FLOWS TO
Destination: s->rings info valid=TRUE

(3)

This triplet represents the direct control flow from
pvscsi ring init data to the rings info valid=TRUE, and
ultimately the successful return fo the function. Also,

many of the negative triplets which would have indicated
that this function was patched failed to match as well,
such as:

Source: pvscsi ring init data(&s->rings,rc)<0
Relationship: CONTROLS
Destination: return PROCESSING FAILED

(4)

This triplet describes the key control dependence in the
patched code between the return PROCESSING FAILED
statement and the evaluation of the return value from the
call to pvscsi ring init data. This failed to match in the
clone because the conditional statement no longer calls
the pvscsi ring init data function.

There were several key negative triplets that did in fact
match, such as:

Source: Condition
Relationship: CONTROLS
Destination: return PROCESSING FAILED

(5)

This triplet represents a more generic relationship of the
patch where there is a control dependence between the re-
turn PROCESSING FAILED statement and a conditional
statement. Several triplets like this one matched in the
patched code clone, however they were too few to score
higher than the positive triplets. This caused VGRAPH to
incorrectly label this function as vulnerable.

Because the patched code clone involves relatively
significant changes to the code close to the location of
the original patching process, both VUDDY and ReDeBug
properly classify this function as not-vulnerable. It should
be noted here that we could adjust the thresholds for
the matching algorithm such that VGRAPH does prop-
erly classify this function as not vulnerable, although
this would have an overall negative effect on the total
performance of the algorithm, as we would generate many
more false negatives.

7.7. Parameter Sensitivity Analysis

In addition to external factors such as code modi-
fication, we were also interested in understanding how
sensitive our technique was to internal factors such as our
two algorithm hyperparamaters, identified as threshC and
threshP in Algorithm 2. To that end, we used the same
subset of our data as the previous sensitivity experiment,
but this time varied these two hyperparameters from a
threshold of 0 to a threshold of 100, and computed ac-
curacy metrics for each configuration. Figure 11 shows



pvscsi_dbg_dump_tx_rings_config(
rc);

pvscsi_ring_init_data(&s->rings,
rc);

s->rings_info_valid = TRUE;
return PROCESSING_SUCCEEDED;

(a) Vulnerable code with improper error
checking on pvscsi ring init data.

pvscsi_dbg_dump_tx_rings_config(
rc);

if (pvscsi_ring_init_data(&s->
rings, rc) < 0) {

return PROCESSING_FAILED;
}
s->rings_info_valid = TRUE;
return PROCESSING_SUCCEEDED;

(b) Patched code with added conditional
check on pvscsi ring init data

if (!rc->reqRingNumPages
|| rc->reqRingNumPages >

RINGS_MAX_NUM_PAGES
|| !rc->cmpRingNumPages
|| rc->cmpRingNumPages >

RINGS_MAX_NUM_PAGES) {
return PROCESSING_FAILED;

}
pvscsi_dbg_dump_tx_rings_config(

rc);
pvscsi_ring_init_data(&s->rings,

rc);
s->rings_info_valid = TRUE;
return PROCESSING_SUCCEEDED;

(c) Patched clone with a different check
not based on pvscsi ring init data.

Figure 10: Three versions of a code segment from the Qemu function pvscsi on cmd setup rings associated with
CVE-2016-4952. VGRAPH generated a false positive on the patched clone.

surface plots for Precision, Recall, and F1 at each of the
different threshold configurations.

In these plots we can see the obvious performance
drop-offs at the extreme values of the thresholds. At
threshold values of 100% for both PT and CT, our F1
score is near zero. Conversely, at thresholds near 0%, our
Recall is near 100%. However, other than these extreme
drop-offs near the boundary conditions, we can see in all
three plots there is a large flat plane at a high level of
accuracy. This means that there is in fact a wide range
of threshold values that will perform well at this task. In
other words, our algorithm is not overly sensitive to these
tuning parameters.

