
TriX: Triangle Counting at Extreme Scale
Yang Hu∗, Pradeep Kumar∗, Guy Swope†, and H. Howie Huang∗

∗The George Washington University
†Raytheon Company

Abstract—Triangle counting is widely used in many applica-
tions including spam detection, link recommendation, and social
network analysis. The DARPA Graph Challenge seeks a scalable
solution for triangle counting on big graphs. In this paper we
present TriX, a scalable triangle counting framework, which
is comprised of a 2-D graph partition strategy and a binary
search based intersection algorithm designed for GPUs. The 2-D
partition provides balanced work division among multiple GPUs.
On the other hand, binary search based intersection achieves
fine-grained parallelism on GPUs via intra-warp scheduling and
coalesced memory access. TriX is able to scale to a large number
of GPUs, and count triangles on billion-node graph (2 billion
node, 64 billion edges) within 35 minutes, achieving over 16
million traverse edges per second (TEPS).

I. INTRODUCTION

Graph structure plays an important role in a variety of appli-
cations such as social media, web, and e-commerce, where the
relationship between different entities carries as much, if not
more, importance as the entities themselves. Such relationship
can be utilized in identifying different community structures,
for which the triangle counting algorithm is developed to
enumerate the common neighbors between two vertices of
every edge in a graph. Given its importance, the DARPA
Graph Challenge seeks high-performance, scalable solutions
for triangle counting [18].

Traditionally, triangle counting can be executed only
on shared-memory systems [13]. However, the exponential
growth of the graphs necessitates external memory based
triangle counting [11], [5], [7] to process graphs larger than
memory size by taking additional disk I/Os. To this end, sev-
eral prior projects [5], [11], [2], [16], [12] use external memory
model [1] and require to load data from storage such as hard
disk. Unfortunately, these external memory algorithms take
significantly longer time to run than in-memory algorithms.

We envision that to provide a fast, scalable solution for
triangle counting, a host of issues must be addressed. At a high
level, there is a need for an efficient graph partitioning which
should be able to understand the limited memory available in
the system, and an intelligent work scheduling strategy that
can not only efficiently utilize the variety of compute cores
in an optimum way but also understand that the data is not
always in the memory but may reside in the disks. Meanwhile,
at the low level, the compute cores must run a highly efficient
version of the counting algorithm on its partitioned data.

In this paper, we present TriX, a scalable triangle counting
framework that combines a 2-D graph partition strategy [23]
and a binary search based intersection algorithm designed for
graphics processing units (GPUs) [24]. TriX is able to count

triangles on the large graph (e.g., 2 billion vertices and 64
billion edges) within 35 minutes on a small cluster of 32
machines equipped with a single GPU each, while fetching
data from the external memory.

This result has been made possible due to our 2-D parti-
tioning that allows us to efficiently co-ordinate the triangle
counting work on individual partitions, IOs from the disk,
and workload distribution. Furthermore, we utilize massive
parallelism available on GPUs [15] for performing concur-
rent intersection tasks. GPUs offer two key features that are
beneficial for triangle counting. First, there are thousands of
small cores which can be utilized to run the algorithm in a
massively parallel form. Second, the high memory bandwidth,
e.g., 288GB/s in K40, can be used for fast data I/O. In
this work, we have observed that traditional merge-based
intersection is only suited for CPUs, and suffers excessively on
GPUs due to strided memory access and branch diversion. To
address this problem, we have developed a binary search based
intersection and show that it achieves very high throughput on
GPUs.

The remaining of the paper is organized as follows. Section
II presents background related to graphs and triangle counting.
Section III provides a high-level overview of TriX, while
Section IV and V present technical designs. We also give an
overview of our K-truss algorithm in Section VI. Evaluations
are presented in Section VII, related work in Section VIII, and
we conclude in Section IX.

