
Swiper: Exploiting Virtual Machine Vulnerability
in Third-Party Clouds with Competition

for I/O Resources
Ron C. Chiang, Sundaresan Rajasekaran, Nan Zhang, and H. Howie Huang

Abstract—The emerging paradigm of cloud computing, e.g., Amazon Elastic Compute Cloud (EC2), promises a highly flexible yet

robust environment for large-scale applications. Ideally, while multiple virtual machines (VM) share the same physical resources (e.g.,

CPUs, caches, DRAM, and I/O devices), each application should be allocated to an independently managed VM and isolated from

one another. Unfortunately, the absence of physical isolation inevitably opens doors to a number of security threats. In this paper, we

demonstrate in EC2 a new type of security vulnerability caused by competition between virtual I/O workloads—i.e., by leveraging the

competition for shared resources, an adversary could intentionally slow down the execution of a targeted application in a VM that

shares the same hardware. In particular, we focus on I/O resources such as hard-drive throughput and/or network bandwidth—which

are critical for data-intensive applications. We design and implement Swiper, a framework which uses a carefully designed workload

to incur significant delays on the targeted application and VM with minimum cost (i.e., resource consumption). We conduct a

comprehensive set of experiments in EC2, which clearly demonstrates that Swiper is capable of significantly slowing down various

server applications while consuming a small amount of resources.

Index Terms—Cloud computing, virtualization, scheduling

Ç

1 INTRODUCTION

Acloud computing system offers to its users the illu-
sion of “infinite” computing and storage capacities

on an on-demand basis [1]. Examples of commercial
cloud computing platforms include Amazon Elastic
Compute Cloud (EC2) and Simple Storage Service (S3),
Google AppEngine, Microsoft Azure, etc. Virtualization
[2] plays a vital role in cloud computing. In particular,
for the purpose of scalability and flexibility of resource
delivery, a cloud computing system does not provide
each user with a different physical machine—instead, it
allocates each user to an independently managed virtual
machine (VM) which can be dynamically created, modi-
fied, and migrated. Examples of such a platform include
Xen VM for Amazon EC2 and the .NET-based runtime
environment for Microsoft Azure.

The essence of virtualization is that multiple VMs may
multiplex and share the same physical resources (e.g., CPU,
cache, DRAM, and I/O devices). Nonetheless, each VM is
supposed to enjoy isolation (in terms of security and perfor-
mance) from the other VMs. That is, different VMs should
not be able to interfere with the executions of each other.

Unfortunately, the lack of physical isolation can indeed
pose new security threats to co-located VMs. In this paper,
we consider a new type of VM vulnerability which enables
a malicious user (i.e., VM) to exploit the resource contention
between co-located VMs and obstruct the execution of a tar-
geted application running in a separate VM that is located
on the same physical machine as the malicious one. In
particular, we focus on exploiting contentions on shared I/
O resources that are critical to data-intensive applications—
e.g., hard disks and networks. In practice, service providers
often exclude such threats from their service level agree-
ment (SLA) [3]. That is, customers are solely responsible for
their loss caused by resource contention from co-located
VMs. Most service providers do not enable dynamic migra-
tion for user control [4]. Even if a customer suspects an
attack and wants to move affected VMs away, they need to
shutdown and restart all affected VMs. Therefore, an attack
from Swiper may incur nontrivial loss in business by intro-
ducing service degradation or interruption, e.g., Amazon.
com would lose sales by 1 percent for every 100 ms delay in
page load time and a similar test at Google also revealed
that a 500 ms increase in displaying the search results could
reduce revenue by 20 percent [5].

Note that the main concern of this work is performance
degradation caused by co-located adversaries, rather than

DORA the Explorer1: “Swiper, no swiping!”
Swiper the Fox: “You are too late.”

1. Swiper the Fox is a cartoon character in the animated series of
Dora the Explorer, who often sneaks up to Dora and Boots and takes
away the items that are needed for Dora’s adventures.

� R. Chiang and H.H. Huang are with the Department of Electrical and
Computer Engineering, the George Washington University, Washington,
DC 20052. E-mail: {rclc, howie}@gwu.edu.

� S. Rajasekaran and N. Zhang are with the Computer Science Department,
the George Washington University, Washington, DC 20052.
E-mail: {sundarcs, nzhang10}@gwu.edu.

Manuscript received 12 Sept. 2013; revised 14 Mar. 2014; accepted 22 Mar.
2014. Date of publication 1 June 2014; date of current version 8 May 2015.
Recommended for acceptance by M. Guo.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TPDS.2014.2325564

1732 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 26, NO. 6, JUNE 2015

1045-9219 � 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

information leakage which has been the main focus for vul-
nerability studies in cloud-computing systems [6]. Perfor-
mance degradation is critical because it directly increases
the cost of per workload completed in cloud [7], [8], [9],
[10], [11], [12], [13], [14], [15], [16], [17], [18]. On the other
hand, the existing work on performance-degradation analy-
sis were conducted on non-virtualized environments (e.g.,
for CPU, DRAM, hard disk, and network usage [19]) and
cannot be directly applied to VMs. For example, a relevant
prior work that proposed to exploit the contention on hard-
disks [20] required access to the hard-disk queue in order to
analyze the requests from both the adversary and the vic-
tim. However, this queue cannot be directly accessed by
VMs, rendering such exploitation no longer applicable.

In this work, we design and implement Swiper, a frame-
work that exploits the virtual I/O vulnerability in three
phases: 1) co-location (“sneaking-up”): place the adversary
VM on the same physical machine as the victim VM; 2) syn-
chronization (“getting-ready”): identify whether the targeted
application is running on the victim VM and, if so, the state
of execution for the targeted application (which we shall
elaborate below); and 3) exploiting (“swiping”): design an
adversarial workload according to the state of the victim
application, and launch the workload to delay the victim.

The main contributions of this paper are listed as follows:

� An I/O-based co-location detection technique and
verified its effectiveness on public clouds.

� A discrete Fourier transformation (DFT) based algo-
rithm which recovers the victim’s original I/O pat-
tern from the observed (distorted) time-series of I/O
throughout, and then determines if the victim appli-
cation has reached a pre-determined point when it is
most vulnerable to an exploitation.

� Discover patterns which cause maximum
interference.

� A theoretical framework to observe and synchronize
with predefined I/O patterns.

� A comprehensive set of experiments on Amazon
EC2—with the results clearly showing that Swiper is
capable of degrading various server applications by
22.54 percent on average (and up to 31 percent) for
different instance types and benchmarks, while
keeping the resource consumption to a minimum.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces the system and threat models. Section 3
presents our IO-based co-location detection method. Sec-
tion 4 describes our approach, and explains the synchroni-
zation and exploiting stages. Section 5 discusses issues in
practicing Swiper. Section 6 presents the experiments and
results, including VM co-location in Amazon EC2. We con-
clude in Section 7. Interested readers may also access the
Appendices, which can be found on the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TPDS.2014.2325564, for additional details on the
design, implementation and evaluation.

2 THREAT MODEL

In general, a cloud computing system provides its end-users
with a pool of virtualized computing and I/O resources

supported by a large amount of distributed, heterogeneous,
commodity computers. For example, Amazon EC2 is using
Xen virtualization, whose architecture and terminology are
described in Appendix A, available in the online supple-
mental material.

For I/Os, VMs utilize the device drivers (the frontend
drivers) in the guest OS to communicate with the backend
drivers in DOM0, which access the physical devices, e.g.,
hard drives and networks, on behalf of each VM. In other
words, application I/Os within a VM—which basically con-
sist of block reads and writes to the virtual disks—are trans-
lated by the virtualization layer to system calls in the host
OS, such as requests to the physical disks. In Xen, the hyper-
visor and DOM0 work together to ensure security isolation
and performance fairness among all VMs. While fairness in
CPU and memory virtualization is relatively easy to
achieve, in this paper we show that maintaining perfor-
mance isolation for virtual I/O can be extremely challeng-
ing—which opens doors for security threats.

