
Just-in-Time Analytics on Large File Systems
H. Howie Huang, Nan Zhang, Wei Wang, Gautam Das, and Alexander S. Szalay

Abstract—As file systems reach the petabytes scale, users and administrators are increasingly interested in acquiring high-level

analytical information for file management and analysis. Two particularly important tasks are the processing of aggregate and top-k
queries which, unfortunately, cannot be quickly answered by hierarchical file systems such as ext3 and NTFS. Existing preprocessing-

based solutions, e.g., file system crawling and index building, consume a significant amount of time and space (for generating and

maintaining the indexes) which in many cases cannot be justified by the infrequent usage of such solutions. In this paper, we advocate
that user interests can often be sufficiently satisfied by approximate—i.e., statistically accurate—answers. We develop Glance, a just-

in-time sampling-based system which, after consuming a small number of disk accesses, is capable of producing extremely accurate
answers for a broad class of aggregate and top-k queries over a file system without the requirement of any prior knowledge. We use a

number of real-world file systems to demonstrate the efficiency, accuracy, and scalability of Glance.

Index Terms—Data analytics, file systems

Ç

1 INTRODUCTION

TODAY, a file system with billions of files, millions of
directories, and petabytes of storage is no longer an

exception [31]. As file systems grow, users and adminis-
trators are increasingly keen to perform complex queries
[39], [49], such as “How many files have been updated since
10 days?” and “Which are the top five largest files that
belong to John?” The first is an example of aggregate queries
which provide a high-level summary of all or part of the file
system, while the second is top-k queries which locate the
k files and/or directories that have the highest score
according to a scoring function. Fast processing of aggre-
gate and top-k queries is often needed by applications that
require just-in-time analytics over large file systems, such as
data management, archiving, etc. The just-in-time require-
ment is defined by two properties: 1) file-system analytics
must be completed with a small access cost—i.e., after
accessing only a small percentage of directories/files in the
system (in order to ensure efficiency), and 2) the analyzer
holds no prior knowledge (e.g., preprocessing results) of the
file system being analyzed. For example, in order for a

librarian to determine how to build an image archive from
an external storage media (e.g., a Blue-ray disc), he/she
may have to first estimate the total size of picture files
stored on the external media—the librarian needs to
complete data analytics quickly, over an alien file system
that has never been seen before.

Unfortunately, hierarchical file systems (e.g., ext3 and
NTFS) are not well equipped for the task of just-in-time
analytics [45]. The deficiency is in general due to the lack of
a global view (i.e., high-level statistics) of metadata informa-
tion (e.g., size, creation, access, and modification time). For
efficiency concerns, a hierarchical file system is usually
designed to limit the update of metadata information to
individual files and/or the immediately preceding direc-
tories, leading to localized views. For example, while the
last modification time of an individual file is easily
retrievable, the last modification time of files that belong
to user John is difficult to obtain because such metadata
information is not available at the global level.

Currently, there are two approaches for generating high-
level statistics from a hierarchical file system, and thereby
answering aggregate and top-k queries: 1) The first approach
is to scan the file system upon the arrival of each query, e.g.,
the find command in Linux, which is inefficient for large file
systems. While storage capacity increases !60 percent per
year, storage throughput and latency have much slower
improvements; thus, the amount of time required to scan an
off-the-shelf hard drive or external storage media has
increased significantly over time to become infeasible for
just-in-time analytics. The above-mentioned image-archiv-
ing application is a typical example, as it is usually
impossible to completely scan an alien Blue-ray disc
efficiently. 2) The second approach is to utilize prebuilt
indexes which are regularly updated [3], [7], [26], [34], [38],
[42]. Many desktop search products belong to this categor-
y—e.g., Google Desktop [23] and Beagle [5]. While this
approach is capable of fast query processing once the (slow)
index building process is complete, it may not be suitable or
applicable to many just-in-time applications:

IEEE TRANSACTIONS ON COMPUTERS, VOL. 61, NO. 11, NOVEMBER 2012 1651

. H.H. Huang is with the Department of Electrical and Computer
Engineering, School of Engineering and Applied Science, The George
Washington University, 801 22nd Street NW, Washington, DC 20052.
E-mail: howie@gwu.edu.

. N. Zhang is with the Department of Computer Science, The George
Washington University, 801 22nd Street NW, Washington, DC 20052.
E-mail: nzhang10@gwu.edu.

. W. Wang is with the Department of Computer and Information Science,
University of Delaware, 101 Smith Hall, Newark, DE 19716.
E-mail: weiwang@udel.edu.

. G. Das is with the Computer Science and Engineering Department,
University of Texas at Arlington, 500 UTA Blvd., 626, Engineering
Research Building, Arlington, TX 76010. E-mail: gdas@uta.edu.

. A.S. Szalay is with the Department of Physics and Astronomy, The Johns
Hopkins University, 3701 San Martin Drive, Baltimore, MD 21218.
E-mail: szalay@jhu.edu.

Manuscript received 7 Mar. 2011; revised 26 June 2011; accepted 3 Sept.
2011; published online 30 Sept. 2011.
Recommended for acceptance by D. Talia.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TC-2011-03-0153.
Digital Object Identifier no. 10.1109/TC.2011.186.

0018-9340/12/$31.00 ! 2012 IEEE Published by the IEEE Computer Society

. Index building can be unrealistic for many applica-
tions that require just-in-time analytics over an alien
file system.

. Even if index can be built upfront, its significant cost
may not be justifiable if the index is not frequently
used afterward. Unfortunately, this is common for
some large file systems, e.g., storage archives or
scratch data for scientific applications scarcely
require the global search function offered by the
index, and may only need analytical queries to be
answered infrequently (e.g., once every few days). In
this case, building and updating an index is often an
overkill given the high amortized cost.

. There are also other limitations of maintaining an
index. For example, prior work [48] has shown that
even after a file has been completely removed (from
both the file system and the index), the (former)
existence of this file can still be inferred from the index
structure. Thus, a file system owner may choose to
avoid building an index for privacy concerns.

To enable just-in-time analytics, one must be able to
perform an on-the-fly processing of analytical queries, over
traditional file systems that normally have insufficient
metadata to support such complex queries. We achieve this
goal by striking a balance between query answer accuracy
and cost—providing approximate (i.e., statistically accurate)
answers which, with a high confidence level, reside within a
close distance from the precise answer. For example, when a
user wants to count the number of files in a directory (and
all of its subdirectories), an approximate answer of 105,000
or 95,000, compared with the real answer of 100,000, makes
little difference to the high-level knowledge desired by the
user. The higher cost a user is willing to pay for answering a
query, more accurate the answer can be.

To this end, we design and develop Glance, a just-in-time
query processing system which produces accurate query
answers based on a small number of samples (files or
folders) that can be collected from a very large file system
with a few disk accesses. Glance is file-system agnostic, i.e.,
it can be applied instantly over any new file system and
work seamlessly with the tree structure of the system.
Glance removes the need of disk crawling and index
building, providing just-in-time analytics without a priori
knowledge or preprocessing of the file systems. This is
desirable in situations when the metadata indexes are not
available, a query is not supported by the index, or query
processing is only scarcely needed.

Using sampling for processing analytical queries is by no
means new. Studies on sampling flat files, hashed files, and
files generated by a relational database system (e.g., a B+-
tree file) started more than 20 years ago—see survey
[41]—and were followed by a myriad of work on database
sampling for approximate query processing in decision
support systems—see tutorials [4], [15], [22]. A wide variety
of sampling techniques, e.g., simple random sampling [40],
stratified [10], reservoir [50], and cluster sampling [11], have
been used. Nonetheless, to the best of our knowledge, there
has been no existing work on using sampling to support
efficient aggregate and top-k query processing over a large
hierarchical file system, i.e., one with numerous files
organized in a complex folder structure (tree-like or
directed acyclic graph (DAG)).

Our main contributions are twofold: 1) Glance consists of
two algorithms, FS_Agg and FS_TopK, for the approximate
processing of aggregate and top-k queries, respectively. For
just-in-time analytics over very large file systems, we
develop a random descent technique for unbiased aggregate
estimations and a pruning-based technique for top-k query
processing. 2) We study the specific characteristics of real-
world file systems and derive the corresponding enhance-
ments to our proposed techniques. In particular, according
to the distribution of files in real-world file systems, we
propose a high-level crawling technique to significantly
reduce the error of query processing. Based on an analysis of
accuracy and efficiency for the descent process, we propose
a breadth-first implementation to reduce both error and
overhead. We evaluate Glance over both real-world (e.g.,
NTFS, NFS, Plan 9) and synthetic file systems and find very
promising results—e.g., 90 percent accuracy at 20 percent
cost. Furthermore, we demonstrate that Glance is scalable to
one billion of files and millions of directories.

We would like to note, however, that Glance also has its
limitations—there are certain ill-formed file systems that
malicious users could potentially construct that Glance
cannot effectively handle. While we plan to address security
applications in future work, our argument of Glance being a
practical system for just-in-time analytics is based upon the
fact that these systems rarely exist in practice. For example,
Glance cannot accurately answer aggregate queries if a
large number of folders are hundreds of levels below root.
Nonetheless, real-world file systems would have far smaller
depth, making such a scenario unlikely to occur. Similarly,
Glance cannot efficiently handle cases where all files have
extremely close scores. This, however, is contradicted by the
heavy-tailed distribution observed on most metadata
attributes in real-world file systems [2].