II. BACKGROUND

A graph G = (V,E) is constituted by its vertex set V and
edge set E that each edge is a link between two vertices.
Figure 1 presents an example graph, and the storage formats
used in this paper. An edge list format stores all edge tuples
in form of an edge array. Alternatively, compressed sparse
row (CSR) contains two arrays, the adjacency array {A} and
begin position array {B}. The adjacency array A stores the
neighbor vertices of each vertex sorted by their ID. And the
begin position array indicates the offsets of neighbors of any
vertex in the adjancency array A, that is, neighbors of vertex
v starts from A(B(v)) and ends at A(B(v + 1)) − 1. CSR
is most widely used format in many algorithms including
triangle counting [13]. In this paper, we utilize both formats
for different purposes which will be presented later.

Intersection Operation. Triangle counting can be described
as many intersection operations, where each intersection is
performed between neighbor lists of the two vertices of the

0 0 0 0 0 0 0 1 1 1 1 2 3 3 4 5 5 6 7 8

1 2 3 4 5 6 7 0 3 5 8 0 0 1 0 0 1 0 0 1

(b) Edge List

1 2 3 4 5 6 7 0 3 5 8 0 0 1 0 1000 1

(c) CSR

0 1 2 3 4 5 6 7 8

Adjacency List

Source Vertex ID

(a) Graph Example

1

2

7

3

40

6
5

8

Source Vertex
Destination Vertex

An Edge

0 7 11 12 14 15 17 18 19Begin Position Array

3 4 5 61 2 7
Adj. List of Vertex 0

0
3
5
8

Ad
j.

Li
st

of
Ve

rt
ex

13 4 5 61 2 7

5 80 3

Adj. List of Vertex 0

Adj. List of Vertex 1

53Intersection

(d) Intersection of Edge (0,1) (e) Merge-based Approach

Triangles

Fig. 1: Undirected graph, various representation format, and intersection of base edge (0,1).

Algorithm 1 Triangle counting algorithm using intersection

1: G = (E, V)
2: foreach v ∈ V in parallel do
3: foreach w ∈ N(v) do
4: count += Intersection(v, w);
5: end for
6: end for

edge. We refer this edge as base edge. The algorithm is listed
in the Algorithm 1, and one example is also shown in Figure
1(d). Figure 1(e) shows the merge based intersection approach.
Prior works [20], [7] have used this approach on CSR format
of the graph for triangle counting.

Rank-by-degree Orientation. Conventional graph data struc-
ture stores each edge of an undirected graph twice in both di-
rection. With the intersection algorithm described above, each
triangle will be counted for six times. A pre-processing tech-
nique, rank-by-degree orientation, is used in triangle counting
works [20] to store only one direction of each undirected
edge, it is, edge (u, v) is stored only if d(u) < d(v) or
d(u) = d(v), u < v. As this step simplifies the counting task,
we also adopt it in this work.

III. ARCHITECTURE

In this work we aim to use multiple GPUs on a distributed
system to provide fast triangle counting on big graphs. To
achieve the goal, there are several challenges that we need to
address. First, GPU memory size is limited (up to about ten
gigabytes) and hard to hold the whole dataset for big graphs.
Second, current GPU-based triangle counting algorithm uses
the merge-based intersection (which is used on CPUs) and
fails to achieve very good performance.

While several external memory triangle counting algo-
rithms [11], [7], [2] are proposed before, they run with a
fixed memory bound, which cannot support distributed GPU-
based triangle counting. For example, GPU-based triangle
counting requires edge-centric parallelization to mitigate intra-
warp workload imbalance which could lead to heavy diver-
gence penalty [24]. Further, state-of-the-art external mem-
ory works use a streaming approach which support only a
small proportion of work at any time, thus cannot saturate
thousands of cores of a GPU. In addition, the scalability
of existing external algorithms on distributed system suffers
from workload imbalance, and since each task is tied to one

partition, a distributed system implementation cannot directly
enjoy dynamic scheduling for workload balancing.

TriX is designed to be a highly scalable system that can
work in many system configuration from a shared memory
system to distributed memory system utilizing the available
GPUs and disks. It has two main components, 2-D partitioning
for external memory algorithm, and GPU-based intersection.
First, the 2-D partitioning algorithm divides the triangle count-
ing task into multiple subtasks. Each of the subtasks is an
in-memory triangle counting instance that can be executed on
one GPU, and requires two CSR partitions and one edge list
partition to be loaded to the GPU memory. Second, for each
sub-task instance on GPU, we design a GPU specific binary
search based intersection to optimize memory access pattern
and intra-warp parallelization.

