
Understanding Reliability Implication of Hardware Error in
Virtualization Infrastructure

Xin Xu H. Howie Huang
George Washington University

Abstract

Hardware errors are no longer the exceptions in modern
cloud data centers. Although virtualization provides soft-
ware failure isolation across different virtual machines
(VM), the virtualization infrastructure including the hy-
pervisor and privileged VMs remains vulnerable to hard-
ware errors. Making matters worse is that such errors
are unlikely bounded by virtualization boundary and may
lead to loss of work in multiple guest VMs due to unex-
pected and/or mishandled failures. To understand relia-
bility implication of hardware errors in virtualized sys-
tems, in this paper we develop a simulation-based frame-
work that enables a comprehensive fault injection study
on the hypervisor with a wide range of configurations.
Our analysis shows that, in current systems, many hard-
ware errors can propagate through various paths for an
extended time before an observed failure (e.g., whole
system crash). We further discuss the challenges of de-
signing error tolerance techniques for the hypervisor.

1 Introduction

In the era of warehouse-scale computing, a typical data
center consists of hundreds of thousands of servers with
multicore processors, multi-level caches, and a large
amount of main memory. All these components - logi-
cal circuits in CPU, memory cells in cache and memory
- are not immune to soft errors [1, 2]. Technology scal-
ing already points to a projection of escalating soft er-
ror rates in future chips [3], which combined with high
server count would result in shorter MTBF (mean time
between failures) and require system-level techniques on
fault prevention, detection, and recovery.

On the other hand, virtualization has been widely
adopted in large data centers to increase overall resource
utilization. In a typical environment shown in Figure 1, a
hypervisor provides an abstraction layer on top of hard-
ware resources, working with privileged VM (e.g., Dom0
in Xen) to serve the requests from guest VMs (e.g.,
DomU). Note that the abstraction layer can consume a
considerable amount of hardware resources (e.g., CPU

!"#$%&%

!"#$%&'(&

)**&)**&)**&
+#,-#.&

/012#-3&

4,56#,$&

7&

+#,-#.&

8,9-%#-3&

4,56#,$&

7&

+#,-#.&

8,9-%#-3&

4,56#,$&

7&

+#,-#.&

8,9-%#-3&

4,56#,$&

7&

!"#$%&'(& !"#$%&'(&

 !%
'()$#*+,"#%

-./01"#$%)#"1$,,"#%

!"#$%2% !"#$%3% !"#$%4%

:9-%,9.&

'(&

;9*&

8"-1<9-$&

=->#1<9-&

(0*&

=->#1<9-&?&

=->#1<9-&-&

7

@,9A.#,&

)-0.BC#,&

=->#1%9,&

:9..#1%9,&

2
4

5
6

3

Figure 1: Virtualization architecture on a multicore processor
and the proposed error injection framework. A soft error ef-
fecting the hypervisor instructions running on core 1 can be
propagated on the same core (path 1 and 2), to other hypervisor
instructions on core 3 (path 3), to the control VM instructions
in core 0 (path 4), or to one of guest VMs in core 2 (path 5).

cycles). Virtualized servers are soon expected to host
hundreds of VMs, and dedicated I/O cores will be re-
quired for data-intensive VMs [4], where it is not uncom-
mon to see significant amount (e.g., 50%) of CPU spent
for the hypervisor and Dom0, much higher than that of
traditional non-virtualized OS (e.g., 2-10%) [5].

Unfortunately, while the failure of a guest VM is un-
likely to affect other VMs, a hardware error induced
failure in the virtualization infrastructure (the hypervisor
and privileged VMs) may propagate beyond the system
boundary and result in multiple VM failures, or worse,
the whole-system failure. The goal of this work is to
understand the characteristics of hardware error in virtu-
alized systems through a comprehensive set of microar-
chitectural fault injections. To this end, we design a
simulation-based fault injection framework as shown in
Figure 1 and perform over 46,000 injections to charac-
terize the reliability of the hypervisor and overall virtual
systems against soft errors. Our fault injection tool is
designed as a module of a full system simulator, requir-
ing minimum modifications to the original system. It
can inject soft errors into any function of the target hy-
pervisor, removing the constraints of existing software
tools [6] [7] [8].