The rest of the paper is organized as follows: Section 2
presents the problem definition. We introduce the Glance
system architecture in Section 3. In Sections 4 and 5, we
describe FS_Agg and FS_TopK for processing aggregate
and top-k queries, respectively. The evaluation results are
shown in Section 6. Section 7 reviews the related work,
followed by the discussion in Section 8. We conclude in
Section 9.

2 PROBLEM STATEMENT

We now define the analytical queries, i.e., aggregate and
top-k ones, which we focus on in this paper. The examples
we list below will be used in the experimental evaluation
for testing the performance of Glance.

2.1 Aggregate Queries

In general, aggregate queries are of the form SELECT
AGGR(T) FROM D WHERE Selection Condition, where D is a
file system or storage device, T is the target piece of
information, which may be a metadata attribute (e.g., size,
time stamp) of a file or a directory, AGGR is the aggregate
function (e.g., COUNT, SUM, AVG), and Selection Condition
specifies which files and/or directories are of interest. First,
consider a system administrator who is interested in the
total number of files in the system. In this case, the

1652 IEEE TRANSACTIONS ON COMPUTERS, VOL. 61, NO. 11, NOVEMBER 2012

aggregate query that the administrator would like to issue
can be expressed as:

Q1: SELECT COUNT(files) FROM filesystem;
The operating system provides tools (e.g., Linux’s find

and Window’s dir) to gather statistics for answering such a
query. However, because each directory only maintains its
local metadata, the operating system has to recursively scan
the metadata portion of the file system (e.g., the Master File
Table for NTFS), which may lead to a longer running time.
Further, the administrator may be interested in knowing the
total size of various types of document files, e.g.,

Q2: SELECT SUM(file.size) FROM filesystem WHERE
file.extension IN {“txt,” “doc”};

If the administrator wants to compute the average size of
all exe files from user John, the query becomes

Q3: SELECT AVG(file.size) FROM filesystem WHERE
file.extension ¼ “exe” AND file.owner ¼ “John”;

Aggregate queries can also be more complex—the
following example shows a nested aggregate query for
scientific computing applications. Suppose that each direc-
tory is corresponding to a sensor and contains a number of
files corresponding to the sensor readings received at
different time. A physicist may want to count the number
of sensors that has received at least one reading during the
last 12 hours, i.e.,

Q4: SELECT COUNT(directories) FROM filesystem
WHERE EXISTS (SELECT * FROM filesystem WHERE
file.dirname ¼ directory.name AND file.mtime BETWEEN
(now # 12 hours) AND now).

2.2 Top-k Queries

In this paper, we also consider top-k queries of the form
SELECT TOP k FROM D WHERE Selection Condition
ORDER BY T DESCENDING/ASCENDING, where T is the
scoring function based on which the top-k files or directories
are selected. For example, a system administrator may want
to select the 100 largest files, i.e.,

Q5: SELECT TOP 100 files FROM filesystem ORDER BY
file.size DESCENDING;

Another example is to find the 10 most recently created
directories that were modified yesterday, i.e.,

Q6: SELECT TOP 10 directories FROM filesystem WHERE
directory.mtime BETWEEN (now # 24 hours) AND now
ORDER BY directory.ctime DESCENDING;

We note that, to approximately answer a top-k query,
one shall return a list of k items that share a large
percentage of common ones with the precise top-k list.

Current operating systems and storage devices do not
provide APIs which directly support the above-defined
aggregate and top-k queries. The objective of just-in-time
analytics can be stated as follows.

2.3 Problem Statement

The objective of Just-In-Time Analytics over File Systems is
to enable the efficient approximate processing of aggregate
and top-k queries over a file system by using the file/
directory access APIs provided by the operating system.

To complete the problem statement, we need to
determine how to measure the efficiency and accuracy of
query processing. For the purpose of this paper, we
measure the query efficiency in two metrics: 1) query time,

i.e., the runtime of query processing, and 2) query cost, i.e.,
the ratio of the number of directories visited by Glance to
that of crawling the file system (i.e., the total number of
directories in the system). We assume that one disk access is
required for reading a new directory.1 Thus, the query cost
approximates the number of disk accesses required by
Glance. The two metrics, query time and cost, are positively
correlated—the higher the query cost, the more directories
the algorithm has to sample, leading to a longer runtime.

While the efficiency measures are generic to both
aggregate and top-k query processing, the measures for
query accuracy are different. For aggregate queries, we define
the query accuracy as the relative error of the approximate
answer apx compared with the precise one ans—i.e.,
japx# ansj=jansj. For top-k queries, we define the accuracy
as the percentage of items that are common in the approx-
imate and precise top-k lists. The accuracy level required for
approximate query processing depends on the intended
application.

3 SYSTEM ARCHITECTURE OF GLANCE

We envision Glance to have the following three properties:
1) Scalability—Glance should work on file systems consist-
ing of thousands to billions of files. It should also support
local file systems as well as distributed ones which cover
thousands of machines in a large organization. 2) Accur-
acy—Glance should provide high accuracy for a large class of
aggregate and top-k queries. 3) Efficiency—Glance should
minimize both the number of disk accesses and the runtime.
To this end, Glance features a two-level architecture which is
depicted in Fig. 1. The lower level consists of local
components running independently to provide just-in-time
analytics over the local file system. The upper level is a global
component which manages the execution of local compo-
nents to produce global query answers.

3.1 Local Components

Each local component of Glance consists of three modules: a
sampler which draws samples from the local file system, a
calculator which estimates local query answers based on the
samples, and a history module which saves the historically

HUANG ET AL.: JUST-IN-TIME ANALYTICS ON LARGE FILE SYSTEMS 1653

1. Admittedly, this is a simplified assumption as certain file systems such
as NTFS require multiple disk accesses for reading one directory. None-
theless, we would like to note that this simplified assumption allows us to
perform theoretical analysis on the performance (i.e., accuracy versus access
cost) of our proposed algorithms without knowing the underlying
distribution of files in the system.

Fig. 1. Glance architecture.

issued queries and their answers. The main process of
(approximate) query processing is handled by the sampler
and the calculator. Note that both modules can be launched
in an iterative fashion to achieve a desired level of trade-off
between accuracy and cost. To determine whether to collect
more samples to refine the estimation, the user-determined
stopping condition can be specified on either accuracy or
cost—e.g., an upper bound on the runtime or the estimation
variance. If an upper bound on the estimation variance is
specified, we can approximate the variance with the sample
variance after finite-population correction [14]. The history
module is designed to reduce the cost of sampling. It stores
the previous estimations (generated by the sampler and the
calculator) over parts (e.g., subtrees) of the file system. The
idea is that the sampler (in future executions) can leverage
the history to limit the search space to the previously
unexplored part of the file system, unless it determines that
the history is obsolete (e.g., according to a predefined validity
period). Note that the history is continuously updated by the
sampler and the calculator to include newly discovered
directories and to update the existing estimations.

3.2 Global Processing for Distributed Systems

To support query processing over a distributed file system,
Glance includes a global component which manages the
local components for individual file systems. Here, we
assume that there exists a directory service which can be
utilized by Glance to communicate with the distributed
machines. Note that to answer a global query, it is not
necessary for Glance to sample every local file system,
especially when there is a large number of them. A simple
approach is for the global component to choose a small
number of file systems uniformly at random and then run
the local components over these selected systems. Based on
the local results, the global calculator can estimate an
aggregate result for the global system.

We note that the local component on each local file system
works independently, requiring neither synchronization nor
communication (with each other). This makes our Glance
system highly scalable to a distributed system. For example,
in the event where a local system becomes unavailable, busy,
or takes a considerable amount of time for response, another
machine can be selected as a replacement, making Glance
resilient to system and network faults, which are the norm in
a distributed environment.

4 AGGREGATE QUERY PROCESSING

In this section, we develop FS_Agg, our algorithm for
processing aggregate queries. We first describe FS_Agg_
Basic, a vanilla algorithm which illustrates our main idea of
aggregate estimation without bias through a random
descent process within a file system. Then, we describe
two ideas to make the vanilla algorithm practical over very
large file systems: high-level crawling leverages the special
properties of a file system to reduce the standard error of
estimation, and breadth-first implementation improves both
accuracy and efficiency of query processing. Finally, we
combine all three techniques to produce FS_Agg.

4.1 FS_Agg_Basic

4.1.1 A Random Descent Process

In general, the folder organization of a file system can be
considered as a tree or a directed acyclic graph, depending
on whether the file system allows hard links to the same
file. The random descent process we are about to discuss
can be applied to both cases with little change. For the ease
of understanding, we first focus on the case of tree-like
folder structure, and then discuss a simple extension to
DAG at the end of this section.

Fig. 2 depicts a tree structure with root corresponding to
the root directory of a file system, which we shall use as a
running example throughout the paper. One can see from
the figure that there are two types of nodes in the tree:
folders (directories) and files. A file is always a leaf node.
The children of a folder consist of all subfolders and files in
the folder. We refer to the branches coming out of a folder
node as subfolder branches and file branches, respectively,
according to their destination type. We refer to a folder with
no subfolder branches as a leaf folder. Note that this differs
from a leaf in the tree, which can be either a file or a folder
containing neither subfolder nor file. The random descent
process starts from the root and ends at a leaf folder. At
each node, we choose a subfolder branch of the node
uniformly at random for further exploration. During the
descent process, we evaluate all file branches encountered
at each node along the path, and generate an aggregate
estimation based on these file branches.