Note that our proposed external memory algorithm can sup-
port edge-centric parallelization through edge list streaming
buffer and each sub-task can saturate GPU computation power.
On the coarse grainularity, the number of subtasks for the
proposed external memory algorithm is larger than the task
number of state-of-the-art external memory algorithm, which
can enjoy almost perfect scalability through dynamic load
balancing. It also achieves better I/O complexity. Figure 2
shows the high level design of TriX.

CSR Partitions

… …

Process 0

…

Process k

Parallel Binary Search
GPU

P(i,k)

P(j,k)

Parallel Binary Search
GPU

Parallel Binary Search
GPU

Parallel Binary Search
GPU

Edge List Partitions

Ring
Buffer

Partition
Buffer

Fig. 2: TriX Architecture

IV. GRAPH PARTITIONING

A. 2-D Managed Partition

TriX proposes an advanced partitioning method based on
the idea of balancing the 2-D partitions as much as possible
so that all the partitions can be roughly of equal size, and at
the same time it should be easy to track the edge membership,
that is, which partition contains a particular edge.

1 1

(b) 2-D Managed CSR (c) Corresponding Edge List

2

1

2

1

2

(a) Partitioning Procedure

P2

0

P1

0

P2

P1 P1 P1

10

Fig. 3: 2-D Managed Partitioning. TriX uses it to get a simple as well
as balanced partitions. The gray boxes shows a sub-task comprising
of one edge-list partition and corresponding two csr partitions.

Figure 3(a) shows the procedure to create 2-D managed
partition. To achieve this, we first do a 1-D vertical partitioning
of partition count P2, so that each vertical partition is of
roughly equal size. This is achieved using different vertex
range for each vertical partitioning. Then, we do a horizontal
partitioning of each vertical partition. We again follow the
same strategy and hence, each horizontal partition will have
different vertex range. For example, the solid line shows the
first horizontal partition of each vertical partition such that
each 2-D partition is no more greater than size M. However,
it would be very complex to track the vertex range of each
horizontal partition and perform triangle counting. Instead, we
simplify the horizontal partitioning. We choose the horizontal
vertex range from each horizontal partition and select the one
with minimum range. And, then we do a straight horizontal
cut there, resulting in P1 partitions . Figure 3(b) shows the
result of final partitioning of size P1×P2.

Thanks to 2-D managed partitioning method, triangle count-
ing in TriX is achieved by dividing the task to many smaller
triangle counting sub-task based on few partitions. We assume
the number of sub-tasks P1×P1×P2 is larger than number of
GPUs, and thus, dynamic scheduler can perfectly balance the
workload of all GPUs.

B. Support for Fine-Grained Parallelism
Our 2-D partitioning method clearly allows a well-balanced

workload distribution among many GPUs by dividing the
whole task into many sub-tasks. A sub-task is identified using
three suffix: i, j and k, which represents a partition in our
2-D managed partitioning method. Partition (i, j) is used as a
collection of edges, called base partition, to decide which two
vertices’ neighbors should perform intersection. Then, the two
neighbor lists are chosen from the partitions (i, k) and (j, k)
respectively for the corresponding vertices, and the intersection
is performed on them. Thus, each sub-task can independently
be scheduled on any GPUs.

However, using partition (i, j) in the CSR format as a base
partition does not provide fine-grained parallelism within a
GPU. It can only provide a coarse-grained parallelism based
on vertex-centric approach, where each warp has to handle all
the edges of one source vertex, which would have resulted in
workload imbalance inside the GPUs warp.

To this end, TriX provides an edge-centric based work
division, and hence, a 2-D partitioned edge list, as shown in
Figure 3(c), is used as group of base edges. The 2-D edge list

contains the graph data in edge-list format, thus it is easy to
divide the work within a GPU, where each warp handles one
base edge at a time, i.e. performs intersection of the neighbor
lists of the two vertices of one edge.