(a) F1

(b) Precision (c) Recall

Figure 11: Accuracy sensitivity analysis at varying detec-
tion threshold values.

7.8. Runtime Performance Comparison

In this subsection, we evaluate the runtime perfor-
mance of each technique. We compute the amount of
time required, starting from the raw source code, to gen-
erate match results against the full test set. Each process
is run in a single threaded non-parallel implementation.
Note that this is an embarrassingly parallel problem, and

significant speedup for all techniques could be achieved
through parallel implementations.

TABLE 6: Run-time Comparison

System Runtime (s)
RATS 1

FlawFinder 74
VUDDY 1091
ReDeBug 235
VGRAPH 1918

Table 6 shows the results for each technique. We
can see that the pattern based approaches are among the
fastest, yet as seen previously, least accurate techniques.
They require only a single scan of the test set, and imple-
ment relatively simple matching algorithms. ReDeBug is
the next fastest, taking a little under 5 minutes to process
the full test set. ReDeBug also has minimal preprocessing
required, and a simple token-based matching algorithm.
VUDDY takes a little under 20 minutes. The majority
of this time is generating the hash representation of the
functions. After the hash is generated, the actual match-
ing takes only a few seconds through their web service,
which likely involves a simple database lookup. Finally,
VGRAPH is the slowest of the approaches, taking over 30
minutes to generate the results on the test set. The graph
generation process using the Joern tool takes roughly
half of the total runtime, and the matching process the
remainder. This is not unexpected, as the robust source
code representation and approximate matching algorithm
each come at the cost of increased preprocessing and
matching times. However, we believe this to be a reason-
able trade-off considering the improved ability to detect
highly modified vulnerable code clones.

7.9. Using VGRAPH in Practice

In order to show the ability of VGRAPH to work
in a real-world setting, we utilized the VGRAPH system
to identify previously unknown vulnerable code clones
in several popular open source programs. Undocumented
vulnerabilities which are patched in the most up-to-date
version of the code, but affect older versions and are
undocumented as doing so, still pose a significant security
risk. Many vulnerability scanners incorporate vulnerability



TABLE 7: Detected Vulnerabilities in versions of FFMpeg and OpenSSL. All versions listed are not reported by the
NVD as being vulnerable to the specified CVE.

Target Product CVE VGRAPH Repository VGRAPH Function Target Function Modifications
ffmpeg 0.11.5 CVE-2012-2776 libav decode cell data decode cell data 1
ffmpeg 0.11.5 CVE-2012-2791 ffmpeg ivi decode blocks ff ivi decode blocks 6
ffmpeg 0.11.5 CVE-2012-2800 ffmpeg decode band decode band 11
ffmpeg 1.0.10 CVE-2012-2776 libav decode cell data decode cell data 1
ffmpeg 1.0.10 CVE-2012-2800 ffmpeg decode band decode band 8
ffmpeg 2.3.6 CVE-2015-3395 ffmpeg msrle decode pa4 msrle decode pal4 0
openssl 1.0.0 CVE-2018-0739 openssl asn1 item embed d2i ASN1 item ex d2i 103
openssl 1.0.0s CVE-2016-7053 openssl asn1 template ex d2i asn1 template ex d2i 0
openssl 1.0.1a CVE-2018-0739 openssl asn1 template ex d2i asn1 template ex d2 0
openssl 1.0.1 CVE-2018-0739 openssl asn1 template ex d2i asn1 template ex d2 0
openssl 1.0.2s CVE-2018-0739 openssl asn1 template ex d2i asn1 template ex d2 0
openssl 1.0.1u CVE-2018-0739 openssl asn1 template ex d2i asn1 template ex d2 0

reporting information from sources such as the NVD. If
a version of a particular software package is not listed
as vulnerable to a particular CVE, vulnerability scanning
software will likely not alert on those versions, despite
them being vulnerable.