The main contributions of our work are two-fold:
First, our framework enables a comprehensive fault in-
jection study on the hypervisor with a wide range of

1

configurations, including para-virtualization, full virtu-
alization, and VMs running on separate or shared cores.
Our fault injection framework targets the most frequently
used hypervisor functions that greatly reduces the injec-
tion scope while discovering 19% more cases than ran-
dom fault injection, and also reveals some critical cases
that would otherwise have been missed.

Second, our analysis leads to several key observa-
tions - nearly half of injected errors result in system
wide crashes including all VMs running on the machine.
While some of the errors lead to quick crashes, they
can also propagate to the control and guest VMs, which
makes them hard to detect and protect against. We study
in depth a number of critical error propagation paths.

2 Related Work
Current hardware and software methods cannot fully ad-
dress the challenge of error propagation in virtualized
systems. For example, hardware dual modular redun-
dancy (DMR) has long been proposed for fault detection
[9, 10], and hardware signature based methods [11, 12]
have also been developed to check the correctness of
various architectural states. However, few commodity
servers have completely adopted these techniques with
exceptions like IBM S/390 [13] and HP NonStop sys-
tems [14], although modern processors (e.g., Intel Xeon)
provide some reliability features such as ECC protec-
tion for cache and memory which to some extent may
mitigate the impact of memory errors. On the other
hand, compiler based RMT such as SRMT [15] and
DAFT [5] requires no hardware modification, but comes
with high performance overhead (38% in DAFT and 19%
in SRMT). Although software process-level redundancy
[16, 17] may have relatively lower performance over-
head, this technique is difficult to adopt in OS kernels and
hypervisors. Software symptom based detection method
monitors abnormal program behaviors for low cost error
detection [3, 18, 19], which leverages the symptoms that
are already built-in OS or hardware, such as exceptions
or the event of branch miss predictions. In this work, we
discuss the effectiveness of current approaches in the vir-
tualized environment. We hope that this study will help
researchers to better understand reliability implications
of hardware error with respect to the hypervisor and de-
sign fault tolerance techniques accordingly.

3 Framework
The fault injection framework contains four components:
1) a profiler is used to profile the hypervisor and identify
the most frequently used functions (i.e., top functions)
as injection candidates; 2) an analyzer is used to analyze
the top functions and generate an injection map; 3) an
injector is used to interact with the simulator and con-
duct fault injection experiments; 4) a collector is used to

collect the log and system states from a simulated serial
port for in-depth error analysis. Although we focus on
Xen in this work, our approach is largely applicable to
other hypervisors such as KVM and VirtualBox.

Hypervisor Profiling. We profile the Xen 4.1.2 hy-
pervisor using OProfile and UnixBench benchmark. We
measure the average CPU utilization of different hyper-
visor functions, and identify 69 functions that cover total
90% of the CPU time. We classify these functions into
four subsystems according to their functionalities.

CPU Management subsystem (CM) provides the in-
terfaces for VMs to access physical CPU resources, in-
cluding emulating architecture specific instructions and
privileged instructions, scheduling virtual CPU (VCPU),
and modifying control registers. Taking VCPU schedul-
ing as an example, a (credit-based) scheduler will
schedule each VCPU to run on physical CPUs exclu-
sively for a certain period of time, where the function
csched schedule is used. In total, 20 functions are iden-
tified in this category.

Memory Management subsystem (MM) manages
shared DRAM and ensures the isolation of each domain.
The Xen hypervisor provides the pseudo-physical mem-
ory as an abstraction layer to the guest VMs. For exam-
ple, the function page get owner and reference returns
the domain which owns the memory page and the refer-
ence count of this page. In total, 28 functions are identi-
fied in this category.

Hypercall and Control management subsystem (HC)
contains low-level functions that handle system calls or
hypercalls. A hypercall page, essentially a memory page,
is provided to each guest VM when it is started. When a
system call is required in a guest VM, it will directly call
the address within the hypercall page to initiate the hy-
percall. For example, the function syscall enter is the
low-level Xen routine to replace the Linux call. This
function saves the current context and passes the argu-
ments to the hypercall handler in the hypervisor. In total,
13 functions are identified in this category.

Domain Management subsystem (DM) provides a set
of functions to manage VM states, for example, the func-
tion update vcpu system time is used to update the sys-
tem time of a guest VM. In total, 8 functions are identi-
fied in this category.