To make the idea more concrete, consider an example of
estimating the COUNT of all files in the system. At the
beginning of random descent, we access the root to obtain
the number of its file and subfolder branches f0 and s0,
respectively, and record them as our evaluation for the root.
Then, we randomly choose a subfolder branch for further
descent, and repeat this process until we arrive at a folder
with no subfolder. Suppose that the descent process
continues for h (h $ 1) steps, and the numbers we recorded
for the ith step (i 2 ½1; h&) are fi and si, for the number of file
and subfolder branches, respectively. Note that sh ¼ 0
because each descent ends at a leaf folder. We estimate
the COUNT of all files as

~n ¼
Xh

i¼0

fi '
Yi#1

j¼0

sj

 !

; ð1Þ

1654 IEEE TRANSACTIONS ON COMPUTERS, VOL. 61, NO. 11, NOVEMBER 2012

Fig. 2. Random descents on a tree-like structure.

where
Qi#1

j¼0 sj is assumed to be 1 when i ¼ 0. Two examples
of such a random descent process are marked in Fig. 2 as red
solid and blue dotted lines, respectively. The solid descent
produces hf0; f1; f2i ¼ h2; 2; 2i and hs0; s1; s2i ¼ h4; 1; 0i,
leading to an estimation of 2þ 8þ 8 ¼ 18. The dotted one
produces hf0; f1; f2i ¼ h2; 0; 1i and hs0; s1; s2i ¼ h4; 2; 0i,
leading to an estimation of 2þ 0þ 8 ¼ 10. The random
descent process can be repeated multiple times (by restart-
ing from the root) to produce a more accurate result (by
taking the average of estimations generated by all descents).

4.1.2 Unbiasedness

Somewhat surprisingly, the estimation produced by each
random descent process is completely unbiased—i.e., the
expected value of the estimation is exactly equal to the total
number of files in the system. To understand why, consider
the total number of files at the ith level (with root being Level
0) of the tree (e.g., Files 1 and 2 in Fig. 2 are at Level 3), denoted
by Fi. According to the definition of a tree, each i-level file
belongs to one and only one folder at Level i# 1. For each
ði# 1Þ-level folder vi#1, let jvi#1j and pðvi#1Þ be the number of
(i-level) files in vi#1 and the probability for vi#1 to be reached
in the random descent process, respectively. One can see that
jvi#1j=pðvi#1Þ is an unbiased estimation for F ðiÞ because

E
jvi#1j
pðvi#1Þ

! "
¼
X

vi#1

pðvi#1Þ '
jvi#1j
pðvi#1Þ

! "
¼ Fi: ð2Þ

With our design of the random descent process, the
probability pðvi#1Þ is

pðvi#1Þ ¼
Yi#2

j¼0

1

sjðvi#1Þ
; ð3Þ

where sjðvi#1Þ is the number of subfolder branches for each
node encountered on the path from the root to vi#1. Our
estimation in (1) is essentially the sum of the unbiased
estimations in (2) for all i 2 ½1;m&, where m is the maximum
depth of a file. Thus, the estimation generated by the
random descent is unbiased.

The unbiasedness of our random decent process com-
pletely eliminates a major component of estimation error
(note that the mean square error of estimation, MSE, is the
sum of bias2 and variance of estimation). We shall focus on
reducing the other component of estimation error, i.e.,
estimation variance, in the latter part of the paper.

4.1.3 Processing of Aggregate Queries

While the above example is for estimating the COUNT of
all files, the same random descent process can be used to
process queries with other aggregate functions (e.g., SUM,
AVG), with selection conditions (e.g., COUNT all files with
extension “.JPG”), and in file systems with a DAG instead
of tree structure. We now discuss these extensions. In
particular, we shall show the only change required for all
these extensions is on the computation of fi.

4.1.4 SUM

For the COUNT query, we set fi to the number of files in a
folder. To process a SUM query over a file metadata
attribute (e.g., file size), we simply set fi as the SUM of such

an attribute over all files in the folder (e.g., total size of all
files). In the running example, consider the estimation of
SUM of numbers shown on all files in Fig. 2. The solid and
dotted random walks will return hf0; f1; f2i ¼ h15; 7; 3i and
h15; 0; 5i, respectively, leading to the same estimation of 55.
The unbiasedness of such an estimation follows in analogy
from the COUNT case.

4.1.5 AVG

A simple way to process an AVG query is to estimate the
corresponding SUM and COUNT, respectively, and com-
pute AVG as SUM/COUNT. Note, however, that such an
estimation is no longer unbiased, because the division of
two unbiased estimations is not necessarily unbiased. While
an unbiased AVG estimation may be desired for certain
applications, we have proved a negative result that it is
impossible to answer an AVG query without bias unless
one accesses the file system for almost as many as times as
crawling the file system. We omit the detailed proof here
due to the space limitation. Nonetheless, for practical
purposes, estimating AVG as SUM/COUNT is in general
very accurate, as we shall show in the experimental results.

4.1.6 Selection Conditions

To process a query with selection conditions, the only
change required is, again, on the computation of fi. Instead
of evaluating fi over all file branches of a folder, to answer a
conditional query, we only evaluate fi over the files that
satisfy the selection conditions. For example, to answer a
query SELECT COUNT(*) FROM Files WHERE file.exten-
sion = “JPG,” we should set fi as the number of files under
the current folder with extension JPG. Similarly, to answer
“SUMðfile sizeÞ WHERE owner ¼ John,” we should set fi
to the SUM of sizes for all files (under the current folder)
which belong to John. Due to the computation of fi for
conditional queries, the descent process may be terminated
early to further reduce the cost of sampling. Again, consider
the query condition of (owner ¼ John). If the random
descent reaches a folder which cannot be accessed by John,
then it has to terminate immediately because of the lack of
information for further descent.

4.1.7 Extension to DAG Structure

Finally, for a file system featuring a DAG (instead of tree)
structure, we again only need to change the computation of
fi. Almost all DAG-enabled file systems (e.g., ext2, ext3, and
NTFS) provide a reference count for each file which indicates
the number of links in the DAG that point to the file.2 For a
file with r links, if we use the original algorithm discussed
above, then the file will be counted r times in the
estimation. Thus, we should discount its impact on each
estimation with a factor of 1=r. For example, if the query
being processed is the COUNT of all files, then we should
compute fi ¼

P
f2F ð1=rðfÞÞ, where F is the set of files

under the current folder, and rðfÞ is the number of links to
each file f . Similarly, to estimate the SUM of all file sizes, we
should compute fi ¼

P
f2F ðsizeðfÞ=rðfÞÞ, where sizeðfÞ is

HUANG ET AL.: JUST-IN-TIME ANALYTICS ON LARGE FILE SYSTEMS 1655

2. In ext2 and ext3, for example, the system provides the number of hard
links for each file. Note that for soft links, we can simply ignore them
during the descent process. Thus, they bear no impact on the final
estimation.

the file size of file f . One can see that with this discount
factor, we maintain an unbiased estimation over a DAG file
system structure.

4.2 Disadvantages of FS_Agg_Basic
While the estimations generated by FS_Agg_Basic are
unbiased for SUM and COUNT queries, it is important to
understand that the error of an estimation comes from not
only bias but also variance (i.e., standard error). A problem
of FS_Agg_Basic is that it may produce a high estimation
variance for file systems with an undesired distribution of
files, as illustrated by the following theorem:

Theorem 1. The variance of estimation produced by a random
descent on the number of h-level files Fh is

!ðhÞ2 ¼
X

v2Lh#1

jvj2 '
Yh#2

j¼0

sjðvÞ
 ! !

F 2
h ; ð4Þ

where Lh#1 is the set of all folders at Level h# 1, jvj is the
number of files in a folder v, and sjðvÞ is the number of
subfolders for the Level-j node on the path from the root to v.

Proof. Consider an ðh# 1Þ-level folder v. If the random
descent reaches v, then the estimation it produces for the
number of h-level files is jvj=pðvÞ, where pðvÞ is the
probability for the random descent to reach v. Let "ðhÞ be
the probability that a random descent terminates early
before reaching a Level-ðh# 1Þ folder. Since each
random descent reaches at most one Level-ðh# 1Þ folder,
the estimation variance for Fh is

!ðhÞ2 ¼ "ðhÞ ' F 2
h þ

X

v2Lh#1

pðvÞ ' jvj
pðvÞ # Fh
! "2

ð5Þ

¼ "ðhÞ ' F 2
h þ

X

v2Lh#1

jvj2

pðvÞ
2jvjFhþ

pðvÞ ' F 2

h

!
ð6Þ

¼
X

v2Lh#1

jvj2

pðvÞ

 !

F 2
h : ð7Þ

Since pðvÞ ¼ 1=
Qh#2

j¼0 sjðvÞ, the theorem is proved. tu
One can see from the theorem that the existence of two

types of folders may lead to an extremely high estimation
variance: one type is high-level leaf folders (i.e., “shallow”
folders with no subfolders). Folder c in Fig. 2 is an example.
To understand why such folders lead to a high variance,
consider (7) in the proof of Theorem 1. Note that for a large
h, a high-level leaf folder (above Level-ðh# 1Þ) reducesP

v2Lh#1
pðvÞ because once a random descent reaches such a

folder, it will not continue to retrieve any file in Level-h
(e.g., Folder c in Fig. 2 stops further descents for h ¼ 3 or 4).
As a result, the first item in (7) becomes higher, increasing
the estimation variance. For example, after removing
Folder c from Fig. 2, the estimation variance for the number
of files on Level 3 can be reduced from 24 to 9.