In this work, we also evaluate our framework on Kernel-
based Virtual Machine (KVM) that utilizes hardware
assisted full virtualization instead of Xen’s paravirtualiza-
tion. Although Xen and KVM are used to demonstrate this
threat in our work, our test and previous work indicate that
other virtualization framework like VMware also exhibits
similar interference problem [21].

2.1 Problem Definition

A straightforward way to delay a victim process is to launch
an attacking process which constantly requests a large
amount of resources shared with the victim (e.g., I/O band-
width). Nonetheless, such an attack can be easily detected
and countered (e.g., a dynamic resource allocation algorithm
can restrict the amount of resources obtained by each pro-
cess). Thus, our focus in this paper is to incur the maximum
delay to the victim while maintaining the resource request
from the attacker to a pre-determined (low) threshold.

Prior knowledge of the adversary. Since the adversary now
has to target the attack specifically to the victim process
(instead of blindly delaying all processes sharing the
resource), it has to possess certain characteristics of the vic-
tim process which distinguishes it from others. For the pur-
pose of this paper, we consider the case where the
adversary holds the trace of resource requests from the vic-
tim process as the “fingerprint” of the victim.

Research on cross-VM side channels can be used to sus-
tain this assumption [22], [23], [24], [25]—malicious VMs
are able to retrieve a variety of information, such as data
and instruction caches, I/O usage profile, and even private
keys, from co-located VMs and hosts via side channels. The
techniques for co-location detection in Section 3 can also be
adapted to profile I/O access patterns as well. We plan to
extend the profiling technique as future work. In the experi-
ment section, we shall demonstrate that the various work-
loads we tested all exhibit unique resource-request time-
series that can be easily distinguished from others.

Limits on the adversary. Many cloud computing systems
charge by the amount of resource requests. For example,
Amazon Elastic Block Store (EBS) charges $0.1 - $0.11 per
1 million I/O requests and Amazon EC2, on the other hand,

CHIANG ET AL.: SWIPER: EXPLOITING VIRTUAL MACHINE VULNERABILITY IN THIRD-PARTY CLOUDSWITH COMPETITION FOR I/O... 1733

charges by total network consumption—i.e., the amount of
data transferred in and out of the system [26]. Thus, the
adversary must minimize the amount of resource request
initiated by itself. In this paper, we consider a pre-deter-
mined upper bound on the total resource consumption by
the adversary.

Problem Statement. Given a workload fingerprint of a victim
process, determine an adversarial workload of I/O request
which incurs the maximum delay on the victim process with-
out exceeding the pre-determined threshold on the adversary’s
own resource consumption.

3 I/O-BASED CO-LOCATION DETECTION

In this work, we use Amazon EC2 as one testing platform to
carry out experiments. As we focus on vulnerability with
competition for I/O resources, we choose two types of
Amazon EC2 instances, micro and small, to be the experi-
ment instance types. Please refer to Appendix B, available
in the online supplemental material, for the introduction of
Amazon EC2.

The co-location detection mainly consists of two stages:
Probing and Locking-on.

Probing. An adversary can locate the geographical zone
of a victim process by the victim’s IP information [6]. To
conveniently manage separate networks for all availability
zones, Amazon EC2 partitions internal IP address space
between availability zones. Administration tasks will be
more difficult if the internal IP address mapping changes
frequently. Because different ranges of internal IP address
represent various availability zones and public IP addresses
can be mapped to private IP addresses by DNS, an adver-
sary can easily locate the availability zone of a victim, thus
greatly reduce the number of instances needed before
achieving a co-location placement.

Once an adversary knows the availability zone of a vic-
tim, it uses network probing to check for the co-residence.
In general, if an adversary and a victim are co-located, they
are likely to have 1) identical DOM0 IP address, and 2) small
packet round-trip times (RTT).

Therefore, an adversary can create several probing
instances to perform a TCP SYN traceroute operation to a
victim’s open service port. If one probing instance and the
victim were co-located, they would share the same DOM0

and there would be only a single hop to the victim with a
small RTT. In our experience, if the RTT is smaller than half
of the average RTT of all one-hop instances in the same
zone, the probing instance is very likely on the same physi-
cal machine as the victim.

Locking-on. Co-location on the same physical machine
does not necessarily mean the sharing of the I/O resour-
ces—co-located VMs may end up using different storage
types. In our tests, if two co-located VMs do not share one
hard drive, launching a workload to compete for I/O
resources shows limited effect on I/O throughput. On the
other hand, if two instances share the same storage device
and both try to max out the bandwidth, they can only get
part of the total bandwidth. Prior works also have shown
similar interference effect in virtualized environments [27],
[28], [29].

Because the adversary knows its performance under a
given I/O workload, for it to confirm the I/O sharing, it
needs a VM instance that would potentially co-locate with
the victim and try to compete for I/O resources. The adver-
sary then can simply measure the I/O performance and an
obvious performance degradation would be a strong indica-
tor of VM co-location.

The proposed lock-on approach is feasible on public
clouds. For example, our experiments on Amazon EC2 us-
east-1c zone show the success rates of about 8 and 2 percent
for the probing and the locking-on stages respectively. After
locking-on a victim, a smart adversary does not just launch
a huge workload to compete for resources. This naive
method leads to ineffective attacks and wastes time and
money. Therefore, we develop a synchronization method in
the following sections to assure accurate attacking time. As
we will show later, this method generates a more severe
performance degradation and uses less resources than the
naive method.

4 SWIPER FOR A TWO-PARTY SYSTEM

We start with a simple scenario where the resource is only
shared between two parties, i.e., the attacker and the victim.
There are two critical challenges for incurring the maximum
delay to a victim—synchronization and adaptive attack,
which we explain respectively as follows:

� Synchronization. In order for the adversary to incur
the maximum delay under a resource constraint, it
has to be able to (1) determine whether the victim
process is running, and (2) predict the resource
request from the victim process at a given time.

� Adaptive Attack. Based on the result of synchroniza-
tion, the adversary should align its resource request
(i.e., attack) with the victim. In general, the higher
demand the victim has at a given time, the larger
request the adversary should submit to the shared
resource.

In the following, we shall describe our main ideas for
addressing the two challenges respectively. Note that we
focus on the synchronization and attack phases in this sec-
tion, and discuss the design of the co-location phase in
Section 3. Readers who are interested in the Swiper for a
multi-VM system may consult Appendix E, available in
the online supplemental material.

4.1 Main Ideas for Synchronization

In this paper we consider a simple adversarial strategy of
conducting an observation processwith a sequential read opera-
tion. We chose read over write because the time-series of
throughput allocated to write operations tend to have sharp
bursts, which would make the synchronization significantly
more difficult. Both sequential and random reads in our tests
yield similar results in terms of the accuracy of synchroniza-
tion. We chose sequential read over random read because
the latter is rarely the behavior of a normal user and therefore
may be detected by the cloud computing system.

Before describing the details for synchronization, we first
introduce a few basic notions: Recall that the adversary

1734 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 26, NO. 6, JUNE 2015

holds as prior knowledge of the I/O request time series
from the victim (when no other process is running). Let vðtÞ
be the bandwidth requested by the victim at t seconds after
the victim starts running. At runtime, let tob (seconds) be
the length of the observation process (where ob stands for
observation length) and aðtÞ (t 2 ½1; ob�) be the (observed)
throughput allocated to the adversary for the tth second
since the observation process starts. Let aU be the (upper
bound on) throughput for the sequential read operation
when no other process is running.