Analysis of Instruction Traces. In this phase, we an-
alyze the instructions of the most frequently used func-
tions, identify relevant registers as injection candidates,
and generate an injection map. Each entry in this map
consists of the target register and the timestamp for injec-
tion. Examples of entries in the injection map are shown
in Table 1. The selection of target registers varies de-
pending on instruction types. 1) For instructions without
registers, we will skip all except branch instructions. If
an error occurs in the address of the branch target, an

2

incorrect instruction will be loaded. 2) For instructions
with one register, this register will be selected as the in-
jection candidate. 3) For the instructions with two regis-
ters, the source register (src) and the source-destination
register (src-dst), we choose to inject the faults into src
instead of src-dst to avoid the possibility of overwritten
by the output of the calculation.

Table 1. Generating an Injection Map Using the Analyzer

No Instruction (src, dst) Injection Candidate
1 add rbx, rax rbx
2 sub 0x1, 0x10(rax) rax
3 call 0xffffffff82000000 rip

Profiling Based Fault Injections. We choose single-
bit flip soft errors in architecture level registers in CPUs,
including general purpose register and the instruction
pointer. Note that our method covers other components
in processors, such as ROB and branch predictors, as
well as in cache lines, since these non-masked faults can
be simulated with errors in source registers. We leave ad-
vanced memory soft errors and other types of hardware
errors as future work.

Implementation. We develop our fault injection
framework as the modules that run in a full system sim-
ulator Simics [20]. The simulated system is configured
with a four-core 64-bit processor, 2GB memory and a
60GB disk. The system is equipped with Xen 4.1.2 and
Debian 6 with Linux kernel 2.6.32. We use one Dom0
running on one VCPU and two DomUs, each of which
is assigned by one VCPU, 512MB memory and a 10GB
virtual disk. The three VCPUs are attached to three phys-
ical processors respectively. This way, the activities on
each domain will be limited to its own physical proces-
sor. We select a wide range of benchmarks from PAR-
SEC [21], SPEC2006 [22] and Postmark [23] to exercise
I/O (e.g., postmark, freqmine, x264), CPU (e.g., canneal,
bzip2), and memory (e.g., mcf) resources. When con-
ducting fault injections, the same benchmarks are run-
ning in two DomUs in parallel.

4 Results and Analysis
We conduct a total of 25,000 fault injections across six
benchmarks with para-virtualization, targeting the most
frequently-used functions (top function injection). For
comparison, we conduct another 12,000 random injec-
tions. To test different VM configurations, we also con-
duct 3,000 injections where VMs are located in a shared
core, and 6,000 injections with full virtualization.

Analyzing Crash Type. Examining the error propa-
gation behaviors in terms of crash types is critical, as the
detection and recovery mechanisms may vary depend-
ing on the crash type. In this paper, we classify the re-
sults into four types: 1) System crash, which represents a
crash or hang in the host system. This is the worst case,
since the hypervisor, the control VM, and all guest VMs

0%#
20%#
40%#
60%#
80%#

100%#

ps
tm

k#
fr
eq

#
x2
64
#

AV
G#

ps
tm

k#
fr
eq

#
x2
64
#

m
cf
#

bz
ip
2#

ca
nn

#
AV

G#

ps
tm

k#
fr
eq

#
x2
64
#

m
cf
#

bz
ip
2#

ca
nn

#
AV

G#

Random#(Para)# .# TopDFuncGon#(Para)# .# Full#VirtualizaGon#Pe
rc
en

ta
ge
s#o

f#I
nj
ec
Go

ns
�

System#Crash# AllDVMs#Crash# OneDVM#crash# Masked#

Figure 2: Comparison of Para-Virtualization (Random and
Top-Function) and Full Virtualization Injections

are affected. 2) One-VM crash, where a failure leads to
a crash in one DomU, but the Dom0 and other DomUs
are not affected; 3) All-VMs crash, where a failure causes
the crashes of all the DomUs. In this case, the hypervi-
sor and Dom0 are still running, and no system reboot is
initiated. 4) Masked, where the injected fault does not
result in a visible crash in Dom0 or DomUs. Such fault
could still lead to silent data corruption which we will
investigate as part of future work.