The 2-D partitioned edge-list does not have to be a balanced
partition like its corresponding CSR partition. Indeed, we use
edge-list partitions as base edges, and hence it is aligned
to horizontal partition of the corresponding CSR version,
i.e. it is of size P1×P1 partitions. This simplifies the sub-
task formation as two sub-tasks never overlaps with each
other. Moreover, the IO cost is completely amortized using
a streaming buffer, where only few edges from the edge-list
partition of the sub-task are streamed to GPUs for the one
intersection task. Thus, a sub-task in one GPU consists of
many streaming steps.

V. BINARY SEARCH BASED INTERSECTION

In this section, we discuss that the merge based intersec-
tion algorithm is not well-suited for GPU architecture, and
present a binary search based intersection algorithm. Over-
all, it achieves much better memory bandwidth, experiences
much fewer memory traffic compared against merge based
intersection method and thus highly improves the computation
efficiency.

A. Shortcomings in Merge based Intersection in GPUs

GPU architecture is very different than CPU architecture.
In CPUs, number of cores are limited, each core operate
independently, and each core has its own hardware cache. But
in GPUs, a number of cores make a group called warp, and
execute together in SIMD fashion, and share a small last level
cache. The cores or threads of a warp are not independent
like CPU cores, instead they all work together. And hence,
conventional merge based triangle counting algorithm is not
suited for GPUs as explained in Figure 5 for the example of
Figure 1(e).

Within a warp in GPUs, merge-based intersection need to
have two steps: divide the work among the threads of a warp
as shown in Figure 5(a); and execute the work in individual
threads [9]. Both of these steps are inefficient. First, one needs
to scan the whole workload to figure out the division of
work, which takes non-trivial operations. And during execution
phase, the threads will have strided memory access within a
warp. For example in Figure 5(b), thread 1 is comparing the
content of the first section of the two arrays {1, 2, 3, 4} and
{0, 3}. Meanwhile, thread 2 is comparing the other of those
two arrays {5, 6, 7} and {5, 8}. This strided memory access
has shown to be very inefficient in GPUs as they under-utilize
the available memory bandwidth [15], [14].

B. Parallel Binary Search on GPU

A binary search based intersection algorithm takes two
arrays, the neighbor lists of the two vertices of an edge as the
inputs. The algorithm selects one neighbor array as lookup
array, while the other as binary search array. Then, each
element of the former is searched in the latter array to find

3	 4	 5	 6	1	 2	 7	Adj.	List	of	Vertex	0

Binary	Search	Tree

4

2 6

3 1 7 5

4

2 6

3 1 7 5

Lookup	3
4

2 6

3 1 7 5

Lookup	5

5	 8	0	 3	Adj.	List	of	Vertex	1

4

2 6

3 1 7 5

Lookup	0
4

2 6

3 1 7 5

Lookup	8

✓ ✗ ✗ ✓

Fig. 4: Binary search based intersection: binary search tree, and parallel lookup process

3 41 2

thread 1

(b) execution

3 4 5 61 2 7
Adj. list of vertex 0

0
3
5
8

Ad
j.

lis
to

fv
er

te
x

1

(a) Partitioning the workload

0 3

75 6

5 8

thread 2

Fig. 5: Workload division for merge based intersection.

the intersection result. In each step of the binary search, the
algorithm compares the lookup element to the middle one of
the current search range in binary search array, and halves the
search space.

The basic idea is illustrated in Figure 4. However, instead of
using a real binary search tree structure, we use the neighbor
list directly, which is already sorted, similar to what is used in
merge based intersection. Each lookup key takes O(log n) time
cost on an array with n elements. Before we always compare
the lengths of both lists to use the longer neighbor list as a
binary search tree to reduce the cost.

Binary search based approach may not be well-suited for
CPU based architecture, but its unique benefits are clear on
GPUs, achieving an efficient intra-warp parallelization and
coalesced memory access.

Intra-warp Parallelism. In the binary search intersection,
each thread is assigned to a consecutive elements of the
lookup list, thus there is no separate step for partitioning and
distributing workload within the warp. Comparing to merge
based intersection, there is no need to figure out the range of
keys for each thread to enable multiple threads to take equal
workload of the intersection.