The other type of “ill-conditioned” folders are those deep-
level folders which reside at much lower levels than others
(i.e., with an extremely large h). An example is Folder j in
Fig. 2. The key problem arising from such a folder is that the
probability for it to be selected is usually extremely small,

leading to an estimation much larger than the real value if
the folder happens to be selected. As shown in Theorem 1, a
larger h leads to a higher

Q
sjðvÞ, which in turn leads to a

higher variance. For example, Folder j in Fig. 2 has
Q
sjðvÞ ¼

4+ 2+ 3+ 3 ¼ 72, leading to an estimation variance of 72#
1 ¼ 71 for the number of files on Level 5 (which has a real
value of 1).

4.3 FS_Agg

To reduce the estimation variance, we propose high-level
crawling and breadth-first descent to address the two
above-described problems on estimation variance, high-
level leaf folders, and deep-level folders, respectively. Also,
we shall discuss how the variance generated by FS_Agg can
be estimated in practice, effectively producing a confidence
interval for the aggregate query answer.

4.3.1 High-Level Crawling
It is designed to eliminate the negative impact of high-level
leaf folders on estimation variance. The main idea of high-
level crawling is to access all folders in the highest i levels of
the tree—by following all subfolder branches of folders
accessed on or above Level-ði# 1Þ. Then, the final estima-
tion becomes an aggregate of two components: the precise
value over the highest i levels and the estimated value
(produced by random descents) over files below Level-i.
One can see from the design of high-level crawling that now
leaf folders in the first i levels no longer reduce pðvÞ for
folders v below Level-i (and therefore no longer adversely
affect the estimation variance). Formally, we have the
following theorem which demonstrates the effectiveness of
high-level crawling on reducing the estimation variance:

Theorem 2. If r0 out of r folders crawled from the first i levels are
leaf folders, then the estimation variance produced by a random
descent for the number of Level-h files Fh satisfies

!HLCðhÞ2 ,
ðr# r0Þ ' !ðhÞ2 # r0 ' F 2

h

r
: ð8Þ

Proof. Before high-level crawling is applied, if the random
descent process reaches any of the leaf folders on the first
i levels, it in effect returns an estimation of 0 for the
number of Level-h files. If r0 out of r crawled folders are
leaf folders, the random descent process has a prob-
ability of at least r0=r to return an estimation of 0 for the
number of Level-h files. According to (7), we have

!HLCðhÞ2 ,
ð!ðhÞ2 þ F 2

h Þ ' ðr# r0Þ
r

F 2
h ð9Þ

¼ ðr# r0Þ ' !ðhÞ2 # r0 ' F 2
h

r
: ð10Þ

tu

According to this theorem, if we apply high-level
crawling over the first level in Fig. 2, then the estimation
variance for the number of files on Level 3 is at most
ð3 ' 24# 1 ' 36Þ=4 ¼ 9. As we shall see in Section 5.2 that the
variance of estimation after removing Folder c (the only
leaf folder at the first level) is exactly 9. Thus, the bound in
Theorem 2 is tight in this case.

1656 IEEE TRANSACTIONS ON COMPUTERS, VOL. 61, NO. 11, NOVEMBER 2012

4.3.2 Breadth-First Descent
It is designed to bring two advantages over FS_Agg_Basic:
variance reduction and runtime improvement, which we
shall explain as follows:

Variance reduction. Breadth-first descent starts from the
root of the tree. Then, at any level of the tree, it generates a
set of folders to access at the next level by randomly
selecting from subfolders of all folders it accesses at the
current level. Any random selection process would
work—as long as we know the probability for a folder to
be selected, we can answer aggregate queries without bias
in the same way as the original random descent process. For
example, to COUNT the number of all files in the system, an
unbiased estimation of the total number of files at Level i is
the SUM of jvi#1j=pðvi#1Þ for all Level-ði# 1Þ folders vi#1

accessed by the breadth-first implementation, where jvi#1j
and pðvi#1Þ are the number of file branches and the
probability of selection for vi#1, respectively.

We use the following random selection process in
Glance: consider a folder accessed at the current level
which has n0 subfolders. From these n0 subfolders, we
sample without replacement minðn0;maxðpsel ' n0; sminÞÞ
ones for access at the next level. Here, psel 2 ð0; 1& (where
sel stands for selection) represents the probability of which a
subfolder will be selected for sampling, and smin $ 1 states
the minimum number of subfolders that will be sampled.
Both psel and smin are user-defined parameters, the settings
for which we shall further discuss in the experiments
section based on characteristics of real-world file systems.

Compared with the original random descent design, this
breadth-first random selection process significantly in-
creases the selection probability for a deep folder. Recall
that with the original design, while drilling down one level
down the tree, the selection probability can decrease rapidly
by a factor of the fan-out (i.e., the number of subfolders) of
the current folder. With breadth-first descent, on the other
hand, the decrease is limited to at most a factor of 1=psel,
which can be much smaller than the fan-out when psel is
reasonably high (e.g., ¼ 0:5 as we shall suggest in the
experiments section). As a result, the estimation generated
by a deep folder becomes much smaller. Formally, we have
the following theorem:

Theorem 3. With breadth-first descent, the variance of estima-
tion on the number of h-level files Fh satisfies

!BFSðhÞ2 ,
X

v2Lh#1

jvj2

ph#1
sel

 !

F 2
h : ð11Þ

Proof. Recall from (7) that

!ðhÞ2 ¼
X

v2Lh#1

jvj2

pðvÞ

 !
F 2

h : ð12Þ

With breadth-first descent, the probability for the
random descent process to reach a node v at Level-h is
at least ph#1

sel . Thus,

!BFSðhÞ2 ,
X

v2Lh#1

jvj2

ph#1
sel

 !
F 2

h : ð13Þ

tu

One can see from a comparison with Theorem 1 that the
factor of

Q
sjðvÞ in the original variance, which can grow to

an extremely large value, is now replaced by 1=ph#1
sel which

can be better controlled by the Glance system to remain at a
low level even when h is large.

Runtime improvement. In the original design of FS_Agg_
Basic, random descent has to be performed multiple times
to reduce the estimation variance. Such multiple descents
are very likely to access the same folders, especially the
high-level ones. While one can leverage the history of hard-
drive accesses by caching all historic accesses in memory,
such repeated accesses can still take significant CPU time
for in-memory lookup. The breadth-first design, on the
other hand, ensures that each folder is accessed at most
once, reducing the runtime overhead of the Glance system.

4.3.3 Variance Produced by FS_Agg

An important issue for applying FS_Agg in practice is how
one can estimate the error of approximate query answers it
produces. Since FS_Agg generates unbiased answers for
SUM and COUNT queries, the key factor for error
estimation here is an accurate computation of the variance.
One can see from Theorem 3 that variance depends on the
specific structure of the file system, in particular the
distribution of selection probability psel for different folders.
Since our sampling-based algorithm does not have a global
view of the hierarchical structure, it cannot precisely
compute the variance.

Fortunately, the variance can still be accurately approxi-
mated in practice. To understand how, consider first the
depth-first descents used in FS_Agg_Basic. Each descent
returns an independent aggregate estimation, while the
average for multiple descents becomes the final approximate
query answer. Let ~q1; . . . ; ~qh be the independent estimations
and ~q ¼ ð

P
~qiÞ=h be the final answer. A simple method of

variance approximation is to compute varð~q1; . . . ; ~qhÞ=h,
where varð'Þ is the variance of independent estimations
returned by the descents. Note that if we consider a
population consisting of estimations generated by all possible
descents, then ~q1; . . . ; ~qh form a sample of the population. As
such, the variance computation is approximating the popula-
tion variance by sample variance, which are asymptotically
equal (for an increasing number of descents).

We conducted extensive experiments described in
Section 6 to verify the accuracy of such an approximation.
Fig. 3 shows two examples for counting the total number of
files in an NTFS and a Plan 9 file system, respectively.
Observe from the figure that the real variance oscillates in
the beginning of descents. For example, we observe at least
one spike on each file system within the first 100 descents.
Such a spike occurs when one descent happens to end with
a deep-level file which returns an extremely large estima-
tion, and is very likely to happen with our sampling-based
technique. Nonetheless, note that the real variance con-
verges to a small value when the number of descents is
sufficiently large (e.g., >400). Also note that for two file
systems after a small number of descents (about 50), the
sample variance varð~q1; . . . ; ~qhÞ=h becomes an extremely
accurate approximation for the real (population) variance
(overlapping shown in Fig. 3), even during the spikes. One

HUANG ET AL.: JUST-IN-TIME ANALYTICS ON LARGE FILE SYSTEMS 1657

can thereby derive an accurate confidence interval for the
query answer produced by FS_Agg_Basic.

While FS_Agg no longer performs individual depth-first
descents, the idea of using sample variance to approximate
population variance still applies. In particular, note that for
any given level, say Level-i, of the tree structure, each folder
randomly chosen by FS_Agg at Level-ði# 1Þ produces an
independent, unbiased, estimation for SUM or COUNT
aggregate over all files in Level-i. Thus, the variance for an
aggregate query answer over Level-i can be approximated
based on the variance of estimations generated by the
individual folders. The variance of final SUM or COUNT
query answer (over the entire file system) can be approxi-
mated by the SUM of variances for all levels.