As shown in Figure 2, our top-function injections pro-
vide a large number of crash cases at 53.3% on average,
which is 19% higher than the random injection (34.1%).
In total, 304 one-VM crash cases are discovered in the
top-function injections. Comparatively, only two such
cases in total are found in random injections. Addition-
ally, two All-VMs crash cases are identified in the top-
function injection results, which are not discovered in the
random injection, and turn out to be critical for under-
standing the error propagation to be discussed shortly.
Furthermore, our framework is able to deliver a more
consistent result - less than 5% discrepancy for crash
cases across different benchmarks.

Full virtualization handles the VM transitions with
hardware support such as VMX (Intel) or SVM (AMD)
instructions (e.g., vmread and vmwrite). Therefore, in-
stead of using top functions, we intentionally target these
instructions as well as normal instructions. As one can
see from Figure 2, the errors injected in full virtualization
produce similar results of different crash cases across
various benchmarks. In addition, we conduct 3,000 in-
jections by pinning all domains to a shared core, where
there are an average of 45% cases as system crash, which
are also close to previous configurations.

Observation #1: Soft errors in the hypervisor may
cause various types of failures - more than half of the
errors can lead to system-wide crashes that will affect all
the VMs running on the shared host, and soft errors may
even cause all VM failures without triggering system-
wide reboot.

Analyzing Fault Location that is defined as the func-
tion where a fault is injected. Recall that we classify the
Xen functions into four subsystems and here we aim to
understand the reliability characteristics of each subsys-
tem. In Figure 3, the left side shows the percentages of

3

0%#

25%#

50%#

75%#

100%#

CM# MM# DM# HC# CM# MM# DM# HC#
All#Cases# .# Crash#Cases#

Pe
rc
en

ta
ge
#o
f#I
nj
ec
=o

ns
�

System#Crash# AllAVMs#crash# OneAVM#crash# Masked#

All#VMs'Crash�

Figure 3: Results by Fault Locations

all results, and the right side filters out the masked cases
and shows the percentages of only crash cases.

Observation #2: All Xen subsystems are vulnera-
ble to soft errors, as more than 40% of error injec-
tions leads to crashes. The CM (CPU management)
and HC (hypercall/control) subsystems have the highest
percentages (over 58%) of crash cases, while the MM
(memory management) with a relatively lower percent-
age of 44.5%. Interestingly, the DM (domain manage-
ment) subsystem accounts for more one-VM and All-
VMs crash cases. Nevertheless, this result shows that
no one subsystem is less critical than others, thus a good
fault tolerance mechanism for a hypervisor should pro-
vide a complete coverage over critical kernel functions.

Analyzing Crash Latency that is calculated as the
number of instructions when a fault is activated and a
fatal exception is captured by the system. For multicore
processors, only the instructions on the core where the
fault is injected are calculated. It is possible that several
exceptions are triggered before system crash. Here we
calculate the latency till the first exception is triggered (a
conservative estimation). Figure 4 shows the cumulative
distribution (CDF) of the latency of crash cases.

Observation #3: Most crash cases have relatively
short latency (<=100 instructions), 88% for sys-
tem crash and 60% for one-VM crash cases, respec-
tively. Observation #4: There still exist a considerable
amount of the crashes with long latency (>10,000 in-
structions), about 5% in both cases. These errors that
are likely to spread to DomU/Dom0 should be effectively
detected as early as possible for successful recovery.

Analysis of Failure Location that is the domain
where a fault is manifested to a fatal error symptom, such
as a fatal exception or an infinite loop. When a failure
occurs, the error handling routines in the hypervisor and
Linux kernel may print out the debug message that we
examine to pinpoint the failure location. This helps us
evaluate the effectiveness of the built-in fault detection
mechanisms in Xen and Linux. In Figure 1, we have
identified five possible error propagation paths, leading
to five failure locations: 1) Immediate (Imm); 2) Same
hypervisor function; 3) Another hypervisor function; 4)
Dom0 and 5) DomU, where the faults propagate to the
Dom0 and DomU kernel respectively. In general, Dom0

0%#

20%#

40%#

60%#

80%#

100%#

Pe
rc
en

ta
ge
#o
f#C

ra
sh
#C
as
es
�

Number#of#Instruc;ons�

System#Crash#

VM#Crash#

100� 101� 102� 103� 104� 105� 106�

Figure 4: CDF of Crash Latency

and DomU failures usually have much longer latency.
Observation #5: A fault that results in a system

crash may become visible quickly for half of the in-
jections, and propagate down the execution path for
the rest. In the first case, because 50% of the failures
are detected quickly, chances are that system states are
intact and the system recovery is possible. As shown in
Figure 5, most (70%) of the errors in hypercall instruc-
tions fall into this category. On the other hand, on av-
erage 51.2% system crashes involve error propagation to
the same or different hypervisor function.