The objective of synchronization is for the adversary to
align the pre-known vðtÞ with the observed time-series
aU � aðtÞ. In the ideal case, aU � aðtÞ would be a concatena-
tion of two sub series: one with zero readings (i.e., when
the victim has not yet started running or has finished run-
ning), and a sub-sequence of vðtÞ. In practice, however,
additive noise and rescaling on both time and throughput
may be applied, leading to a requirement on aligning vðtÞ
with aU � aðtÞ with offset, stretching, and scaling factors.
Appendix C, available in the online supplemental material,
provides the complete definition of these three factors, and
Appendix D, available in the online supplemental material,
explains our main theory for addressing the challenge of
synchronization.

4.2 Performance Attack

Based on the result of synchronization, we consider a per-
formance attack which launches multiple segments of
sequential read operations to delay the victim process. Each
segment persists for a fixed, pre-determined, amount of
time. In the following, we discuss three critical issues
related to the design of such a performance attack: (1) when
should each segment be launched, (2) how long should each
segment persist, and (3) why should each segment use a
sequential read operation.

Positioning of attack segments. To incur the maximum
delay to the victim process, the attack segments should be
positioned to cover the moments of peak requests from the
victim process. Thus, to position h attack segments each
persisting for ‘ seconds, we use a greedy algorithm which
first locates the ‘-second interval in vðtÞ which has not yet
been executed and has the maximum total request, i.e., finds
the start of interval tS 2 ½ob� toff ; N � 1� such that

tS ¼ argmax
t

Xtþ‘

i¼t

vðiÞ; (1)

and then repeat this process after removing interval ½tS; tS þ ‘�
from consideration, until all h intervals are found. Note that
there must be tS � ob� toff because by the end of the observa-
tion process, the first ob� toff seconds of the victim process
have already passed and thus cannot be attacked.

Length of attack segments. Somewhat surprisingly, our
experiments (as we shall present in Section 6) show that as
long as each attack segment covers a peak of the victim’s
request, the length of the attack segment does not have a sig-
nificant impact on the delay incurred to the victim process.
Intuitively, this is because the length of the attack which
does not overlap with the peaks of victim’s request incurs
little delay to the victim. Nonetheless, this does not mean
that the adversary should set each attack segment to be as

short as possible—Instead, it has to take into account the
estimation error of synchronization, and make the attack
segment long enough to ensure the coverage of the peaks.

Operations of attack segments. Each attack segment may
perform four types of operations: sequential read, random
read, sequential write, and random write. We choose the
sequential read operation due to the following reasons.
First, we excluded the write operations from consideration
for the same reason as that discussed for the design of the
observation process: write operations tend to introduce
sharp bursts on throughput, which makes it difficult to be
synchronized with the victim’s peak requests. We chose
sequential read over random read because a random read
operation is unlikely to sustain a high throughput to
“compete” with the victim process and delay it.

One note of caution is that, while each attack segment
should perform a sequential read operation, the adversary
must ensure that consecutive (but different) attack segments
do not read sequentially on adjacent blocks. This is because
the hard drive or operating system may pre-fetch the latter
blocks while performing the previous attack segment. As a
result, the latter attack segment does not actually incur any
I/O to the hard drive, incurring no delay on the victim pro-
cess. To address this issue, a simple attack strategy is for
each segment to first randomly choose one from a set of
files, and then read the file sequentially.

Fig. 1 shows an example trace when Swiper issues over-
lapping sequential read operations to slowdown an co-
located FileServer. When comparing Fig. 1 with the unaf-
fected trace, we found Swiper issues most I/O operations
when victim issues as well. In addition, victim’s trace has
been obviously distorted to certain degree. We will further
analyze the performance decreases in Section 6.

5 PRACTICAL ISSUES IN RUNNING SWIPER

We have established a framework to locate and interfere
with target VMs, including a theory for synchronizing I/O
patterns. There are critical issues that need to be addressed
when deploying Swiper in real-world. We explicitly dis-
cuss two important factors in this section. First, some
applications’ activities depend on user inputs. Thus, we
talk about how to deal with such non-determinism in Sec-
tion 5.1. Second, migration is an important feature for vir-
tualized systems to manage resources. Co-locating the
target and attacker is critical in the proposed method. Since
the target VM could be migrated thereafter, we discuss
migration in Section 5.2.

5.1 Non-Deterministic User Behavior

Some applications’ activities, e.g., Twitter and Wikipedia,
are generated by users. Although one person may not

Fig. 1. Overlapping I/O of an attacker and a victim.

CHIANG ET AL.: SWIPER: EXPLOITING VIRTUAL MACHINE VULNERABILITY IN THIRD-PARTY CLOUDSWITH COMPETITION FOR I/O... 1735

repeat the same behavior hour after hour and day after day,
a recent study on a Twitter trace revealed that aggregate
workload demonstrates much more predicable I/O activi-
ties than single user’s, i.e., similar aggregate I/O activities
in one hour may occur at the same hour tomorrow and next
week [30]. A previous analysis on long-term traces from
Amazon web services and Google App Engine also found
yearly and daily patterns [31].

Although historical traces could help in predicting I/O
behaviors, self-learning and adaptivity to new I/O patterns
are still good to have in a fast-changing world. Swiper can
be easily extended to deal with non-deterministic work-
loads by integrating with a pattern repository and learning
module. Fig. 2 demonstrates a high level sample architec-
ture of an extended Swiper.

With this extended design, Swiper can adjust various
parameters, e.g., the stretching factor, and capture more pat-
terns to improve its success rate. We examine Swiper with
non-deterministic workloads in Section 6.2. Note that design-
ing clustering and learning methods for Swiper may by itself
a new research topic. Thuswe leave them as future works.

5.2 VM Migration

While live migration is a possible method of mitigating the
interference from co-located workloads without service
interruption, it does not come without a price. Indeed, pre-
vious work have shown that the performance may be sub-
stantially affected during migration [32], [33], [34]. For I/
O-intensive applications in particular, since data can be
stored or cached on high performance local storage to
reduce the access latency, VM migration can be even more
costly—lasting several minutes to hours depending on the
size of VM virtual storage that is stored locally.

Alternatively, a practical method for reducing the migra-
tion time is to only migrate the computing instance (CPU
and memory states) and keep VMs virtual disks on net-
worked storage. For such setting, our experiments in Sec-
tion 6.3 show that it is possible for Swiper to locate and
impede the target VM again. In this case, a critical problem
for the adversary is the cost because now the attacker needs
to launch a number of probing VMs to search for the target
after the VM migration. Note that this cost can be minimal
in the cases that the adversary already held many hacked
user accounts, which had happened before—e.g., in [35].

6 EXPERIMENT RESULTS

Because a substantial portion of Amazon EC2’s address
space hosts publicly accessible web servers [6], we test

Swiper with the following popular cloud applications or
benchmarks: Yahoo! Cloud Serving Benchmark (YCSB) is a
performance measurement framework for cloud data serv-
ing [36]. YCSB’s core workload C is used to emulate read-
intensive applications; Wiki-1 and Wiki-2 are running
Wikibench [37] with real Wikipedia request traces on
the first day of September and October 2007 respectively;
Darwin is an open source version of Apple’s QuickTime
media streaming server; FileServer mimics a typical work-
load on a file system, which consists of a variety of opera-
tions (e.g., create, read, write, delete) on a directory tree;
VideoServer emulates a video server, which actively serves
videos to a number of client threads and uses one thread to
write new videos to replace obsolete videos; webServer
mostly performs read operations on a number of webpages,
and appends to a log file. The FileServer, VideoServer and
webserver belong to the FileBench suite [38]. Micro and
small Amazon EC2 instances and a local machine are used
as the test platforms in this work. We use technique
described in Section 3 to locate Amazon EC2 instances,
which dwell in the same storage device. The tests are
repeated for 50 times and the means are reported.