5 TOP-k QUERY PROCESSING

Recall that for a given file system, a top-k query is defined
by two elements: the scoring function and the selection
conditions. Without loss of generality, we consider a top-k
query which selects k files (directories) with the highest
scores. Here, we focus on top-k queries without selection
conditions, and consider a tree-like structure of the file
system. The extensions to top-k queries with selection
conditions and file systems with DAG structures follow in
analogy from the same extensions for FS_Agg.

5.1 Main Idea

A simple way to answer a top-k query is to access every
directory to find the k files with the highest scores. The
objective of FS_TopK is to generate an approximate top-k
list with far fewer hard-drive accesses. To do so, FS_TopK
consists of the following three steps. We shall describe the
details of these steps in the next section.

1. A lower bound estimation. The first step uses a random
descent similar to FS_Agg to generate an approx-
imate lower bound on the kth highest score over the
entire file system (i.e., among files that satisfy the
selection conditions specified in the query).

2. Highest score estimations and tree pruning. In the
second step, we prune the tree structure of the file
system according to the lower bound generated in
Step 1. In particular, for each subtree, we use the
results of descents to generate an upper bound
estimate on the highest score of all files in the
subtree. If the estimation is smaller than the lower

bound from Step 1, we remove the subtree from
search space because it is unlikely to contain a top-k
file. Note that in order for such a pruning process to
have a low false negative rate—i.e., not to falsely
remove a large number of real top-k files, a key
assumption we are making here is the “locality” of
scores—i.e., files with similar scores are likely to
colocate in the same directory or close by3 in the tree
structure. Intuitively, the files in a directory are
likely to have similar creation and update times. In
some cases (e.g., images in the “My Pictures”
directory, and outputs from a simulation program),
the files will likely have similar sizes too. Note that
the strength of this locality is heavily dependent on
the type of the query and the semantics of the file
system on which the query is running. We plan to
investigate this issue as part of the future work.

3. Crawling of the selected tree. Finally, we crawl the
remaining search space—i.e., the selected tree—by
accessing every folder in it to locate the top-k files as
the query answer. Such an answer is approximate
because some real top-k files might exist in the
nonselected subtrees, albeit with a small probability,
as we shall show in the experimental results.

In the running example, consider a query for the top-3
files with the highest numbers shown in Fig. 2. Suppose that
Step 1 generates a (conservative) lower bound of 8, and the
highest scores estimated in Step 2 for subtrees with roots a,
c, d, and m are 5, -1 (i.e., no file), 7, and 15, respectively—the
details of these estimations will be discussed shortly. Then,
the pruning step will remove the subtrees with roots a, c,
and d, because their estimated highest scores are lower than
the lower bound of 8. Thus, the final crawling step only
needs to access the subtree with root of m. In this example,
the algorithm would return the files identified as 8, 9, and
10, locating two top-3 files while crawling only a small
fraction of the tree. Note that the file with the highest
number 11 could not be located because the pruning step
removes the subtree with root of d.

5.2 Detailed Design

The design of FS_TopK is built upon a hypothesis that the
highest scores estimated in Step 2, when compared with the
lower bound estimated in Step 1, can prune a large portion
of the tree, significantly reducing the overhead of crawling
in Step 3. In the following, we first describe the estimations
of the lower bound and the highest scores in Steps 1 and 2,
and then discuss the validity of the hypothesis for various
types of scoring functions.

Both estimations in the two steps can be made from the
order statistics [20] of files retrieved by the random descent
process in FS_Agg. The reason is that both estimations are
essentially on the order statistics of the population (i.e., all
files in the system)—the lower bound in Step 1 is the
kth largest order statistics of all files, while the highest
scores are on the largest order statistics of the subtrees. We
refer readers to [20] for details of how the order statistics of
a sample can be used to estimate that of the population and
how accurate such an estimation is.

1658 IEEE TRANSACTIONS ON COMPUTERS, VOL. 61, NO. 11, NOVEMBER 2012

3. We define the “distance” between two files as the length of the shortest
path connecting the two files in the tree structure. The shorter the distance
is, the closer the two files would be.

Fig. 3. Variance approximation for two file systems, (a) NTFS and
(b) Plan 9. Real and sample variances are overlapped when the number
of descents is sufficiently large.

While sampling for order statistics is a problem in its
own right, for the purpose of this paper, we consider the
following simple approach which, according to our experi-
ments over real-world file systems, suffices for answering
top-k queries accurately and efficiently over almost all
tested systems: for the lower bound estimation in Step 1, we
use the sample quantile as an estimation of the population
quantile. For example, to estimate the 100th largest score of
a system with 10,000 files, we use the largest score of a 100-
file sample as an estimation. Our tests show that for many
practical scoring functions (which usually have a positive
skew, as we shall discuss below), the result serves as a
conservative lower bound desired by FS_TopK. For the
highest score estimation in Step 2, we simply compute
'maxðsample scoresÞ, where # is a constant correction
parameter. The setting of # captures a trade-off between the
crawling cost and the chances of finding top-k files—when a
larger # is selected, fewer subtrees are likely to be removed.

We now discuss when the hypothesis of heavy pruning
is valid and when it is not. Ideally, two conditions should be
satisfied for the hypothesis to hold: 1) If a subtree includes a
top-k file, then it should include a (relatively) large number
of highly scored files, in order for the sampling process (in
Step 2) to capture one (and to thereby produce a highest
score estimation that surpasses the lower bound) with a
small query cost. And 2) on the other hand, most subtrees
(which do not include a top-k file) should have a maximum
score significantly lower than the kth highest score. This
way, a large number of subtrees can be pruned to improve
the efficiency of top-k query processing. In general, one can
easily construct a scoring function that satisfies both or
neither of the above two conditions. We focus on a special
class of scoring functions: those following a heavy-tailed
distributions (i.e., its cumulative distribution function F ð'Þ
satisfies limx!1 e$xð1# F ðxÞÞ ¼1 for all $ > 0). Existing
studies on real-world file system traces showed that many
file/directory metadata attributes, which are commonly
used as scoring functions, belong to this category [2]. For
example, the distributions of file size, last modified time,
creation time, etc., in the entire file system or in a particular
subtree are likely to have a heavy tail on one or both
extremes of the distribution.

A key intuition is that scoring functions defined as such
attribute values (e.g., finding the top-k files with the
maximum sizes or the latest modified time) usually satisfy
both conditions: first, because of the long tail, a subtree
which includes a top-k scored file is likely to include many
other highly scored files too. Second, since the vast majority
of subtrees have their maximum scores significantly smaller
than the top-k lower bound, the pruning process is likely to
be effective with such a scoring function.

We would also like to point out an “opposite” class of
scoring functions for which the pruning process is not
effective: the inverse of the above scoring functions—e.g.,
the top-k files with the smallest sizes. Such a scoring
function, when used in a top-k query, selects k files from the
“crowded” light-tailed side of the distribution. The pruning
is less likely to be effective because many other folders may
have files with similar scores, violating the second condition
stated above. Fortunately, asking for top-k smallest files is

not particularly useful in practice, also because of the fact
that it selects from the crowded side—the answer is likely to
be a large number of empty files.

6 IMPLEMENTATION AND EVALUATION

6.1 Implementation

We implemented Glance, including all three algorithms
(FS_Agg_Basic, FS_Agg, and FS_TopK) in 1,600 lines of
C code in Linux. We also built and used a simulator in
Matlab to complete a large number of tests within a short
period of time. While the implementation was built upon
the ext3 file system, the algorithms are generic to any
hierarchical file system and the current implementation can
be easily ported to other platforms, e.g., Windows and Mac
OS. FS_Agg_ Basic has only one parameter: the number of
descents. FS_Agg has three parameters: the selection
probability psel, the minimum number of selections smin,
and the number of (highest) levels for crawling h. Our
default parameter settings are psel ¼ 50 percent; smin ¼ 3,
and h ¼ 4. We also tested with other combinations of
parameter settings. FS_TopK has one additional parameter,
the (estimation) enlargement ratio #. The setting of #
depends on the query to be answered, which shall be
explained later.

6.2 Experiment Setup

6.2.1 Test Platform

We ran all experiments on Linux machines4 with Intel
Core 2 Duo processor, 4 GB RAM, and 1 TB Samsung
7200RPM hard drive. Unless otherwise specified, we ran
each experiment for five times and reported the averages.

6.2.2 Windows File Systems
The Microsoft traces [2] include the snapshots of around
63,000 file systems, 80 percent of which are NTFS and the
rest are FAT. For each file system, the trace includes a
separate entry for each file and directory in the system,
recording its metadata attributes (e.g., size and time
stamps). This enabled us to reconstruct the file system by
first creating the directory tree structure, and then populat-
ing all files into the corresponding directories. We also set
the metadata attributes for all files and directories according
to the trace entries. To test Glance over file systems with a
wide range of sizes, we first selected from the traces two file
systems, m100K and m1M (the first “m” stands for
Microsoft trace), which are the largest file systems with
less than 100K and 1M files, respectively. Specifically,
m100K has 99,985 files and 16,013 directories, and m1M has
998,472 files and 106,892 directories. We also tested the
largest system in the trace, m10M, which has the maximum
number of files (9,496,510) and directories (789,097). We put
together the largest 33 file systems in the trace to obtain
m100M that contains over 100M files and 7M directories. In
order to evaluate next-generation billion-level file systems

HUANG ET AL.: JUST-IN-TIME ANALYTICS ON LARGE FILE SYSTEMS 1659

4. We note that the file-system traces we used are captured from various
operating systems—as such, the subtle differences between OS implemen-
tations may lead to different performance figures in terms of file-system
access time. Nonetheless, the vast majority of our experiments are not
directly testing the file-system performance, but the accuracy and access
cost measures which are not affected by the specific file system as long as
the tree structure is determined.

for which there are no available traces, we chose to replicate
m100M for 10 times to create m1B with over one billion
files and 70M directories. While a similar scale-up approach
has been used in the literature [26], [51], we would like to
note that the duplication-filled system may exhibit different
properties from a real system with 100M or 1B files. As part
of future work, we shall evaluate our techniques in real-
world billion-level file systems. Note that we also used
other file systems in the trace for testing Glance in a
distributed environment.