We utilized our VGRAPH database and hunted for vul-
nerabilities in several versions of FFMpeg and OpenSSL.
We identified 10 vulnerabilities that were silently patched
in various versions of the software which were not pre-
viously documented in the NVD. Table 7 lists each vul-
nerability we discovered along with the CVE identified,
and the repository and function name of both the VGRAPH
and the target graph. We also include the number of source
code line differences that were identified in the vulnerable
code clone compared to the original vulnerable function
associated with the CVE.

Here we again see VGRAPHs ability to identify several
identical code clones, as well as many type-3 code clones,
some with significant modification. We see that VGRAPH
was able to identify bugs across different products, in
some cases using VGRAPHs from LibAV to identify vul-
nerable code clones in FFmpeg, and vice versa.

8. Limitations and Future Work

VGRAPH was designed to be a more effective code
similarity based vulnerability detection system. In partic-
ular, our goal was to build a system which was more robust
to modifications in the vulnerable code clones representa-
tive of type-3 clones. However, as this is a code similarity
based technique, VGRAPH still struggles to accurately
detect type-4 code clones. Type-4 code clones could share
little to no code with the original vulnerability, and thus
would be challenging for any code similarity technique
to detect. We believe type-4 code clone detection is bet-
ter suited to more intensive analysis based on symbolic
execution and program testing [15].

This technique is also limited by the number of
VGRAPHs available in the database. We developed a tech-
nique where we mine vulnerable and patched code from
GitHub in order to build our VGRAPH database, however
not all vulnerabilities have a representative sample in
GitHub or equivalent repository. In addition, the current
techniques rely on accurate documentation on behalf of
the code maintainer as to what commits are related to
particular vulnerabilities, which is not always the case.

In the future we plan to expand our automated VGRAPH
generation routines to also mine other data sources such
as the NVD and Bugtraq [1].

The focus of this work was not on scalability or
performance, and there are likely many areas for im-
provement. This problem is embarrassingly parallel, and
a simple multi-threaded implementation could generate
significant speedup. We leave the full scalability analysis
and performance improvements to future work.

9. Conclusion

In this work we introduced a new representation of
vulnerabilities in source code based on code property
triplets of the vulnerable code, the patched code, and the
contextual code. We designed an accurate approximate
matching algorithm which is capable of detecting modified
vulnerable code clones, and differentiating them from their
patched counterparts. We developed the VGRAPH detec-
tion system which mines vulnerable and patched source
code from GitHub and generates our VGRAPH database
which we then use to identify vulnerable code clones.
We built a test dataset containing vulnerable code clones
ranging from identical clones to clones with many mod-
ifications. Compared with state-of-art vulnerable clone
detection techniques we are able to identify significantly
more vulnerable code clones, particularly for those clones
with significant levels of modification, while generating
as few or fewer false positives.
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Appendix A.
Code Property Graph

The Code Property Graph (CPG) is a multigraph
containing the representative nodes and edges from the
Abstract Syntax Tree (AST), Control Flow Graph (CFG),
and Program Dependence Graph (PDG). In this work we
use the open source tool Joern to generate the CPG for
source code. Table 8 and Table 9 show the edge types and
node types, respectively, that are generated by joern and
supported by VGRAPH.

While readers are encouraged to refer to the original
work [25] for the details, here we provide a brief expla-
nation of what information is contained in the CPG and
how it is generated.

The AST serves as the foundation of the CPG, decom-
posing the source code into various language constructs
such as ForStatement, Symbol, CallExpression, etc. These
different types of constructs define the node types of the
CPG and are listed in Table 9. Edges from the AST are
added to the CPG as either an IS AST PARENT edge,
which provides the structure of the various language ele-
ments, or a DECLARES edge, which connects declaration
statements to the declarations they contain.