To evaluate the effectiveness of an attack, we define
three metrics: 1) the slowdown/decrease in percentage
of the victim, S, which assesses the overall effect of an
attack. This can be measured as the runtime in seconds or
the throughput in KB. 2) the victim slowdown divided by
the total runtime (in seconds) of the attacker, SAT , which
determines the impact of the length of an attack. A bigger
SAT indicates that an attacker can infiltrate large damages
within a shorter time window. 3) the victim slowdown
divided by the total throughput (in MB) of the attacker,
SAC , which evaluates the effect of the bandwidth consump-
tion of an attacker. A bigger SAC means that an attack is
effective while consuming a smaller amount of bytes.

6.1 Comparison with Baseline Attacks

Amazon EC2 instances. We first demonstrate our tests on
Amazon EC2. To minimize cache effect and max out the
bandwidth, we make the total file size of all four bench-
marks larger than double of the memory size. Namely, the
working set size of each benchmark is 4 GB on the micro
and 8 GB on the small instance in this experiment. Fig. 16 in
Appendix H, available in the online supplemental material,
shows runtime increases of benchmarks on micro and small
instances when the attacker is restricted with 2 and 4 GB
data limit to interfere with the victim on the micro and small
instance respectively.

Recall that naive attack exhausts the bandwidth within
the given time or data constraints and random attack
launches I/O requests at stochastic time points. The naive
attack shows little to none effect on runtime increase of the
victim workload. The average runtime increases caused by
the naive attack are 6 and 14 percent on micro and small
instance respectively. The random attack is better than the
naive one because there are chances for the random attack
to hit the peak of the victim workload. The random attack
increases victims’ runtime by 35 and 57 percent on micro
and small instance respectively. The peak attack has the
best results, which are 67 and 100 percent on micro and

Fig. 2. An extended Swiper architecture for dealing with non-determin-
istic workloads.

1736 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 26, NO. 6, JUNE 2015

small instance respectively. In general, micro instance is bet-
ter than small instance in resisting attacks, which implies
the networked disk array and storage duplicates help to
reduce I/O interference. Despite the possible methods for
mitigating the disk I/O interference, other shared system
components are also susceptible to the interference issues,
e.g., caches [28] and network interfaces [39]. The idea of
Swiper could be complemented by combining with other
techniques to exploit vulnerable components. As we shall
see later, our method can effectively detect the I/O peak
and launch workload to slowdown the victim. Altogether,
the average runtime increase of peak attacks across instance
types and benchmarks is 85 percent, about twice or eight
times more than a random or naive attack, respectively.

Fig. 17 in Appendix H, available in the online supple-
mental material, shows victim’s performance changes when
varying attacker’s data consumption limit. The peak attack
still has the best result under different data usage limits.
Note that instance store is more vulnerable than EBS and
accessing instance stores has no extra cost for the adversary.
An EC2 user should use EBS volumes instead of instance
stores to reduce potential damage.

A boxplot of runtime reveals more insight on how peak
attacks affect victims’ performance. Fig. 3 demonstrates
FileServer runtime distributions when peak attacks happen
on micro/small instances. On the result of micro instances,
peak attacks effectively change the distribution of runtime.
The distribution now is skewed to higher values. On the
result of small instances, almost all test results under peak
attacks have longer runtime than normal runs. These two
figures show that peak attacks can effectively slowdown a
victim most of the times. Note that Amazon EC2 should be
considered as a multi-VM testing environment because it is
very likely that instances from other users are co-located.

The runtime increase may not provide a tangible idea on
the monetary loss. Section 6.4 transforms the runtime
increase into the revenue loss in business. Our analysis
shows a significant amount of financial loss could be done
by Swiper if the target is providing critical business services.

Two VMs. For conveniently analyzing different virtuali-
zation systems, we conduct the following tests on local
machines with a 2.93 GHz Intel Core2 Duo E7500 processor,
4 GB RAM, and 1 TB Samsung hard drive. The host operat-
ing system is CentOS Linux with 2.6 kernel. Two paravirtu-
alization frameworks are tested on this machine: One is the
KVM and another is Xen 4.0. Note that Amazon EC2 also
uses Xen. All VMs in the experiments have one VCPU and
512 MB memory.

The effectiveness metrics of three selected applications
are shown in Table 1. The attacker’s data usage is limited at
500 MB. The proposed peak attack clearly captures I/O

request patterns and achieves additional performance deg-
radation on both Xen and KVM. Peak attack generates an
average S of 26.11 percent of the victim, compared to 6.25
and 6.67 percent from the naive and random attacks. Recall
that SAT is calculated as S divided by the total runtime (in
seconds) of the attacker, and SAC is S divided by the total
data usage (in MB) by the attacker. For the peak attack, the
normalized S by time and data usage are even better—the
SAT value is about 4.17 and 5.96 times better than those of
the random and naive attacks, while SAC is about 4.57 and
5.33 times better. The bar graphs of Table 1 are presented as
Figs. 18, 19, and 20 in Appendix H, available in the online
supplemental material, to illustrate the differences visually.

We also study the I/O throughput degradation when the
peak attack has different data usage limit. Fig. 4 illustrates
the average throughout decreases of different applications
running in a Xen VM when the peak attack has data usage
limits at 100, 300, and 500 MB respectively. For every
increase in the attacker’s data consumption limit, victims
will see a larger drop in throughput. Darwin is the most sus-
ceptible application among the whole testing benchmarks
because of its intensive and clear read request patterns. The
average throughput decreases are 4.57, 14.65, and 22.54 per-
cent at 100, 300, and 500 MB data usage limit respectively.

Multiple VMs. In addition to the victim and attacker VMs,
other VMs may co-exist as background processes. A cloud
service can also be provided by collaborating more than one
VMs. For example, one VM serves as the frontend portal
and another VM is responsible for providing requested
data. Therefore, applications in the following tests are
composed of multiple VMs to construct a real world sce-
nario. Recall that Wiki-1 and Wiki-2 are running Wikibench
with traces from Wikipedia. Fig. 5 presents the changes in
the I/O throughput of four cloud service systems. The
results show that Xen and KVM are both vulnerable to this
threat and none of them is clearly better in resisting it.

In Table 2, we present the effectiveness of three attack
types on web serving applications when attacker’s data
consumption is limited at 500 MB. For the peak attack, the

Fig. 3. Boxplot of FileServer runtime by peak attack on micro and small
instances.

TABLE 1
S, SAT , and SAC of Xen/KVM in Two-VM Experiments

Application Metric Naive Random Peak

WebServer S 7.06/4.37 6.74/1.70 22.70/26.07
SAT 0.75/0.53 0.72/0.29 3.81/3.62
SAC 0.014/0.008 0.015/0.003 0.048/0.084

Darwin S 5.32/4.59 9.45/5.82 28.62/29.33
SAT 0.45/0.43 1.66/0.55 5.70/4.81
SAC 0.010/0.009 0.019/0.011 0.059/0.069

Wiki-2 S 6.59/9.60 8.41/7.59 24.69/25.27
SAT 0.72/1.01 0.89/1.48 2.88/2.45
SAC 0.013/0.019 0.017/0.017 0.068/0.054

Fig. 4. The means and standard deviations of I/O throughput decreases.

CHIANG ET AL.: SWIPER: EXPLOITING VIRTUAL MACHINE VULNERABILITY IN THIRD-PARTY CLOUDSWITH COMPETITION FOR I/O... 1737

normalized degradation by time and data usage are even
better—the SAT value is about 8.18 and 3.06 times better
than those of the random and naive attacks, while SAC is
about 8.69 and 4.0 times better than those of the random
and naive attacks. As Table 1, the bar graphs of Table 2 are
also presented as Figs. 21, 22, and 23 in Appendix H, avail-
able in the online supplemental material, to illustrate the
differences visually.

Note that Appendix E, available in the online supple-
mental material, has shown that attackers may need a lon-
ger observation length to maintain the synchronization
accuracy when the number of VMs increases. Please refer
to Appendix G, available in the online supplemental mate-
rial, for the analysis of synchronization accuracy and
Appendix H, available in the online supplemental material,
for additional experiment results.