6.2.3 Plan 9 File Systems

Plan 9 is a distributed file system developed and used at the
Bell Labs [43], [44]. We replayed the trace data collected on
two central file servers bootes and emelie, to obtain two file
systems, pb (for bootes) and pe (for emelie), each of which has
over 2M files and 70-80K directories.

6.2.4 NFS

Here, we used the Harvard trace [21], [47] that consists of
workloads on NFS servers. The replay of one-day trace
created about 1,500 directories and 20K files. Again, we scaled
up the one-day system to a larger file system nfs (2.3M files
and 137K folders), using the above-mentioned approach.

6.2.5 Synthetic File Systems

To conduct a more comprehensive set of experiments on file
systems with different file and directory counts, we used
Impressions [1] to generate a set of synthetic file systems.
Impressions takes as input the distributions of file and
directory counts and metadata attributes (e.g., number of
files per directory, file size, and time stamps), and randomly
generates a file system image on disk. For metadata
attributes, Impressions by default uses the empirical

distributions identified by studies on the Microsoft traces
[2]. By adjusting the file count and the (expected) number of
files per directory, we used Impressions to generate three
file systems, i10K, i100K, and i1M (here “i” stands for
Impressions), with file counts 10K, 100K, and 1M, and
directory counts 1K, 10K, and 100K, respectively.

6.3 Aggregate Queries

We first considered Q1 discussed in Section 2, i.e., the total
number of files in the system. To provide a more intuitive
understanding of query accuracy (than the arguably
abstract measure of relative error), we used the Matlab
simulator (for quick simulation) to generate a box plot
(Fig. 4) of estimations and overhead produced by Glance on
Q1 over five file systems, m100K to m10M, pb, and pe. In the
figure, the central line of each box represents the median
value, and the edges of the box stand for the 25th and 75th
percentiles of the runs. Remember as defined in Section 2,
the query cost (in Fig. 4b and the following figures) is the
ratio between the number of directories visited by Glance
and that by file-system crawling. One can see that Glance
consistently generates accurate query answers, e.g., for
m10M, sampling 30 percent of directories produces an
answer with 2 percent average error. While there are
outliers, the number of outliers is small and their errors
never exceed 7 percent.

We also evaluated Glance with other file systems and
varied the input parameter settings. This test was
conducted on the Linux and ext3 implementation, and
so were the following tests on aggregate queries. In this
test, we varied the minimum number of selections smin

from 3 to 6, the number of crawled levels h from 3 to 5,
and set the selection probability as psel ¼ 50 percent (i.e.,
half of the subfolders will be selected if the amount is
more than smin). Fig. 5 shows the query accuracy and cost
on the 11 file systems we tested. For all file systems,
Glance was able to produce very accurate answers (with
<10 percent relative error) when crawling four or more
levels (i.e., h $ 4). Also note from Fig. 5 that the
performance of Glance is less dependent on the type of
the file system than its size—it achieves over 90 percent
accuracy for NFS, Plan 9, and NTFS (m10M to m1B).
Depending on the individual file systems, the cost ranges
from less than 12 percent of crawling for large systems

1660 IEEE TRANSACTIONS ON COMPUTERS, VOL. 61, NO. 11, NOVEMBER 2012

Fig. 4. Box plots of accuracy and cost of 100 trials.

Fig. 5. Accuracy and cost of aggregate queries under different settings of the input parameters. Label 3-3 stands for h of 3 and smin of 3, 3-6 for h of 3
and smin of 6, etc., while psel is 50 percent for all cases.

with 1B files and 80 percent for the small 100K system.
The algorithm scales very well to large file systems, e.g.,
m100M and m1B—the relative error is only 1-3 percent
when Glance accesses only 10-20 percent of all directories.
For m1B, the combination of psel ¼ 50 percent, smin ¼ 3,
and h ¼ 4 produces 99 percent accuracy with very little
cost (12 percent).

The absolute runtime depends heavily on the size of the
file system, e.g., seconds for m100K, several minutes for nfs
(2.3M files), and 1.2 hours for m100M. Note that in this
paper, we only used a single hard drive; parallel IO to
multiple hard drives (e.g., RAID) will be able to utilize the
aggregate bandwidth to further improve the performance.
Due to space limitations, we could not include a detailed
discussion of the results. Please refer to [27] for a complete
presentation.

We also considered other aggregate queries with various
aggregate functions and with/without selection conditions,
that is, Q2 and Q3 like queries as in Section 2. Fig. 6a
presents the accuracy and cost of evaluating the SUM and
AVG of file sizes for all files in the system, while Fig. 6b
depicts the same for exe files. We included in both figures
the accuracy of COUNT because AVG is calculated as
SUM/COUNT. Both SUM and AVG queries receive very
accurate answers, e.g., only 2 percent relative error for
m10M with or without the selection condition of “.exe.” The
query costs are moderate for large systems—30 percent for
m1M and m10M (higher for the small system m100K). We
also tested SUM and AVG queries with other selection
conditions (e.g., file type = “.dll”) and found similar results.

6.4 Improvements over FS_Agg_Basic

To investigate the effectiveness of the two enhancements
used in FS_Agg, we compared the accuracy and efficiency
(in terms of runtime) of FS_Agg with FS_Agg_Basic over
Q1. Fig. 7 depicts the result, with runtime normalized to
that of the find command in Linux. One can see from the
result that while both algorithms are much more efficient
than find for almost all file systems, the improvement from
FS_Agg_Basic to FS_Agg is also significant—e.g., for

m100M, the accuracy increases from 69 to 97 percent
while the runtime decreases slightly. Note that while the
runtime for FS_Agg is actually higher for i100K and i1M,
this can be justified by more than 40 percent gains in terms
of accuracy.

6.5 Distributed Aggregate Queries

To emulate a distributed environment, we tested FS_Agg
over a combination of 100 or 1,000 file systems randomly
selected from the Microsoft traces. Note that, to process
aggregate queries over a distributed system, Glance may
only sample a small percentage of randomly selected
machines to perform FS_Agg. To verify the effectiveness
of this approach, we varied the selection percentage—i.e., the
percentage of machines randomly selected to run
FS_Agg—from 0 to 100 percent for the 100-machine system
and from 0 to 10 percent for the 1,000-machine system. After
running FS_Agg over all selected systems, we multiplied
the average file count per machine with the total number of
machines to produce the final query answer. Fig. 8 depicts
the accuracy and cost for counting the total number of files
over both systems. For the 100-machine system, the query
accuracy increases quickly to above 80 percent when

HUANG ET AL.: JUST-IN-TIME ANALYTICS ON LARGE FILE SYSTEMS 1661

Fig. 6. Accuracy and cost of queries.

Fig. 7. Query accuracy and time for Basic and FS_Agg.

Fig. 8. Distributed queries.

sampling 30 percent of the machines and incurring a cost of
16 percent compared with crawling all machines. The
accuracy is further improved to 98 percent when all
machines are selected and a query cost of 50 percent is
incurred. The performance is even better for the 1,000-
machine system. In particular, 80 percent accuracy is
achieved when 2 percent of all machines are selected—in-
curring a query cost of just 0.9 percent. The accuracy varies
when sampling more machines, which is not surprising
considering the large variations among all file systems.

6.6 Top-k Queries
To evaluate the performance of FS_TopK, we considered
both Q5 and Q6 discussed in Section 2. For Q5, i.e., the k
largest files, we tested Glance over five file systems, with k
being 50 or 100. One can see from the results depicted in
Fig. 9 that, in all but one case (m1M), Glance is capable of
locating at least 50 percent of all top-k files (for pb, more
than 95 percent are located). Meanwhile, the cost is as little
as 4 percent of crawling (for m10M). For these top-k queries,
similar to aggregate queries, the runtime is correlated with
the size of the file system—the queries take only a few
seconds for small file systems, and up to 10 minutes for
large systems (e.g., m10M). When we varied # from 1, 5, 10
to 100,000 in this test, we found that the query cost increases
as # does. Fortunately, a moderate # of 5 and 10 presents a
good trade-off point—achieving a reasonable accuracy
without incurring too much cost.

We also tested Q6, i.e., the k most recently modified files
over m100K, m1M, and pb, and Glance is capable of locating
more than 90 percent of top-k files for pb, and about 60 percent
for m100K and m1M. The cost, meanwhile, is 28 percent of
crawling for m100K, 1 percent for m1M, and 36 percent for pb.
Interested readers may refer to [27] for details.

7 RELATED WORK

7.1 Metadata Query on File Systems

Prior research on file-system metadata query [26], [28], [34],
[36] has extensively focused on databases, which utilize
indexes on file metadata. However, the results [26], [33],
[34] reviewed the inefficiency of this paradigm due to
metadata locality and distribution skewness in large file
systems. To solve this problem, Spyglass [32], [34],
SmartStore [26], and Magellan [33] utilize multidimensional
structures (e.g., K-D trees and R-trees) to build indexes

upon subtree partitions or semantic groups. SmartStore
attempts to reorganize the files based on their metadata
semantics. Conversely, Glance avoids any file-specific
optimizations, aiming instead to maintain file system
agnosticism. It works seamlessly with the tree structure of
a file system and avoids the time and space overheads from
building and maintaining the metadata indexes.