0%#

20%#

40%#

60%#

80%#

100%#

CM# MM# DM# HC# Pstmk# mcf# bzip2# cann# freq# x264# AVG#
Fault#LocaFons# .# Benchmarks#

Pe
rc
en

ta
ge
#o
f#I
nj
ec
Fo

ns
� Imm# Same#FuncFon# Other#FuncFon# Dom0#

Figure 5: Failure Locations For System Crash

Observation #6: Error propagation is highly likely
in the memory management subsystem, followed by
the CPU and domain management subsystem. In
2.5% of the cases, a failure happens in the Dom0, which
also explains the previous observation on long crash la-
tency, and indicates the difficulty of system recovery
in events of corrupted states in either the hypervisor
or Dom0. The distributions of failure locations among
benchmarks are relatively consistent with small variance.

Analysis of Error Propagation. Here we analyze
crash cases and present eight representative cases with
examples shown in Table 2.

Corruption in registers (example #1). In this exam-
ple, the injected fault changes the register rbx to an in-
valid address. As a result, the fatal page fault exception
is triggered when this address is being used in current
instruction. Since the crash is captured right after the
injection, only the register that carries the fault is cor-
rupted. If carefully managed, one may be able to recover
the states of the hypervisor, as well as those of the Dom0
and DomUs. All Imm failures belong to this category.

Corruption in local variable (#2). In this case, the
fault propagates from a register to the address of the local
variable in the hypervisor function. The general protec-
tion exception is triggered at the first time this variable is

4

Table 2. Examples of Error Propagation

No Instruction Trace Error Propagation Crash
Type

Failure
Location

Latency Symptom Corrupted
States

1 test 0x1, 0x16b0(rbx) rbx is changed to an invalid address System
Crash

Imm 1 XEN-FPF Register

2 push rbx
...
pop rbx
mov (rbx), rcx

rbx is not used immediately after injec-
tion, and the crash occurs when rbx is
used as an address

System
Crash

Same
Function

39 XEN-GPF Local
variable

3 sub 0xb8,rsp
...
ret
mov 0x98(rax), rbx

The stack pointer is changed to a valid
but incorrect value. After the function
returns, the caller function accesses the
inaccessible stack

System
Crash

Other
Function

58 XEN-GPF Function stack

4 cmp 0x1fff,rsi
...
je 0xffff82c4801034f9
mov
sysret
jb 0xffff82c480103c5e

The branch destination is altered. The
Dom0 stacks and hypervisor data are
corrupted. After the context is switched
back to Dom0, incorrect functions are
loaded.

System
Crash

Dom0 60 KBUG-ATM Hypercall
return

5 mov rax,rcx
rep mov
...
(Dom0 accesses shared
memory)

The loop count (dcx) of repeat mov in-
structions is altered, and incorrect num-
ber of strings are moved to the extra seg-
ment. When Dom0 CPU tries to access
the segment, the failure occurs.

System
Crash

Dom0 791,986 SS Shared
memory

6 mov rax ,0x8(rdx)
sysret
mov rax, rcx

rax holds a valid but incorrect return
address, and the exception is triggered
when the context is switched back to
Dom0. Hypervisor data are safe.

System
Crash

Dom0 211,178 XEN-FGM Dom0 data

7 lea rdi, 8(rbp)
je 0xffff82c48100e23b
data corruptions
sysret /*to DomU*/
iret /*to application*/

The address of a variable is changed,
followed by wrong branch destination.
Subsequently application data are cor-
rupted. After application context is load,
the failure is triggered

One-VM
Crash

DomU 5,377 UPF Hypercall data
DomU data
Application
data

8 call 0xffff82c480103be0
loopne 0xffff82c40017ed7e
continue looping

The fault changes the control path and
the CPU goes to an infinite loop.