6.2 Dealing with Non-Determinism

This section demonstrates how Swiper works as a pattern
detection method with a repository of collected patterns
to cope with user randomness (see Fig. 2). The results
and analyses indicate that Swiper could help in accom-
plishing an automatic attacking framework. As a proto-
type implementation, the pattern store consists of pre-
stored 120 one-minute Wikipedia traces which are from 9
to 11 am on the 1st of October, Monday, 2007. Then, we
replay a 24-hour trace on the same day to evaluate how
Swiper reacts to the trace. Note the pattern here is the
time and amount of bandwidth usage by the target. Since

we do not use any advanced pattern learning module
(which by itself may become a separate research topic),
we relax the scaling and stretching factors by 10 percent
to allow Swiper to accept similar patterns in the 24-hour
testing set. If there are more than one matched patterns
due to the relaxation, the one with the least distortion
will be selected. When Swiper identifies a known pattern
in a one-minute interval, it will synchronize with and
attack the victim during the remaining time of the
matched minute. We limit the data usage of Swiper at 1
GB per matched minute. The machine setting of this
experiment is the same as the two-VM one.

In Fig. 6, we first show the matched and attacked minutes
at every testing hour during the experiment. This evaluation
essentially shows how many one-minute traces are similar
to the I/O patterns in the repository. The polynomial fit of
the matched minutes shows a trend that similar patterns
demonstrate time locality, which supports the findings in
[30]. The requests during the night time (hour 12 to 20) are
less frequent and intense and thus less similar to the stored
patterns, which are from day time. Note that Swiper is look-
ing for the similarity in I/O patterns. The request traces
could be accessing different files but the disk could show
similar reading patterns.

Because the extended Swiper relaxes the matching crite-
rion and does not hold a full trace, attacking one matched
minute does not necessary mean a correct match and guar-
antee a significant degradation as before. Therefore, Fig. 7
examines the average throughput decrease per attack at
each testing hour.

Although the last 22 hours are not as good as the first
two, the results confirm that a historical trace could still be
useful in the future. The throughput degradation ranges
from 2 to 20 percent and has an overall average of
13.12 percent. As future work, using clustering methods to

Fig. 5. Throughput changes when a multi-VM system hosted by Xen/
KVM is attacked by the peak attack with various data usage limits.

TABLE 2
S, SAT , and SAC of Xen/KVM in Multi-VM Experiments

Application Metric Naive Random Peak

WebServer S 9.47/6.82 1.45/2.29 29.5/12.23
SAT 0.85/1.15 0.20/0.31 2.76/2.10
SAC 0.018/0.013 0.003/0.005 0.073/0.030

Wiki-1 S 7.37/8.99 4.94/1.56 16.22/28.56
SAT 1.14/1.05 0.61/0.29 1.41/4.59
SAC 0.014/0.017 0.011/0.003 0.050/0.070

Wiki-2 S 6.26/7.83 4.70/3.20 26.51/23.73
SAT 0.95/0.77 0.39/0.40 4.99/2.31
SAC 0.012/0.015 0.010/0.006 0.080/0.054

Fig. 6. Matched minutes at each testing hour in the one-day test when
holding a two-hour traces in the repository. The dotted line shows a poly-
nomial fit of the observed data points. The dotted rectangle shows the
period for the training set.

Fig. 7. The average throughput decrease per attack at each testing hour.
The dotted rectangle shows the period for the training set.

1738 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 26, NO. 6, JUNE 2015

identify and generate patterns may greatly improve the
effectiveness of Swiper.

6.3 Attacking Migratable VMs

Live migration is a method that can be potentially used to
reduce workload interference. In this section we run two
experiments to study if live migration affects the attack and
by howmuch.

In the first experiment, we assume the victim VM is
aware of being attacked, and wants to be migrated away.
The host machines, MA and MB, have an identical configu-
ration and are the same as the one used in the previous two-
VM tests. Hosts are interconnected on a Gigabit Ethernet,
and share the same storage device on another machine MC .
Note that using the same VM image is a common practice
because moving the disk image can vastly increase the
pausing time of VM execution. The testing time of each run
is 10 minutes, and the data usage of Swiper is limited at
500 MB per minute. In the first run, the attacker and the vic-
tim are both on MA and the victim is attacked for 10
minutes. Then, in the second run, the victim is migrated
away after being attacked for 2 minutes, but the attacker
keeps interfering the storage accesses. Most of the migration
times are less than a minute. Fig. 8 shows the average
throughput decreases of these two scenarios in every testing
minute. Note that the performance degradation after migra-
tion comes from the interference on a shared storage. The
degradation is smaller by about 3.23 percent on average
after migration because the short pausing time for migration
makes I/O patterns shifted.

In the second experiment, the attacker will chase the tar-
get if it migrates away. We have four machines as VM hosts
in this experiment. Each machine has two six-core Intel
Xeon CPUs at 2 GHz, 32 GB memory, and 128 GB SSD. All
VM images are stored on a storage node with two six-core
Intel Xeon CPUs at 2.67 GHz, 24 GB memory, and 2 TB
RAID0. Each VM has 1 VCPU and 2 GB memory. Every
machine runs two background VMs, which randomly read
and write multiple files. We start the target VM on one of
the hosts. Then, we launch probing VMs to search, synchro-
nize, and attack the target VM. We assume the target is
aware of being attacked after 2 minutes. Then, it runs away
to another host. After knowing the target is away, Swiper
starts to looking for the target again. We repeat the same
process for 20 minutes and for each testing application.
Then, we conduct the same tests in a different scenario
which does not allow migration. Fig. 24 in Appendix H,
available in the online supplemental material, shows the
average throughput decreases of these two scenarios in
every testing minute. Almost every migration takes less
than one minute. Each relocating process takes about 70 to
160 seconds, from being aware of losing the target to start
attacking again. During these periods, the target VM still
gets performance degradation because it pauses running for
a short period of time and may still gradually copies mem-
ory pages from the previous machine until all dirty pages
are synchronized, e.g., in the seventh minute of Fig. 24a and
almost every migration in Fig. 24d, because of high dirty
page rate, available bandwidth, or migration overheads
[32]. On average, the adversary still hurts the targets perfor-
mance by 16.32 percent even after the target tries to migrate
and avoid the attacker.

6.4 Potential Monetary Loss

The runtime increase may not give a tangible idea on the
monetary loss. Thus, we use a linear model to translate the
runtime increase into revenue loss in business.

In Section 1, we have seen that 100 ms delay in loading
pages may causes 1 percent revenue loss and 500 ms delay
in displaying search results may reduce revenue by 20 per-
cent. We also know that the median webpage loading time
is about 3 seconds [40] and the average time to display the
search result is 0.2 seconds [41]. We use these data as two
linear cost versus delay models. Let’s call them SLA1 and
SLA2 cost models respectively. In case SLA1 and SLA2
models are too optimistic for Swiper, we also use SLA3 and
SLA4 models which assume the expected loss is only one
tenth of the SLA1 and SLA2 respectively. Then, the potential
revenue loss caused by Swiper is interpolated from these
models and our experiments on EC2.

The columns in Fig. 9 represent the potential revenue loss
caused by the average runtime increase. The whisker lines
represent the revenue loss caused by the minimum and
maximum runtime increases from the experiments on EC2.
The average revenue loss could be at least around 10 per-
cent and up to 30 percent on small and micro instances
when using SLA1 and SLA2 models respectively. Even with
the SLA3 and SLA4, the average revenue loss is about
1.8 percent across two instance types and cost models,
which is big enough to justify the co-locating cost of Swiper.

Fig. 8. The throughput decreases when the migration is enable are
shown in red solid lines. The blue dotted lines represent the throughput
decreases when the victim is not migrated.