TABLE 8: Edge Types

IS AST PARENT FLOWS TO DECLARES
DEF USE REACHES

POST DOM DOM CONTROLS

Next, the CFG is used to add control flow information
to the various nodes of the CPG. This comes in the form
of the FLOWS TO edge which connects statement nodes

https://securityfocus.com
https://github.com
http://www.mlsec.org/joern/
https://nvd.nist.gov
https://iotcube.korea.ac.kr/


TABLE 9: Node types

IdentifierDeclStatement ReturnType
EqualityExpression CompoundStatement

DeclStmt PostIncDecOperationExpression
IfStatement IdentifierDecl
Parameter Symbol

ClassDefStatement ReturnStatement
CastTarget CallExpression

BitAndExpression IncDec
AssignmentExpression ExpressionStatement

PrimaryExpression InclusiveOrExpression
WhileStatement IdentifierDeclType
UnaryOperator ForInit
CFGExitNode CFGEntryNode

PtrMemberAccess ConditionalExpression
GotoStatement BreakStatement
ArgumentList MemberAccess

UnaryExpression DoStatement
Callee CastExpression

ParameterType SizeofExpression
Sizeof ShiftExpression

ForStatement ArrayIndexing
ElseStatement UnaryOperationExpression

Expression InitializerList
MultiplicativeExpression ContinueStatement

Statement Argument
OrExpression AndExpression

Identifier CFGErrorNode
FunctionDef SizeofOperand

AdditiveExpression SwitchStatement
Decl Label

Condition InfiniteForNode
ClassDef ExclusiveOrExpression

RelationalExpression ParameterList

to their successors, providing an overall ordering and flow
to the nodes of the graph.

Finally, the PDG is used to provide a significant
amount of information pertaining to control dependence
and data dependence between the elements in the CPG.
Control dependence is a relationship between two state-
ments whereb one statement directly affects whether or
not the other will be executed. Data dependence is a rela-
tionship between two statements whereby one statement
has a dependence on a data element defined by another.
These two relationships are characterized by several dif-
ferent edge types in the CPG. The DEF and USE edges
connect statements to the nodes which they define and
use respectively. This allows for a reachability analysis to
be performed, which results in the REACHES edge type
which connects the statements that are reached by data
flow. In other words, this edge will connect the statements
where the definition of a particular data element reaches
another statement, and thus the latter is data dependent
on the former. Similarly, the CONTROLS edge connects
the statements which are control dependent on one an-
other, meaning one statement directly controls whether or
not the other will be executed. In both of the previous
edge types, it is important to be able to determine all
statements that must occur prior to a particular statement
being reached. This is determined by building dominator
and post-dominator trees inside the CPG, represented by
the edges DOM and POST DOM. These edges describe
the dominance relationships between nodes of the graph
which provide insight into which nodes must occur prior
or subsequent to others.

Appendix B.
GitHub Mining

We adopt a method very similar to [14] and mine
samples of source code from the popular open-source
software repository GitHub [2]. We identify code changes
related to security vulnerabilities and download the code
from the functions in their vulnerable state, as well as their
patched state. Each step in the process is outlined below,
accompanied by the git commands utilized to perform the
actions.

Commit Log Parsing . In order to identify source
code relevant to a specific vulnerability, we utilize the
log messages associated with the commits to a GitHub
repository. A commit log is the message associated with
some modification to the source code. It is intended to
contain information relevant to the purpose for the code
change. We identify the commits containing any reference
to the string ”CVE-20” as being commits related to the
referenced vulnerability. This is accomplished with the
following git command:

git log --grep="CVE-20"

File and Function Parsing. Each commit identified in
the previous step uses a unique hash value as a commit
identifier. For each commit, we use a second git command
to show the details of that commit, which will include the
files, functions, and locations of source code additions,
deletions, and modifications. If the modifications happen
inside a function of a C/C++ source code file, the hash
value for both the original file and the modified file are
identified so that we can use them to download the files
in the next step. In addition, we parse out the modified
function names so that we know what functions inside
the source code files are of interest. The command below
provides such details:

git show <commit_ID>

Source Code Download. At this point we have the hash
ID for a source code file which contains our functions
of interest for both the original vulnerable version, as
well as the patched version. We can now use a final git
command to download the source code files for both the
vulnerable and patched version. We are then able to parse
out the specific functions of interest which were explicitly
modified during the transition from vulnerable to patched.
The command below will show the contents of the source
code file at a specific version of the code.

git show <file_ID>

The result is a set of source code function pairs,
vulnerable and patched, each associated with a particular
CVE which we can use to build our VGRAPH Database.