For example, the two neighbor lists as in Figure 4, we
assign different threads to work on four lookup keys. Since,
the depth of each binary search tree is log-scale to the length
of the corresponding neighbor list, which is the largest number
of operations to search the tree, thereby imbalance across
threads might be limited to few operations for any intersection.
Further, because majority of the lookups fail to find a match,
and the binary search tree is a balanced tree that each leaf has
almost same depth, thereby the workloads across threads are
balanced in the worst case.

Coalesced Memory Access. Binary search-based inter-

section also shows better memory access patterns than that
of merge-based. Accessing lookup key arrays is definitely
consecutive and sequential, as four consecutive threads of
the warp load four consecutive lookup keys as shown in
Figure 4. In this case these entries can be loaded in coalesced
access provided by GPU hardware which uses only one
load transaction for many access. Performance counter shows
that optimized binary search intersection reduces 80% load
transactions comparing to merge-based one. For binary search
tree, since each lookup needs to checks the same binary search
tree, accessing binary search tree array also experiences high
cache hit ratio.

VI. K-TRUSS

K-truss is defined as a subgraph, derived from the original
graph where each edge has at least k−2 triangles. For example,
a k-clique is a k-truss. K-truss is strongly related to triangle
counting algorithm, and its implementation is always based on
triangle counting algorithms.

The conventional k-truss algorithm iteratively performs two
steps: (1) count the triangles for each edge, and (2) remove
all edges from the graph whose triangle count is less than
k − 2, until it converges [6]. One can see that the major task
of a k-truss algorithm consists of counting triangles for edges
iteratively.

A reverse approach is also possible, that is, instead of count-
ing the triangles for whole updated graph in each iteration,
decrement the triangle count of each removed edge in each
iteration. Considering that the number of newly removed edges
are typically smaller than the number of remaining edges in
the graph, the latter approach may bring overall considerable
speedup in k-truss counting.

However, there are two main bottlenecks in the latter ap-
proach. First, undirected input graph is used which leads to low
efficiency on counting the triangles on the original graph. As
we mentioned earlier, using oriented graph to count triangles
bring extra-ordinary speedup, which current k-truss algorithm
does not use and leads to at least one order of magnitude slow
down. Second, k-truss takes heavy space cost. It consumes
large amount of memory size (|E|) to store support number
of all edges. Also, a key-value store indexing is often used to
provide quick lookup of edge id by the two vertices.

TABLE I: Graph Specification and performance. The performance numbers for smaller graph are reported for 1 GPU only. Others are
reported for 32 GPUs.

Name Description |V | |E| Triangles Time(s) MTEPS
email-EuAll Email network from a EU research institution 265,215 364,481 267,313 0.003009322 121.12
soc-Epinions1 Who-trusts-whom network of Epinions.com 75,880 405,740 1,624,481 0.004831075 84.08
flickrEdges Image relationships on Flickr (edges only) 105,939 2,316,948 107,987,357 0.004825446 32.59
RoadNet Road network of California 1,965,207 2,766,607 120,676 0.0196982 140.45
graph500-scale18-ef16 Synthetic graph500 network of scale 18 174,148 3,800,348 82,287,285 0.126783 29.98
cit-Patents Citation network among US Patents 3,774,769 16,518,947 7,515,023 0.1280756 128.98
Orkut Orkut online social network 8,730,857 327,036,486 223,127,577 10.65 30.70
Kron-25-16 Kronecker (scale 25, degree 16) 33,554,432 523,611,003 22,535,831,016 72 7.27

Friendster Friendster online social network 68,349,466 1,811,849,342 4,176,922,719 17.12 70.25
Twitter MPI Twitter follower connection 52,579,682 1,614,106,187 55,428,217,664 43.51 41.64
Gsh-2015 [10] WebGraph Dataset 988,490,691 33,274,090,228 1,784,146,861,411 2,029.03 16.40
Kron-30-16 Kronecker (scale 30, degree 16) 1,073,741,824 17,022,115,838 2,306,560,594,152 736.43 23.11
Kron-31-16 Kronecker (scale 31, degree 16) 2,147,483,648 34,101,759,806 1,074,908,326,232 2,079.33 16.40

In this work, we develop a preliminary version of k-
truss targeting only the CPU architecture. We use rank-by-
degree oriented graph, which is discussed in triangle counting
algorithm, as our input data format for the k-truss. To store
the support number (number of triangles) for each edges, an
array with size |E| is needed to present in memory. Instead of
removing the edges in each iteration, we use a bitwise status
array with size |E| to track whether any edge is removed or
not from the input graph.