CHIANG ET AL.: SWIPER: EXPLOITING VIRTUAL MACHINE VULNERABILITY IN THIRD-PARTY CLOUDSWITH COMPETITION FOR I/O... 1739

Note that not all probing instances were running during
the whole probing period. An instance is terminated imme-
diately after confirming that there is no co-located target.
Thus, the cost (data and instance usage) of probing and
locking-on is small. For example, using micro (0.02 dollars
per hour) and small instances (0.06 dollars per hour) as
the probing VMs cost about one and three dollars for co-
locating one target (based on the 2 percent success rate)
respectively. Such initial cost is very small compared with
the potential revenue loss shown in Fig. 9.

7 CONCLUSION

In this paper, we presented a novel I/O workload based
performance attack which uses a carefully designed work-
load to incur significant delay on a targeted application
running in a separate VM but on the same physical sys-
tem. Such a performance attack poses an especially seri-
ous threat to data-intensive applications which require a
large number of I/O requests. Performance degradation
directly increases the cost of per workload completed in
cloud-computing systems. Our experiment results demon-
strated the effectiveness of our attack on different types of
victim workloads in real-world systems with various
number of VMs. Interested readers may refer to Appendix
I, available in the online supplemental material, for the lit-
erature review and more discussions, where we have pro-
posed a number of possible solutions to these types of
attacks as future work. Also, it would interested to study
the effects of system parameters, e.g., I/O schedulers and
buffer sizes, on defending such attacks.

ACKNOWLEDGMENTS

The authors thank the reviewers and editors for their insight-
ful suggestions that have helped us to improve the quality of
this paper. This research was supported in part by the
National Science Foundation (NSF) under grant 0852674,
0937875, 0915834, 1117297, and 1343976. Any opinions, find-
ings, conclusions, and/or recommendations expressed in
this material, either expressed or implied, are those of the
authors and do not necessarily reflect the views of the spon-
sors listed above.

REFERENCES

[1] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A.
Konwinski, G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M.
Zaharia, “A view of cloud computing,” Commun. ACM,
vol. 53, no. 4, pp. 50–58, 2010.

[2] M. Rosenblum and T. Garfinkel, “Virtual machine monitors: Cur-
rent technology and future trends,” IEEE Comput., vol. 38, no. 5,
pp. 39–47, May 2005.

[3] Amazon. Ec2 sla [Online]. Available: http://aws.amazon.com/
ec2-sla/, accessed Aug. 2013

[4] V. Varadarajan, T. Kooburat, B. Farley, T. Ristenpart, and M. M.
Swift, “Resource-freeing attacks: Improve your cloud perfor-
mance (at your neighbor’s expense),” in Proc. ACM Conf. Comput.
Commun. Security, 2012, pp. 281–292.

[5] R. Kohavi and R. Longbotham, “Online experiments: Lessons
learned,” Computer, vol. 40, no. 9, pp. 103–105, 2007.

[6] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage, “Hey, you,
get off of my cloud: Exploring information leakage in third-party
compute clouds,” in Proc. ACM Conf. Comput. Commun. Security,
2009, pp. 199–212.

[7] A. Greenberg, J. Hamilton, D. A. Maltz, and P. Patel, “The cost
of a cloud: Research problems in data center networks,”
SIGCOMM Comput. Commun. Rev., vol. 39, no. 1, pp. 68–73,
Dec. 2008.

[8] E. Deelman, G. B. Berriman, G. Juve, Y.-S. Kee, M. Livny, and
G. Singh, “Clouds: An opportunity for scientific applications?”
in Proc. High Perform. Comput. Workshop, 2008, pp. 192–215.

[9] S. K. Barker and P. Shenoy, “Empirical evaluation of latency-sen-
sitive application performance in the cloud,” in Proc. 1st Annu.
ACM SIGMM Conf. Multimedia Syst., 2010, pp. 35–46.

[10] K. Ye, D. Huang, X. Jiang, H. Chen, and S. Wu, “Virtual machine
based energy-efficient data center architecture for cloud comput-
ing: A performance perspective,” in Proc. IEEE/ACM Int’l Conf.
Green Comput. Commun. Int. Conf. Cyber, Phys. Social Comput., 2010,
pp. 171–178.

[11] P. Apparao, R. Iyer, X. Zhang, D. Newell, and T. Adelmeyer,
“Characterization & analysis of a server consolidation bench-
mark,” in Proc. 4th ACM SIGPLAN/SIGOPS Int. Conf. Virtual Exe-
cution Environ., 2008, pp. 21–30.

[12] G. Wang and T. E. Ng, “The impact of virtualization on network
performance of amazon EC2 data center,” in Proc. IEEE Conf. Com-
put. Commun., 2010, pp. 1–9.

[13] J. Szefer, E. Keller, R. B. Lee, and J. Rexford, “Eliminating the
hypervisor attack surface for a more secure cloud,” in Proc. 18th
ACM Conf. Comput. Commun. Security, 2011, pp. 401–412.

[14] S. Govindan, J. Liu, A. Kansal, and A. Sivasubramaniam, “Cuanta:
Quantifying effects of shared on-chip resource interference for
consolidated virtual machines,” in Proc. 2nd ACM Symp. Cloud
Comput., 2011, p. 22.

[15] Y. Mei, L. Liu, X. Pu, and S. Sivathanu, “Performance meas-
urements and analysis of network I/O applications in virtual-
ized cloud,” in Proc. IEEE 3rd Int. Conf. Cloud Comput., 2010,
pp. 59–66.

[16] S. Ibrahim, B. He, and H. Jin, “Towards pay-as-you-consume
cloud computing,” in Proc. Int. Conf. Services Comput., 2011,
pp. 370–377.

[17] R. Shea and J. Liu, “Understanding the impact of denial of service
attacks on virtual machines,” in Proc. IEEE 20th Int. Workshop
Quality Service, 2012, pp. 27:1–27:9.

[18] R. Shea and J. Liu, “Performance of virtual machines under net-
worked denial of service attacks: Experiments and analysis,” IEEE
Syst. J., vol. 7, no. 2, pp. 335–345, Jun. 2013.

[19] CERT [Online]. Available: http://www.cert.org/tech_tips/
denial_of_service.html, accessed Aug. 2013.

[20] P. A. Karger and J. C. Wray, “Storage channels in disk arm
optimization,” in Proc. IEEE Comput. Soc. Symp. Res. Security
Privacy, 1991, pp. 52–61.

[21] Z. Yang, H. Fang, Y. Wu, C. Li, B. Zhao, and H. Huang,
“Understanding the effects of hypervisor I/O scheduling for vir-
tual machine performance interference,” in Proc. 4th Int. Conf.
Cloud Comput. Technol. Sci., 2012, pp. 34–41.

[22] O. Aciiçmez, “Yet another microarchitectural attack:: Exploiting i-
cache,” in Proc. ACM Workshop Comput. Security Archit., 2007, pp.
11–18.

[23] O. Aciiçmez, B. B. Brumley, and P. Grabher, “New results on
instruction cache attacks,” in Proc. 12th Int. Conf. Cryptograph.
Hardware Embedded Syst., 2010, pp. 110–124.

[24] E. Tromer, D. A. Osvik, and A. Shamir, “Efficient cache attacks on
AES, and countermeasures,” J. Cryptol., vol. 23, no. 2, pp. 37–71,
Jan. 2010.

[25] Y. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart, “Cross-vm side
channels and their use to extract private keys,” in Proc. ACM Conf.
Comput. Commun. Security, 2012, pp. 305–316.

[26] Amazon EC2 [Online]. Available: http://aws.amazon.com/ec2/,
accessed Aug. 2013.

Fig. 9. Potential revenue loss caused by Swiper on small and micro
instances.

1740 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 26, NO. 6, JUNE 2015

[27] X. Pu, L. Liu, Y. Mei, S. Sivathanu, Y. Koh, and C. Pu,
“Understanding performance interference of I/O workload in vir-
tualized cloud environments,” in Proc. IEEE 3rd Int. Conf. Cloud
Comput., 2010, pp. 51 –58.