Appendix C.
False Negative Evaluation

Figure 12 shows a case where VGRAPH generated a
false negative not shared by ReDeBug. The Figure shows
three versions of the x509 decode time function found
in the Linux Kernel. A vulnerability was found in the
decode logic that allowed for a buffer over-read in the



if (*p != ’Z’)
goto unsupported_time;

mon_len = month_lengths[mon];
...
if (year < 1970 ||

mon < 1 ||
mon > 12 ||
day < 1 ||
day>mon_len ||
hour > 23 ||
min > 59 ||
sec > 59)

goto invalid_time;

(a) Vulnerable code with an unsafe ac-
cess to the month lengths array.

if (*p != ’Z’)
goto unsupported_time;

if (year < 1970 ||
mon < 1 || mon > 12)

goto invalid_time;
mon_len = month_lengths[mon - 1];
...
if (day < 1 ||

day > mon_len ||
hour > 23 ||
min > 59 ||
sec > 59)

goto invalid_time;

(b) Patched code with conditions re-
ordered to check value of mon prior to
usage.

if (*p != ’Z’)
goto unsupported_time;

mon_len = month_lengths[mon];
...
if (year < 1970 ||

mon < 1 ||
mon > 12 ||
day < 1 ||
day > mon_len ||
hour < 0 ||
hour > 23 ||
min < 0 ||
min > 59 ||
sec < 0 ||
sec > 59)

goto invalid_time;

(c) Vulnerable clone with a different
conditional statement.

Figure 12: Three versions of a code segment from the Linux Kernel function x509 decode time associated with
CVE-2015-5327.

month lengths array. The patch is shown in Figure 12b,
which was to move some of the validation logic prior
to the array access, as well as offsetting the access by 1.
Figure 12c shows a code clone of the vulnerable code from
4 months prior to the vulnerability being discovered. We
can see in this version there are a few modifications to the
lower conditional statement, however the key unchecked
array access to months lengths[mon] was performed, in-
dicating this function is still vulnerable.

The main reason VGRAPH failed to detect this vul-
nerable code clone has to do with the fact that during
the original patch process, code was removed from the
large compound conditional statement at the bottom of
the code excerpt, and moved to before the access of the
month lengths array. Because code was modified in the
lower conditional statement, positive triplets were associ-
ated with the changes in the large conditional statement.
Additionally, the way the CPG is generated for this func-
tion, the large compound conditional statement was treated
as a single entity, rather than breaking it up into it’s many
constituent parts. This means there existed positive triplets
such as:

Source: mon len=month lengths[mon]
Relationship: REACHES
Destination: year<1970||mon<1||mon>12||day<1||
day>mon len||hour>23||min>59||sec>59

(6)

Source: year<1970||mon<1||mon>12||day<1||
day>mon len||hour>23||min>59||sec>59
Relationship: CONTROLS
Destination: goto invalid time

(7)

The first triplet describes the data dependence between
the compound conditional statement and the declaration
of mon len, and the second describes the control depen-
dence between the conditional statement and the goto in-
valid time statement. Both of these triplets failed to match
in the vulnerable code clone, due to the fact that there was
a modification to the lower conditional statement. If the
compound conditional statement were to be expanded into
it’s constituent parts, VGRAPH would have likely been
able to detect this as a vulnerable code clone, as many
of the components are the same in the vulnerable code
clone.

On the other hand, ReDeBug was able to properly
classify this vulnerable code clone since the modifications

to the function were far enough away from the original
vulnerable code. VUDDY, however, also failed to detect
this function as vulnerable, as the function had changes
from the original vulnerable code and the hashes would
not match.
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