Note that no other data structure, such as a key-value store,
is needed to figure out the offset of an edge in both support
and status arrays. Indeed, since in triangle counting algorithm,
all edges are visited through the CSR format, the offset of any
edge in adjacency list is exactly the offset of this particular
edge in support array and status array. In summary, this design
provides much faster k-truss and has smaller memory footprint
which enables larger graph to be processed for a given memory
size.

VII. EXPERIMENTS

We implemented TriX in 2000 lines of in C/C++ and CUDA
code. We used CUDA toolkit version 7.5, nvcc and nvprof.
G++ version 4.9.2 (GCC) with OpenMP version 1.8, with
compilation flag as O3 is used for host code. All the graph that
we use for evaluations are listed in Table I. We use real-world
graph as well as synthetic graphs. We divide the graphs in
several categories grouped by different edge sizes. The largest
real-world graph is named as kron31-16, which has around
2 billion vertices and 64 billion edges. We pre-process them
using rank by degree, which makes the size of the graph half.
For vertex ID representation, we used unsigned integer of
32bit size while for offset contains unsigned integer of 64bit
size. The results exclude the timing spent on performing the
partitioning.

We run all the experiments in two setups. 1) using a local
cluster at The George Washington University. Each node in
this cluster has Intel Xeon E-2620 2.0GHz 6-core processors
with NVIDIA K20 GPUs (with 5 GB GPU memory) and
128 GB of RAM. We use up to 32 GPUs in experiments.
And 2) a single machine with 512GB memory system with 1
NVIDIA K40 GPUs, and dual Intel Xeon E5-2683 CPU with

each having 14 hyper-threaded cores. We use this setup to test
1 GPU configuration, and also to compare result against the
serial code of graph challenge. K-truss experiments are also
run on this system.

A. Performance of TriX For Ranking

For smaller graphs having edge count less than 1 billion
edges, we use a single GPU setup to report the numbers,
as they can easily fit in the GPU memory. In this case, IO
time and data copy time is not reported, similar to Graph500
benchmarking rule [8].

We use a local cluster to run triangle counting on bigger
graphs having edges more than 1 billion. In this case, we used
32 GPUs, each GPU is hosted in 1 machine. We list the total
run time, as well as traverse edges per second (TEPS) result
in Table I. The total time includes the IO time, data copy to
GPUs and computation time. TEPS are calculated by dividing
the total edges to the total run time.

B. Power Consumption Measurement

We run power consumption measurement while triangle
counting is running. We performed power measurement in
the single machine setup, where only one GPU is used
for triangle counting. We report the power consumption for
triangle counting algorithm only, avoiding the cost associated
with IO and data copy phase. Table II shown the power
consumption, and TEPS per watt of few graphs.

TABLE II: Power measurement for triangle counting

Graph Name Power (Watt) KTEPS/Watt
orkut 122.3 251.02

kron25-16 130.8 55.60
twitter-mpi 118.7 94.12
friendster 127.8 140.58

C. Comparison Against Serial Code of Graph Challenge

We choose few smaller graphs to compare the result of TriX
against the serial code (c++) provided by the graph challenge
github repository. All the experiments were performed in the
single machine, with 1-GPU configuration. TriX is run on the
GPU, while serial code is run using a single core of the CPU.

Table III compares the TEPS of the two systems, and also
present the speedup achieved by TriX. In all, TriX is able to
achieve tens of millions of TEPS, outperforming by several
orders of magnitude.

TABLE III: Speedup of TriX compared to serial code provided by
graph challenge. All experiments were run in 1 GPU. K=1,000 and
M=1,000,000.