7.2 Comparison with Database Sampling

Traditionally, database sampling has been used to reduce the
cost of retrieving data from a DBMS. Random sampling
mechanisms have been extensively studied [4], [6], [9], [12],
[14], [15], [22], [37]. Applications of random sampling
include estimation methodologies for histograms and
approximate query processing (see tutorial in [15]). How-
ever, these techniques do not apply when there is no direct
random access to all elements of interest—e.g., in a file
system, where there is no complete list of all files/directories.

Another particularly relevant topic is the sampling of
hidden web databases [8], [24], [25], [30], for which a
random descent process has been used to construct queries
issued over the web interfaces of these databases [16], [17],
[18], [19]. While both these techniques and Glance use
random descents, a unique challenge for sampling a file
system is its much more complex distribution of files. If we
consider a hidden database in the context of a file system,
then all files (i.e., tuples) appear under folders with no
subfolders. Thus, the complex distribution of files in a file
system calls for a different sampling technique which we
present in the paper.

7.3 Top-k Query Processing

Top-k query processing has been extensively studied over
both databases (e.g., see a recent survey [29]) and file
systems [3], [7], [26], [34]. For file systems, a popular
application is to locate the top-k most frequent (or space-
consuming) files/blocks for redundancy detection and
removal. For example, Lillibridge et al. [35] proposed the
construction of an in-memory sparse index to compare an
incoming block against a few (most similar) previously
stored blocks for duplicate detections (which can be
understood as a top-k query with a scoring function of
similarity). Top-k query processing has also been discussed
in other index building techniques, e.g., in Spyglass [34] and
SmartStore [26].

8 DISCUSSION

At present, Glance takes several predefined parameters as
the inputs and needs to complete the execution in whole.
That is, Glance is not an anytime algorithm and cannot be
stopped in the middle of the execution, because our current
approach relies on a complete sample to reduce query
variance and achieve high accuracy. One limitation of this
approach is that its runtime over an alien file system is
unknown in advance, making it unsuitable for the applica-
tions with absolute time constraints. For example, a border
patrol agent may need to count the amount of encrypted
files in a traveler’s hard drive, in order to determine
whether the traveler could be transporting sensitive docu-
ments across the border [13], [46]. In this case, the agent

1662 IEEE TRANSACTIONS ON COMPUTERS, VOL. 61, NO. 11, NOVEMBER 2012

Fig. 9. Accuracy and cost of Top-k queries on file size.

must make a fast decision as the amount of time each
traveler can be detained for is extremely limited. We
envision that in the future, Glance shall offer a time-out
knob that a user can use to decide the query time over a file
system. This calls for new algorithms that allow Glance to
get smarter—be predictive about the runtime and self-
adjust the work flow based on the real-time requirements.

Glance currently employs a “static” strategy over file
systems and queries, i.e., it does not modify its techniques
and traversals for a query. A dynamic approach is attractive
because in that case Glance would be able to adjust the
algorithms and parameters depending on the current query
and file system. New sampling techniques, e.g., stratified
and weighted sampling, shall be investigated to further
improve query accuracy on large file systems. The semantic
knowledge of a file system can also help in this approach.
For example, most images can be found in a special
directory, e.g., “/User/Pictures/” in MacOS X, or “\Docu-
ments and Settings\User\My Documents\My Pictures\”
in Windows XP.

Glance shall also leverage the results from the previous
queries to significantly expedite the future ones, which is
beneficial in situations when the workload is a set of queries
that are executed very infrequently. The basic idea is to store
the previous estimations over parts (e.g., subtrees) of the file
system, and utilize the history to limit the search space to
the previously unexplored part of the file system, unless it
determines that the history is obsolete (e.g., according to a
predefined validity period). Note that the history shall be
continuously updated to include newly discovered direc-
tories and to update the existing estimations.

9 CONCLUSION

In this paper, we have initiated an investigation of just-in-
time analytics over a large-scale file system through its tree- or
DAG-like structure. We proposed a random descent techni-
que to produce unbiased estimations for SUM and COUNT
queries and accurate estimations for other aggregate queries,
and a pruning-based technique for the approximate proces-
sing of top-k queries. We proposed two improvements, high-
level crawling and breadth-first descent, and described a
comprehensive set of experiments which demonstrate the
effectiveness of our approach over real-world file systems.

ACKNOWLEDGMENTS

The authors thank the anonymous reviewers from IEEE
Transactions on Computers, FAST ’11 reviewers, and our FAST
shepherd John Bent, for their suggestions that helped
significantly improve this paper. They owe them a great
deal of gratitude. They also thank Hong Jiang and Yifeng
Zhu for their help on replaying the NFS trace, and Ron C.
Chiang for his help on the artwork. This work was supported
by the US National Science Foundation (NSF) grants OCI-
0937875, OCI-0937947, IIS-0845644, CCF-0852674, CNS-
0852673, and CNS-0915834. A preliminary version of this
paper appeared in the 9th USENIX Conference on File and
Storage Technologies (FAST ’11).

REFERENCES

[1] N. Agrawal, A. Arpaci-Dusseau, and R. Arpaci-Dusseau, “Gen-
erating Realistic Impressions for File-System Benchmarking,”
ACM Trans. Storage, vol. 5, no. 4, pp. 1-30, 2009.

[2] N. Agrawal, W. Bolosky, J. Douceur, and J. Lorch, “A Five-Year
Study of File-System Metadata,” Proc. Fifth USENIX Conf. File and
Storage Technologies, pp. 31-45, 2007.

[3] S. Ames, M. Gokhale, and C. Maltzahn, “Design and Implementa-
tion of a Metadata-Rich File System,” Technical Report UCSC-
SOE-10-07, Univ. of California, Santa Cruz, 2010.

[4] D. Barbara, “The New Jersey Data Reduction Report,” IEEE Data
Eng. Bull., vol. 20, no. 4, pp. 3-45, Dec. 1997.

[5] Beagle, http://beagle-project.org/, 2011.
[6] J. Bethel, “Sample Allocation in Multivariate Surveys,” Survey

Methodology, vol. 15, no. 1, pp. 47-57, 1989.
[7] S. Brandt, C. Maltzahn, N. Polyzotis, and W.-C. Tan, “Fusing Data

Management Services with File Systems,” Proc. Fourth Ann.
Workshop Petascale Data Storage (PDSW ’09), pp. 42-46, 2009.

[8] J. Callan and M. Connell, “Query-Based Sampling of Text
Databases,” ACM Trans. Information Systems, vol. 19, pp. 97-130,
Apr. 2001.

[9] B. Causey, “Computational Aspects of Optimal Allocation in
Multivariate Stratified Sampling,” SIAM J. Scientific and Statistical
Computing, vol. 4, pp. 322-329, 1983.

[10] S. Chaudhuri, G. Das, and V. Narasayya, “Optimized Stratified
Sampling for Approximate Query Processing,” ACM Trans.
Database Systems, vol. 32, no. 2, p. 9, 2007.

[11] S. Chaudhuri, G. Das, and U. Srivastava, “Effective Use of Block-
Level Sampling in Statistics Estimation,” Proc. ACM SIGMOD Int’l
Conf. Management of Data, pp. 287-298, 2004.

[12] J. Chromy, “Design Optimization with Multiple Objectives,” Proc.
Research Methods of the Am. Statistical Assoc., pp. 194-199, 1987.

[13] CNet, “Security Guide to Customs-Proofing Your Laptop,”
http://news.cnet.com/8301-13578_3-9892897-38.html, 2009.

[14] W. Cochran, Sampling Techniques. John Wiley & Sons, 1977.
[15] G. Das, “Survey of Approximate Query Processing Techniques

(Tutorial),” Proc. Int’l Conf. Scientific and Statistical Database
Management (SSDBM ’03), 2003.

[16] A. Dasgupta, G. Das, and H. Mannila, “A Random Walk
Approach to Sampling Hidden Databases,” Proc. ACM SIGMOD
Int’l Conf. Management of Data (SIGMOD ’07), pp. 629-640, 2007.

[17] A. Dasgupta, X. Jin, B. Jewell, N. Zhang, and G. Das, “Unbiased
Estimation of Size and Other Aggregates over Hidden Web
Databases,” Proc. Int’l Conf. Management of Data (SIGMOD),
pp. 855-866, 2010.

[18] A. Dasgupta, N. Zhang, and G. Das, “Leveraging Count
Information in Sampling Hidden Databases,” Proc. IEEE Int’l
Conf. Data Eng., pp. 329-340, 2009.

[19] A. Dasgupta, N. Zhang, G. Das, and S. Chaudhuri, “Privacy
Preservation of Aggregates in Hidden Databases: Why and
How?” Proc. 35th SIGMOD Int’l Conf. Management of Data,
pp. 153-164, 2009.

[20] H.A. David and H.N. Nagaraja, Order Statistics, third ed. Wiley,
2003.

[21] D. Ellard, J. Ledlie, P. Malkani, and M. Seltzer, “Passive Nfs
Tracing of Email and Research Workloads,” Proc. Second USENIX
Conf. File and Storage Technologies (FAST ’03), pp. 203-216, 2003.