All-VMs
Crash

Other
Function

N/A Unknown Unknown

used. The propagation latency is 39 instructions, and no
other states are affected.

Corruption in function stack (#3). Here the stack
pointer is changed by the fault to a valid but incorrect
address. Although this does not affect the data in cur-
rent function, the caller function’s stack and data are cor-
rupted. An exception is triggered after function return.

The above three examples cause the failures that have
happened within the hypervisor. For the following exam-
ples (with the exception of the last one, All-VMs crash),
although the errors are originated in the hypervisor, the
failures happen in either the Dom0 or a DomU.

Corruption in the hypercall (#4). Here the fault
changes the hypervisor data, and subsequently alters the
control path. As a result, the hypervisor exits to the
Dom0 earlier than the correct instruction trace. There-
fore, there are multiple data corruptions in the hypervisor
data including the return values of the hypercall. But the
hypervisor returns to the Dom0 in a short period of time
(60 instructions), and the Dom0 states in the hypervisor
stack are not corrupted. A crash will likely happen when
the Dom0 uses the incorrect return values.

Corruption in the shared memory (#5). In this case,
the hypervisor is serving a request from a DomU (the hy-
pervisor request handler is running on the same physical
CPU as the DomU). The fault changes the value of the
string length, resulting in additional string mov opera-
tions. The repeated mov will change the stacks, resulting

in corrupted values in shared memory data. During this
time, the Dom0 initiates another request to the hypervi-
sor to access shared memory data, and the fault in stack
segments is reported by the Dom0 kernel. Here the fault
propagates across both domains and CPUs.

Corruption in Dom0 states (#6). In this example,
when the Dom0 issues a hypercall, the hypervisor will
save the states of the Dom0 to its stack and restore after
the hypercall is served. In this case, the fault is injected
into the instruction that operates on the stack containing
the Dom0 states. Specifically, it alters the return address
of the Dom0. Therefore, after the system returns to the
Dom0 context, the invalid instruction address will trigger
an exception. We find that although this case has a long
latency (over 200K instructions), the return address is not
used for address or computation. Therefore the hypervi-
sor state is correct and only Dom0 states are corrupted.

Corruption in application (#7). Here the fault
changes the branch outcome and corrupts the data in the
hypercall. When the context is switched back to the ap-
plication, the incorrect return address is loaded and trig-
gers the failure in the DomU. The failure is isolated in
the DomU and will cause this DomU to crash. This case
is different from the previous case #6 in that the hyper-
call data are corrupted and the error propagates through
hypercall and DomU kernel to the application. But the
crash is contained within the DomU.

All-VMs crash (#8). There are two such cases where

5

Table 3. Summary of representative fault detection techniques
Fault Detection Schemes Failure Cases

Approach Technique Perf COTS HW Imm Same Another Dom0 DomU
Overhead Support Function Function

Hardware

AR-SMT [24] 16.7% No 4 4 4 N/A N/A
SRT [9] unreported No 4 4 4 N/A N/A
CRT [10] unreported No 4 4 4 N/A N/A
DDFV [11] 1.8% No * * * * *
Argus [12] 4% No * * * * *

Compiler SRMT [15] 19% N/A * * * ? ?
DAFT [5] 38% N/A * * * ? ?

Software PLR [16] 26% N/A 8 8 8 8 8
RAFT [17] 3.54% N/A 8 8 8 8 8

Cross Layer
Restore [18] 5% Yes 4 + + − −
SWAT [19] 5% Yes 4 + + − −
Shoestring [3] 15.8% Yes 4 + + − −

4- Detectable; 8- Undetectable; * - Requires extensive modifications; + - Detectable and recoverable for some cases; − - De-
tectable and not recoverable; ? - not clear; N/A - not applicable

the fault causes the failure of both DomUs, while the
Dom0 seems to be functioning. The reason is that a fault
alters the control flow in the hypercall, and the hypervi-
sor eventually goes to an infinite loop.

5 Discussions
To summarize, we have identified several important er-
ror propagation behaviors: 1) an error may propagate
from one CPU to another CPU through shared data struc-
tures in the hypervisor; 2) an error may propagate from
the hypervisor to the Dom0/DomU kernel, and poten-
tially to the applications; 3) an error may propagate to
the Dom0/DomU through hypercall return values, shared
memory, and stacks that hold VM states. In Table 3, we
analyze a number of representative methods in terms of
applicability to a hypervisor and effectiveness in the vir-
tualized environment. Despite significant extensions re-
quired, we believe that symptom-based error detection
methods are promising as they require no special hard-
ware support and can provide spatial or temporal redun-
dancy within a hypervisor.