Graph Name Serial TEPS TriX TEPS Speedup
cit-Patents 50.67K 128.98M 2,545

email-EuAll 1.99K 121.12M 61,011
flickrEdges 1.30K 32.59M 25,154

graph500-scale18-ef16 29.98K 29.98M 103,764
soc-Epinions1 4.07K 84.08M 20,654

RoadNet 421.64K 140.45M 333

D. Scalability Test

We use kron30-16, kron31-16 and Gsh-2015 graphs to show
the scalability of TriX. Figure 6 shows the scalability result
when the number of GPUs are increased from 1 to 32. TriX
has an ideal scaling curve, and we notice that kron30-16 and
kron31-16 scales very well, almost identical to idea scalability.
Gsh-2015 shows slightly lower scalability. The scalability
results are possible due to independent and balanced sub-tasks
design offered by the managed 2-D partitioning strategy.

1

2

4

8

16

32

1 2 4 8 16 32

Sp
ee

du
p

GPUs

kron30 kron31 gsh Ideal

Fig. 6: Scalability of TriX

TABLE IV: Ranking results of k-truss in KTEPS. K = 1,000.

Graphs twitter-mpi friendster orkut kron25-16
k=3 5,540.86 12,409.93 29,730.59 5,903.17
k=4 533.24 1,432.30 4,523.33 5,305.08
k=5 139.94 942.20 2,137.49 5,540.86
k=6 437.66 556.12 2,319.41 1,637.31
k=7 305.87 1,242.69 3,865.68 1,590.73
k=8 288.03 1,241.84 11,199.88 1,546.02

TABLE V: Speedup of TriX k-truss (for k = 3) compared to python
serial code of k-truss [18]. K = 1,000, M = 1,000,000.

Graph Name Serial TEPS TriX TEPS Speedup
cit-Patents 66.10K 195.49M 2,957

email-EuAll 7.11K 202.49M 28,488
flickrEdges 7.23K 15.52M 2,145

graph500-scale18-ef16 1.27K 13.54M 10,692
soc-Epinions1 15.89K 42.89M 2,700

RoadNet 137.89K 477.00M 3,459

E. K-Truss

K-Truss is currently implemented in C++ for multi-threaded
CPU version. Hence, we report the k-truss number on our
single node machine, without using the GPU. Further devel-
opment is under way. Table IV shows the k-truss performance
in TEPS metric for various k values.

Table V compares our k-truss performance to serial python
version of k-truss provided by graph challenge repository. The
experiment is done for the value k=3 only. We are able to
achieve several order of magnitude speedup across a number
of different graphs.

VIII. RELATED WORK

Triangle counting and listing algorithms were investigated
early by Schank [19] and Latapy [13]. They show that in-
tersection based algorithms with orientation, compact-forward
in Latapy’s paper, is the most time efficient algorithm. Algo-
rithms other than intersection such as Hash-based algorithm
along with corresponding hash table data structure is also
considered in previous works. However inserting edges into
hash table to construct the input data is costly, and also
hash-based implementation performs much slower than merge-
based intersection because of the cache behavior [4].

CPU based triangle counting systems [20], [13] are limited
to a single machine and cannot take advantage of new compute
devices such as GPUs. Also, the GPU based system [9] is
based on the merge-based intersection inspired from CPU
based system. Instead we present a parallel binary search based
intersection that improves the performance in GPU.

Several triangle counting work [21], [17], [22] are based on
MapReduce framework. Suri and Vassilvitskii [21], proposes
to partition the graph in overlapped subgraphs to make all
triangle appear in one of the partitions. It used a static
scheduling that each machine covers equal number of vertices.
A follow-up work [17] carefully classifies the type of triangles
during partitioning so that each triangle is counted only once.

MPI based triangle counting works [2], [3] also use a
static workload partitioning which relies on a expensive pre-
processing to estimate the workload for each vertex. The latter
one deploys a dynamic re-assignment scheme to guarantee the
effect of load balancing.

IX. CONCLUSION

We presented TriX, a highly scalable, distributed and ex-
ternal triangle counting algorithm. It employs a novel 2-D
managed partition and a parallel binary search based inter-
section for GPUs. TriX is able to scale to a large number of
GPUs, and count triangles on billion-node graph (2 billion
node, 64 billion edges) within 35 minutes, achieving 16.40
million traverse edges per second (TEPS).

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers
for their suggestions. This work was supported in part by
National Science Foundation and Raytheon.