[28] R. Nathuji, A. Kansal, and A. Ghaffarkhah, “Q-clouds managing
performance interference effects for QoS-aware clouds,” in Proc.
5th Eur. Conf. Comput. Syst., 2010, pp. 237–250.

[29] G. Soundararajan and C. Amza, “Towards end-to-end quality of
service: controlling I/O interference in shared storage servers,” in
Proc. 9th ACM/IFIP/USENIX Int. Conf. Middleware, 2008, pp. 287–
305.

[30] Z. Wu, M. Butkiewicz, D. Perkins, E. Katz-Bassett, and H. V.
Madhyastha, “Spanstore: Cost-effective geo-replicated storage
spanning multiple cloud services,” in Proc. 24th ACM Symp.
Operating Syst. Principles, 2013, pp. 292–308.

[31] A. Iosup, N. Yigitbasi, and D. Epema, “On the performance vari-
ability of production cloud services,” in Proc. IEEE Int. Symp. Clus-
ter, Cloud Grid Comput, 2011, pp. 104–113.

[32] S. Akoush, R. Sohan, A. Rice, A. Moore, and A. Hopper,
“Predicting the performance of virtual machine migration,” in
Proc. IEEE Int. Symp. Model., Anal. Simul. Comput. Telecommun.
Syst., 2010, pp. 37–46.

[33] D. Breitgand, G. Kutiel, and D. Raz, “Cost-aware live migration of
services in the cloud,” in Proc. 3rd Ann. Haifa Exp. Syst. Conf., 2010,
pp. 11:1–11:1.

[34] C. Jo, E. Gustafsson, J. Son, and B. Egger, “Efficient live migra-
tion of virtual machines using shared storage,” in Proc. 9th
ACM SIGPLAN/SIGOPS Int. Conf. Virtual Execution Environ.,
2013, pp. 41–50.

[35] E. Nakashima, “More than 75,000 computer systems hacked in
one of largest cyber attacks, security firm says,” Washington Post,
no. 18, Feb 2010, http://www.washingtonpost.com/wp-dyn/
content/article/2010/02/17/AR2010021705816.html

[36] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R.
Sears, “Benchmarking cloud serving systems with YCSB,” in Proc.
1st ACM Symp. Cloud Comput., 2010, pp.143–154.

[37] G. Urdaneta, G. Pierre, and M. van Steen, “Wikipedia workload
analysis for decentralized hosting,” Elsevier Comput. Netw., vol. 53,
no. 11, pp. 1830–1845, Jul. 2009.

[38] FileBench [Online]. Available: http://www.solarisinternals.com/
wiki/index.php/filebench, accessed Aug. 2013.

[39] Y. Koh, R. Knauerhase, P. Brett, M. Bowman, Z. Wen, and C. Pu,
“An analysis of performance interference effects in virtual envi-
ronments,” in Proc. IEEE Int. Symp. Perform. Anal. Syst. Softw.,
2007, pp. 200–209.

[40] M. M. T. Arvind Jain and I. Grigorik. Global site speed
overview: How fast are websites around the world? [Online].
Available: http://analytics.blogspot.com/2012/04/global-site-
speed-overview-how-fa st-are.html, accessed Aug. 2013.

[41] U. H€olzle. Powering a google search [Online]. Available: http://
googleblog.blogspot.com/2009/01/powering-google-search.
html, accessed Aug. 2013.

[42] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R.
Neugebauer, I. Pratt, and A. Warfield, “Xen and the art of
virtualization,” in Proc. 19th ACM Symp. Operating Syst. Principles,
2003, pp. 164–177.

[43] K. Fraser, S. Hand, R. Neugebauer, I. Pratt, A. Warfield,
A. Warfield, andM. Williamson, “Reconstructing I/O,” Computer
Laboratory, University of Cambridge, Tech. Rep. UCAM-CL-TR-
596, Aug. 2004.

[44] A. S. Szalay, G. C. Bell, H. H. Huang, A. Terzis, and A. White,
“Low-power amdahl-balanced blades for data intensive
computing,” SIGOPS Oper. Syst. Rev., vol. 44, no. 1, pp. 71–75,
2010.

[45] Venturebeat. Seamicro drops an atom bomb on the server industry
[Online]. Available: http://venturebeat.com/2010/06/13/seami-
cro-drops-an-atom-bomb-on-the-server- industry/, accessed Aug.
2013.

[46] J. Liu, W. Huang, B. Abali, and D. K. Panda, “High performance
VMM-bypass I/O in virtual machines,” in Proc. Annu. Conf. Use-
nix Annu. Tech. Conf., 2006, p. 3.

[47] H. Raj and K. Schwan, “High performance and scalable I/O virtu-
alization via self-virtualized devices,” in Proc. 16th Int. Symp. High
Perform. Distrib. Comput., 2007, pp. 179–188.

[48] T. Moscibroda and O. Mutlu, “Memory performance attacks:
Denial of memory service in multi-core systems,” in Proc. 16th
USENIX Security Symp., 2007, p. 18.

[49] H. Raj, R. Nathuji, A. Singh, and P. England, “Resource manage-
ment for isolation enhanced cloud services,” in Proc. ACM Work-
shop Cloud Comput. Security, 2009, pp. 77–84.

[50] E. Keogh and S. Kasetty, “On the need for time series data mining
benchmarks: A survey and empirical demonstration,” Data Min-
ing Knowl. Discov., vol. 7, no. 4, pp. 349–371, 2003.

[51] R. Agrawal, C. Faloutsos, and A. N. Swami, “Efficient similarity
search in sequence databases,” in Proc. 4th Int. Conf. Found. Data
Org. Algorithm, 1993, 69–84.

[52] K. Chakrabarti, E. Keogh, S. Mehrotra, and M. Pazzani, “Locally
adaptive dimensionality reduction for indexing large time series
databases,” ACM Trans. Database Syst., vol. 27, no. 2, pp. 188–228,
2002.

[53] E. Keogh, “Exact indexing of dynamic time warping,” in Proc. 28th
Int. Conf. Very Large Data Bases, 2002, pp. 406–417.

[54] C. Faloutsos, M. Ranganathan, and Y. Manolopoulos, “Fast subse-
quence matching in time-series databases,” SIGMOD Rec., vol. 23,
no. 2, pp. 419–429, 1994.

[55] Y.-S. Moon, K.-Y. Whang, and W.-S. Han, “General match: A sub-
sequence matching method in time-series databases based on gen-
eralized windows,” in Proc. ACM SIGMOD Int. Conf. Manage.
Data, 2002, pp. 382–393.

[56] V. Athitsos, P. Papapetrou, M. Potamias, G. Kollios, and D. Guno-
pulos, “Approximate embedding-based subsequence matching of
time series,” in Proc. ACM SIGMOD Int. Conf. Manage. Data, 2008,
pp. 365–378.

[57] W.-S. Han, J. Lee, Y.-S. Moon, and H. Jiang, “Ranked subsequence
matching in time-series databases,” in Proc. 33rd Int. Conf. Very
Large Data Bases, 2007, pp. 423–434.

[58] J. B. Kruskall and M. Liberman, The symmetric time warping
algorithm: From Continuous to Discrete, in Time Warps, String
Edits, and Macromolecules: The Theory and Practice of Sequence Com-
parison. Reading, MA, USA: Addison-Wesley, 1983.

[59] A. Whitaker, M. Shaw, and S. D. Gribble, “Denali: A scalable isola-
tion kernel,” in Proc. 10th Workshop ACM SIGOPS Eur. Workshop,
2002, pp.10–15.

[60] T. Garfinkel and M. Rosenblum, “When virtual is harder than
real: Security challenges in virtual machine based computing
environments,” in Proc. 10th Conf. Hot Topics Operating Syst.,
2005, p. 20.

[61] L. Cherkasova and R. Gardner, “Measuring cpu overhead for I/O
processing in the xen virtual machine monitor,” in Proc. USENIX
Annu. Tech. Conf., 2005, pp. 387–390.