[22] M.N. Garofalakis and P.B. Gibbon, “Approximate Query Proces-
sing: Taming the Terabytes,” Proc. 27th Int’l Conf. Very Large Data
Bases (VLDB), 2001.

[23] Google, Google Desktop, http://desktop.google.com/, 2011.
[24] Y.L. Hedley, M. Younas, A. James, and M. Sanderson, “A Two-

Phase Sampling Technique for Information Extraction from
Hidden Web Databases,” Proc. Sixth Ann. ACM Int’l Workshop
Web Information and Data Management (WIDM ’04), pp. 1-8, 2004.

[25] Y.L. Hedley, M. Younas, A.E. James, and M. Sanderson,
“Sampling, Information Extraction and Summarisation of Hidden
Web Databases,” Data and Knowledge Eng., vol. 59, no. 2, pp. 213-
230, 2006.

[26] Y. Hua, H. Jiang, Y. Zhu, D. Feng, and L. Tian, “SmartStore: A
New Metadata Organization Paradigm with Semantic-Awareness
for Next-Generation File Systems,” Proc. Conf. High Performance
Computing Networking, Storage and Analysis (SC), pp. 1-12, 2009.

[27] H. Huang, N. Zhang, W. Wang, G. Das, and A. Szalay, “Just-in-
Time Analytics on Large File Systems,” Proc. Ninth USENIX Conf.
File and Storage Technologies, 2011.

HUANG ET AL.: JUST-IN-TIME ANALYTICS ON LARGE FILE SYSTEMS 1663

[28] L. Huston, R. Sukthankar, R. Wickremesinghe, M. Satyanaraya-
nan, G. Ganger, E. Riedel, and A. Ailamaki, “Diamond: A Storage
Architecture for Early Discard in Interactive Search,” Proc.
USENIX Conf. File and Storage Technologies (FAST), 2004.

[29] I.F. Ilyas, G. Beskales, and M.A. Soliman, “A Survey of Top-k
Query Processing Techniques in Relational Database Systems,”
ACM Computing Surveys, vol. 40, no. 4, pp. 1-58, 2008.

[30] P.G. Ipeirotis and L. Gravano, “Distributed Search over the
Hidden Web: Hierarchical Database Sampling and Selection,”
Proc. 28th Int’l Conf. Very Large Data Bases (VLDB ’02), pp. 394-405,
2002.

[31] P. Kogge, “Exascale Computing Study: Technology Challenges in
Achieving Exascale Systems,” DARPA Information Processing
Techniques Office, vol. 28, 2008.

[32] A. Leung, “Organizing, Indexing, and Searching Large-Scale
File Systems,” Technical Report UCSC-SSRC-09-09, Univ. of
California, Santa Cruz, Dec. 2009.

[33] A. Leung, I. Adams, and E. Miller, “Magellan: A Searchable
Metadata Architecture for Large-Scale File Systems,” Technical
Report UCSC-SSRC-09-07, Univ. of California, Santa Cruz, Nov.
2009.

[34] A.W. Leung, M. Shao, T. Bisson, S. Pasupathy, and E.L. Miller,
“Spyglass: Fast, Scalable Metadata Search for Large-Scale Storage
Systems,” Proc. Seventh Conf. File and Storage Technologies (FAST),
pp. 153-166, 2009.

[35] M. Lillibridge, K. Eshghi, D. Bhagwat, V. Deolalikar, G. Trezise,
and P. Camble, “Sparse Indexing: Large Scale, Inline Deduplica-
tion Using Sampling and Locality,” Proc. Seventh Conf. File and
Storage Technologies (FAST), pp. 111-123, 2009.

[36] L. Liu, L. Xu, Y. Wu, G. Yang, and G. Ganger, “Smartscan:
Efficient Metadata Crawl for Storage Management Metadata
Querying in Large File Systems,” Carnegie Mellon Univ. Parallel
Data Lab Technical Report CMU-PDL-10-112, 2010.

[37] S. Lohr, Sampling: Design and Analysis. Cengage Learning, 1999.
[38] N. Murphy, M. Tonkelowitz, and M. Vernal, “The Design

and Implementation of the Database File System,” http://
citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.11.8068,
2002.

[39] J. Nunez, “High End Computing File System and IO R&D Gaps
Roadmap,” Proc. HEC FSIO R&D Conf., Aug. 2008.

[40] F. Olken and D. Rotem, “Simple Random Sampling from
Relational Databases,” Proc. 12th Int’l Conf. Very Large Data Bases,
pp. 160-169, 1986.

[41] F. Olken and D. Rotem, “Random Sampling from Database Files:
A Survey,” Proc. Fifth Int’l Conf. Statistical and Scientific Database
Management, pp. 92-111, 1990.

[42] M. Olson, “The Design and Implementation of the Inversion File
System,” Proc. Winter 1993 USENIX Technical Conf., pp. 205-217,
1993.

[43] R. Pike, D. Presotto, S. Dorward, B. Flandrena, K. Thompson, H.
Trickey, and P. Winterbottom, “Plan 9 from Bell Labs,” Computing
Systems, vol. 8, no. 3, pp. 221-254, 1995.

[44] Plan 9 File System Traces, http://pdos.csail.mit.edu/p9trace/,
2011.

[45] M. Seltzer and N. Murphy, “Hierarchical File Systems Are Dead,”
Proc. 12th Conf. Hot Topics in Operating Systems (HotOS ’09), p. 1,
2009.

[46] SlashDot, “Laptops Can Be Searched at the Border,” http://
yro.slashdot.org/article.pl?sid=08/04/22/1733251, 2008.

[47] SNIA, NFS Traces, http://iotta.snia.org/traces/list/NFS, 2010.
[48] P. Stahlberg, G. Miklau, and B.N. Levine, “Threats to Privacy in

the Forensic Analysis of Database Systems,” Proc. ACM SIGMOD
Int’l Conf. Management of Data (SIGMOD ’07) pp. 91-102, 2007.

[49] A. Szalay, “New Challenges in Petascale Scientific Databases,”
Proc. 20th Int’l Conf. Scientific and Statistical Database Management
(SSDBM ’08), p. 1, 2008.

[50] J. Vitter, “Random Sampling with a Reservoir,” ACM Trans. Math.
Software, vol. 11, no. 1, pp. 37-57, 1985.

[51] Y. Zhu, H. Jiang, J. Wang, and F. Xian, “HBA: Distributed
Metadata Management for Large Cluster-Based Storage Systems,”
IEEE Trans. Parallel and Distributed Systems, vol. 19, no. 6, pp. 750-
763, June 2008.

H. Howie Huang received the PhD degree in
computer science from the University of Virginia.
He is an assistant professor in computer
engineering in the Department of Electrical and
Computer Engineering at the George Washing-
ton University. His research interest is computer
and systems architecture, especially data-inten-
sive computing, file and storage systems, and
grid and cloud computing. His research is
supported by awards from US National Science

Foundation (NSF) and IBM. He won an IBM Real Time Innovation
Faculty Award in 2008.

Nan Zhang received the BS degree from Peking
University in 2001 and the PhD degree from
Texas A&M University in 2006, both in computer
science. He is an assistant professor of compu-
ter science at the George Washington Univer-
sity, Washington, District of Columbia. Prior to
joining GWU, he was an assistant professor of
computer science and engineering at the Uni-
versity of Texas at Arlington from 2006 to 2008.
His current research interests span security and

privacy issues in databases, data mining, and computer networks,
including privacy and anonymity in data collection, publishing, and
sharing, privacy-preserving data mining, and wireless network security
and privacy. He received the US National Science Foundation (NSF)
CAREER Award in 2008.

Wei Wang graduated from Huazhong University
of Science and Technology, China, with the BE
degree in computer science and received the
MS degree in computer science from the
University of Delaware (UD). He is working
toward the PhD degree at the University of
Delaware. Before he continued his PhD pro-
gram, he spent six months at The George
Washington University as a research assistant.
His research interests are operating systems,

compilers, and high performance computing.

Gautam Das graduated with the BTech degree
in computer science from IIT Kanpur, India, and
received the PhD degree in computer science
from the University of Wisconsin-Madison. He is
a full professor in the Computer Science and
Engineering Department of the University of
Texas at Arlington. Prior to UTA, he has held
positions at Microsoft Research, Compaq Cor-
poration, and the University of Memphis, as well
as visiting positions at IBM Research. His

research interests span data mining, information retrieval, databases,
applied graph and network algorithms, and computational geometry. His
research has resulted in numerous papers that have appeared in
premier conferences and journals in databases, data mining, and
theoretical computer science. His research has been supported by
grants from federal and state agencies such as the US National Science
Foundation (NSF), Office of Naval Research, Department of Education,
Texas Higher Education Coordination Board, as well as industry such as
Nokia, Microsoft, Cadence, and Apollo.

Alexander S. Szalay is the Alumni Centennial
professor of astronomy at the Johns Hopkins
University. He is also a professor in the
Department of Computer Science. He is a
cosmologist, working on the statistical measures
of the spatial distribution of galaxies and galaxy
formation. He has written papers covering areas
from theoretical cosmology to observational
astronomy, spatial statistics, and computer
science. He is a corresponding member of the

Hungarian Academy of Sciences, a fellow of the American Academy of
Arts and Sciences. In 2004, he received an Alexander Von Humboldt
Award in Physical Sciences, and in 2008, a Microsoft Award for
Technical Computing.

1664 IEEE TRANSACTIONS ON COMPUTERS, VOL. 61, NO. 11, NOVEMBER 2012