REFERENCES

[1] A. Aggarwal and S. V. Jeffrey. The Input/Output Complexity of Sorting
and Related Problems. Commun. ACM, 31(9):1116–1127, 1988.

[2] S. Arifuzzaman, M. Khan, and M. Marathe. Patric: A Parallel Algorithm
for Counting Triangles in Massive Networks. In Proceedings of the
22nd ACM international conference on Conference on information &
knowledge management, 2013.

[3] S. Arifuzzaman, M. Khan, and M. Marathe. A Fast Parallel Algorithm
for Counting Triangles in Graphs using Dynamic Load Balancing. In
Big Data. IEEE, 2015.

[4] A. Buluç and K. Madduri. Parallel Breadth-First Search on Distributed
Memory Systems. In Proceedings of International Conference for
High Performance Computing, Networking, Storage and Analysis. ACM,
2011.

[5] S. Chu and J. Cheng. Triangle Listing in Massive Networks and Its
Applications. In SIGKDD. ACM, 2011.

[6] J. Cohen. Trusses: Cohesive Subgraphs for Social Network Analysis.
National Security Agency Technical Report, 16, 2008.

[7] I. Giechaskiel, G. Panagopoulos, and E. Yoneki. PDTL: Parallel and
Distributed Triangle Listing for Massive Graphs. In ICPP. IEEE, 2015.

[8] Graph500. http://www.graph500.org/.
[9] O. Green, P. Yalamanchili, and L. Munguı́a. Fast Triangle Counting

on the GPU. In Proceedings of the Fourth Workshop on Irregular
Applications: Architectures and Algorithms, 2014.

[10] Gsh dataset from WebGraph. http://law.di.unimi.it/webdata/gsh-2015/,
2015.

[11] X. Hu, Y. Tao, and C. Chung. Massive Graph Triangulation. In
SIGMOD. ACM, 2013.

[12] P. Kumar and H. H. Huang. G-Store: High-Performance Graph Store
for Trillion-Edge Processing. In Proceedings of the International

Conference for High Performance Computing, Networking, Storage and
Analysis (SC), 2016.

[13] M. Latapy. Main-memory Triangle Computations for Very Large (Sparse
(Power-Law)) Graphs. Theoretical Computer Science, 2008.

[14] H. Liu and H. H. Huang. Enterprise: Breadth-First Graph Traversal
on GPUs. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis (SC), 2015.

[15] C. Nvidia. Programming guide, 2008.
[16] R. Pagh and F. Silvestri. The Input/Output Complexity of Triangle

Enumeration. In PODS. ACM, 2014.
[17] H. Park and C. Chung. An efficient MapReduce Algorithm for Counting

Triangles in a Very Large Graph. In International conference on
Conference on information & knowledge management, 2013.

[18] S. Samsi, V. Gadepally, M. Hurley, M. Jones, E. Kao, S. Mohindra,
P. Monticciolo, A. Reuther, S. Smith, W. Song, D. Staheli, and J. Kepner.
Static Graph Challenge: Subgraph Isomorphism. In IEEE HPEC, 2017.

[19] T. Schank and D. Wagner. Finding, Counting and Listing all Triangles
in Large Graphs, An Experimental Study. In Experimental and Efficient
Algorithms. 2005.

[20] J. Shun and K. Tangwongsan. Multicore Triangle Computations Without
Tuning. In Proceedings of the IEEE ICDE, 2015.

[21] S. Suri and S. Vassilvitskii. Counting Triangles and the Curse of the
Last Reducer. In International conference on World wide web, 2011.

[22] W. Wang, Y. Gu, Z. Wang, and G. Yu. Parallel Triangle Counting over
Large Graphs. In Database Systems for Advanced Applications, 2013.

[23] H. Yang and H. H. Huang. TriP: 2D Graph Partitioning for External-
Memory Triangle Counting. Technical report, Department of Electrical
and Computer Engineering, The George Washington University, 2018.

[24] H. Yang, H. H. Huang, and H. Liu. TriCore: Parallel Triangle Counting
on GPUs. Technical report, Department of Electrical and Computer
Engineering, The George Washington University, 2018.