As part of future work, we will extend the fault
injection framework to investigate silent data corrup-
tion [25–27] that also has a significant impact on the re-
liability of virtualized systems. In addition, there is a
clear need for an error-resilient hypervisor that provides
strong protection for kernel functions and prevents error
propagation across VMs, while incurring minimal per-
formance overhead. We are developing a prototype based
on the observations from this study.

6 Acknowledgment
We thank the HotDep reviewers and Flavio Junqueira for
their helpful suggestions. This work is supported by Na-
tional Science Foundation grant CNS-1350766.

References
[1] Tezzaron, “Soft errors in electronic memory-a white paper,”

2004.
[2] Biswas, Arijit et al., “Explaining cache ser anomaly using due avf

measurement,” in HPCA 2010.

[3] Feng, Shuguang et al., “Shoestring: probabilistic soft error relia-
bility on the cheap,” in ASPLOS 2010.

[4] Landau, Alex et al., “Splitx: split guest/hypervisor execution on
multi-core,” in WIOV 2011.

[5] Zhang, Yun et al., “Daft: decoupled acyclic fault tolerance,” in
PACT 2010.

[6] Reddi, Vijay Janapa et al., “Pin: A binary instrumentation tool for
computer architecture research and education,” in WCAE 2004.

[7] Gu, Weining et al., “Characterization of linux kernel behavior
under errors,” in DSN 2003.

[8] Hsu, Israel et al., “Using virtualization to validate fault-tolerant
distributed systems,” in PDCS 2010.

[9] Reinhardt, Steven K. et al., “Transient fault detection via simul-
taneous multithreading,” in ISCA 2000.

[10] Gomaa, Mohamed et al., “Transient-fault recovery for chip mul-
tiprocessors,” in ISCA 2003.

[11] Meixner, Albert. et al., “Error detection using dynamic dataflow
verification,” in PACT 2007.

[12] Meixner, Albert et al., “Argus: Low-Cost, Comprehensive Error
Detection in Simple Cores,” in MICRO 2007.

[13] Spainhower, Lisa et al., “IBM S/390 parallel enterprise server
G5 fault tolerance: a historical perspective,” IBM J. Res. Dev.,
vol. 43, pp. 863–873, Sep. 1999.

[14] Bernick, David et al., “Nonstop advanced architecture,” in DSN
2005.

[15] Wang, Cheng et al., “Compiler-managed software-based redun-
dant multi-threading for transient fault detection,” in CGO 2007.

[16] Shye, Alex et al., “Using process-level redundancy to exploit
multiple cores for transient fault tolerance,” in DSN 2007.

[17] Zhang, Yun et al., “Runtime asynchronous fault tolerance via
speculation,” in CGO 2012.

[18] Nicholas J. Wang and Sanjay J. Patel, “Restore: Symptom based
soft error detection in microprocessors,” in DSN 2005.

[19] Li, Man-Lap et al., “Understanding the propagation of hard er-
rors to software and implications for resilient system design,” in
ASPLOS 2008.

[20] Simics Full System Simulator, http://www.simics.net.
[21] Bienia, Christian, “Benchmarking modern multiprocessors,”

Ph.D. dissertation, Princeton University, January 2011.
[22] Standard Performance Evaluation Corporation, SPEC CPU2006,

http://www.spec.org/cpu2006/.
[23] Katcher, Jeffrey , “PostMark: a new file system benchmark,” Net-

work Appliance, Tech. Rep. TR3022, Oct. 1997.
[24] Rotenberg, Eric., “AR-SMT: a microarchitectural approach to

fault tolerance in microprocessors,” in FTCS 1999.
[25] Reis, George et al., “Swift: Software implemented fault toler-

ance,” in CGO 2005.
[26] Wappler, Ute et al., “Software encoded processing: Building de-

pendable systems with commodity hardware,” in SAFECOMP
2007.

[27] Correia, Miguel et al., “Practical hardening of crash-tolerant sys-
tems,” in USENIX ATC 2012.

6