[62] D. Gupta, L. Cherkasova, R. Gardner, and A. Vahdat, “Enforcing
performance isolation across virtual machines in Xen,” in Proc.
ACM/IFIP/USENIX Int. Conf. Middleware, 2006, pp. 342–362.

[63] G. A. Alvarez, E. Borowsky, S. Go, T. H. Romer, R. Becker-Szendy,
R. Golding, A. Merchant, M. Spasojevic, A. Veitch, and J. Wilkes,
“Minerva: An automated resource provisioning tool for large-
scale storage systems,” ACM Trans. Comput. Syst., vol. 19, no. 4,
pp. 483–518, 2001.

[64] G. Soundararajan, D. Lupei, S. Ghanbari, A. D. Popescu, J. Chen,
and C. Amza, “Dynamic resource allocation for database servers
running on virtual storage,” in Proc. 11th USENIX Conf. File Stor-
age Technol., 2009, pp. 71–84.

[65] L. Huang, G. Peng, and T.-c. Chiueh, “Multi-dimensional storage
virtualization,” SIGMETRICS Perform. Eval. Rev., vol. 32, no. 1, pp.
14–24, 2004.

[66] S. R. Seelam and P. J. Teller, “Virtual I/O scheduler: A scheduler
of schedulers for performance virtualization,” in Proc. 3rd Int.
Conf. Virtual Execution Environ., 2007, pp. 105–115.

[67] D. Ongaro, A. L. Cox, and S. Rixner, “Scheduling I/O in virtual
machine monitors,” in Proc. 3rd Int. Conf. Virtual Execution Envi-
ron., 2008, pp. 1–10.

[68] A. Gulati, I. Ahmad, and C. A. Waldspurger, “Parda: Proportional
allocation of resources for distributed storage access,” in Proc. 7th
USENIX Conf. File Storage Technol., 2009, pp. 85–98.

[69] D. Boutcher and A. Chandra, “Does virtualization make disk
scheduling pass�e?” SIGOPS Oper. Syst. Rev., vol. 44, no. 1, pp. 20–
24, 2010.

[70] C. R. Lumb, A. Merchant, and G. A. Alvarez, “Facade: Virtual
storage devices with performance guarantees,” in Proc. 2nd USE-
NIX Conf. File Storage Technol., 2003, pp. 131–144.

[71] M. Karlsson, C. Karamanolis, and X. Zhu, “Triage: Performance
differentiation for storage systems using adaptive control,” ACM
Trans. Storage, vol. 1, no. 4, pp. 457–480, 2005.

CHIANG ET AL.: SWIPER: EXPLOITING VIRTUAL MACHINE VULNERABILITY IN THIRD-PARTY CLOUDSWITH COMPETITION FOR I/O... 1741

[72] S. Uttamchandani, L. Yin, G. A. Alvarez, J. Palmer, and G. Agha,
“Chameleon: A self-evolving, fully-adaptive resource arbitrator
for storage systems,” in Proc. USENIX Annu. Tech. Conf., 2005,
pp. 75–88.

[73] J. Zhang, A. Sivasubramaniam, Q. Wang, A. Riska, and E. Riedel,
“Storage performance virtualization via throughput and latency
control,” ACM Trans. Storage, vol. 2, no. 3, pp. 283–308, 2006.

[74] M. Wachs, M. Abd-El-Malek, E. Thereska, and G. R. Ganger,
“Argon: Performance insulation for shared storage servers,” in
Proc. 5th USENIX Conf. File Storage Technol., 2007, p. 5.

[75] H. H. Huang and A. S. Grimshaw, “Automated performance con-
trol in a virtual distributed storage system,” in Proc. 9th IEEE Int.
Conf. Grid Comput., 2008, pp. 242–249.

[76] E. Keller, J. Szefer, J. Rexford, and R. B. Lee, “Nohype: Virtualized
cloud infrastructure without the virtualization,” in Proc. 37th
Annu. Int. Symp. Comput. Archit., 2010, pp. 350–361.

[77] Y. Tan, H. Nguyen, Z. Shen, X. Gu, C. Venkatramani, and D.
Rajan, “Prepare: Predictive performance anomaly prevention for
virtualized cloud systems,” IEEE 32nd International Conference on,
Distributed Computing Systems (ICDCS), pp. 285–294, Jun. 2012.

[78] Y. Tan, X. Gu, and H. Wang, “Adaptive system anomaly pre-
diction for large-scale hosting infrastructures,” in Proc. 29th
ACM SIGACT-SIGOPS Symp. Principles Distrib. Comput., 2010,
pp.173–182.

[79] K. Shen, C. Stewart, C. Li, and X. Li, “Reference-driven perfor-
mance anomaly identification,” in Proc. 11th Int. Joint Conf. Meas.
Model. Comput. Syst., 2009, pp. 85–96.

[80] P. Bodik, M. Goldszmidt, A. Fox, D. B. Woodard, and H.
Andersen, “Fingerprinting the datacenter: Automated classifi-
cation of performance crises,” in Proc. 5th Eur. Conf. Comput.
Syst., 2010, pp. 111–124.

[81] I. Cohen, S. Zhang, M. Goldszmidt, J. Symons, T. Kelly, and A.
Fox, “Capturing, indexing, clustering, and retrieving system his-
tory,” SIGOPS Oper. Syst. Rev., vol. 39, no. 5, pp. 105–118, Oct.
2005.

[82] C. E. Monteleoni, “Learning with online constraints: Shifting con-
cepts and active learning,” Ph.D. dissertation, Massachusetts Inst.
Technol., Comput. Sci. Artif. Intell. Laboratory, Cambridge, MA,
USA, 2006.

[83] J. Ferber, Multi-Agent Systems: An Introduction to Distributed Artifi-
cial Intelligence. Reading, MA, USA: Addison-Wesley, 1999, vol. 1.

[84] M. L. Littman, “Markov games as a framework for multi-agent
reinforcement learning.” in Proc. 11th Int. Conf. Mach. Learn., 1994,
vol. 94, pp. 157–163.

Ron C. Chiang received the PhD degree in com-
puter engineering from the George Washington
University in 2014. He was a software engineer
with the Institute for Information Industry, Taipei,
Taiwan, from 2001 to 2006, and a research assis-
tant with the Institute of Information Science, Aca-
demia Sinica, Taipei, Taiwan, from 2006 to 2008.
His research interest includes virtualization tech-
nology, cloud computing, file and storage sys-
tems, and embedded systems. He received a
Distinguish Performance Award for technology

from the Ministry of Economic Affairs for advancing Taiwans J2ME
development in 2005.

Sundaresan Rajasekaran received the bach-
elor’s of engineering (BE) degree from Anna Uni-
versity, Chennai, India, in 2008 and the MS
degree from the George Washington University in
2010. He is currently working toward the PhD
degree in the Computer Science Department at
the George Washington University, Washington,
DC. His research interests includes cloud comput-
ing, virtualization, performance and security in dis-
tributed systems.

Nan Zhang received the BS degree from Peking
University in 2001, and the PhD degree from
Texas A&M University in 2006, both in computer
science. He is an associate professor of computer
science at The George Washington University,
Washington, DC. His current research interests
includes databases and information security/pri-
vacy. He received the US National Science Foun-
dation (NSF) CAREER Award in 2008.

H. Howie Huang received the PhD degree in
computer science from the University of Virginia in
2008. He is an associate professor in the Depart-
ment of Electrical and Computer Engineering at
the George Washington University. His research
interests are in the areas of computer systems
and architecture, including cloud computing, big
data computing, high-performance computing and
storage systems. He received the US National
Science Foundation (NSF) CAREER Award in
2014, NVIDIA Academic Partnership Award in

2011, and IBM Real Time Innovation Faculty Award in 2008.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

1742 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 26, NO. 6, JUNE 2015

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

