
Fast Stochastic Block Partition for Streaming Graphs

Ahsen J. Uppal, and H. Howie Huang

The George Washington University

Abstract—The graph partition problem continues to be chal-
lenging, particularly for streaming graph data. Although optimal
graph partitioning is NP-hard, stochastic methods can provide
approximate solutions in reasonable time. However, such methods
are optimized for static, not dynamic graph data. In this paper,
we describe a new efficient algorithm we have developed for
stochastic block partitioning on time-varying, streaming graph
data. Our algorithm is a refinement of the baseline algorithm of
the IEEE HPEC Graph Challenge [1]. Our incremental algorithm
efficiently updates its previous internal state as new pieces are
streamed in, and generates a complete partition at every time
step.

Compared to the naive baseline which performs a complete
partitioning from scratch at every time step, our algorithm offers
speedups between 1.96x for N=500 and 3.56x for N=20k overall,
for a graph streamed over 10 parts, with similar accuracy. At the
margin, the speedup in processing time for additional streaming
pieces over the baseline is between 7.1x for N=500 to 25.1x for
N=20k.

I. INTRODUCTION

Graph data has come to play a critical role in a diverse
array of applications, particularly when looking for hidden or
complex relationship structures. Many theoretical algorithms
assume that graph data is fixed and known at one time. But in
real-world applications, data sizes are often too large to store
in their entirety, and relationships must be identified with low
latency to permit rapid reaction. These stringent constraints
motivate the development of efficient stream-oriented algo-
rithms for graph processing, which can efficiently generate
incremental results as fresh data is streamed in.

The goal of graph partitioning (also called community
detection or graph clustering) is to discover the higher-order
relationship community structure of nodes in a graph. Infor-
mally, nodes that form dense connections with each other
can be considered as part of the same community (or block).
But the computational complexity of many graph optimization
algorithms, including optimal graph partitioning is NP-hard.
Fortunately, the development of approximation algorithms,
including stochastic block partition has been critical for effi-
ciently solving the graph partitioning problem for static graphs.

But using stochastic block partition is a challenging case
for streaming data, because the number of communities is not
only unknown ahead of time, but may also vary over time.
The arrival of fresh streaming data may upset previous results.
Furthermore, there are no a priori clues about the membership
of the nodes. Finally, the type of streamed data also varies.
A dynamic graph may have edges added (or deleted), or even
new nodes added or deleted. Edge weights may also change.

A streaming partitioning algorithm should efficiently merge
fresh data into its existing algorithmic state and generate up-
to-date results given the current state of the graph that are as

accurate as performing a full partitioning from scratch. Our
approach accomplishes both of these goals.

Note that our focus in this work is on improving the
algorithmic performance of stochastic block partition – not the
absolute best performance of community detection. As such,
our high-level Python streaming implementation is compared
to a baseline which uses our static implementation to fully
partition a static graph after every subgraph piece is streamed
in.

II. BACKGROUND

The static algorithm for stochastic block partition which
forms the GraphChallenge baseline uses a generative statistical
models based on work by Peixoto [2][3][4] building on Karrer
and Newman[5].

The algorithm has two challenges: the optimal number of
blocks is not known a priori, and the assignment of each
node to a block is not known. The static algorithm uses
an entropy measurement which measures the goodness of a
partition, to address these challenges. It proceeds by picking a
number of target blocks, finding an optimal partitioning for that
number, and computing the resulting entropy. It can then make
a comparison against the partitioning for a different target
number of blocks.

In particular, the baseline algorithm first proceeds to find
optimal partitions and entropies for partition sizes B of N

2 ,
N
4 , N

8 , ..., until the partition with the minimum entropy is
bracketed between two partition sizes. It then switches to a
Golden section search[6] to find the final partition and entropy.

To target a given number of blocks, at each iteration the
static algorithm proceeds down from a larger partition size to a
smaller one. It does each such iteration in two distinct program
phases. First, it repeatedly does an agglomerative merge of two
existing blocks based on greedily picking the merge with the
lowest resulting entropy. Each agglomerative merge takes two
communities and puts them together as one, resulting in one
fewer number of blocks. When the target number of blocks is
reached, the algorithm performs nodal moves that can reassign
a vertex from one block to another. These nodal moves are
accepted or rejected with a probability proportional to the
resulting change in entropy. Movements that result in large
decreases in entropy are likely to be accepted and movements
that do not are unlikely to be accepted. When the overall
change in entropy stabilizes for a particular partition size, the
algorithm stops movements for that partition size, and proceeds
to the next target block number. These Markov Chain Monte
Carlo (MCMC) nodal movements are done in the manner of
Metropolis-Hastings[7][8].

We previously found that the vast majority of the algorithm
is spent performing nodal updates, and focused on performing
these nodal updates in parallel, with low latency, and at large
scale.

III. APPROACH

In our previous work[9] we focused on parallelization and
scalability of the stochastic block partition algorithm. In this
work we extend our previous approach to adapt it to streaming
graph data.

We adapted our fast parallel Python implementation to
efficiently process streaming data. Since our goal here is an
efficient streaming algorithm, we focused on high-level algo-
rithmic changes. This means comparing a new streaming al-
gorithm with a similar static algorithm, instead of maximizing
raw partitioning performance on static graphs. The rationale
here is that system implementation performance gains would
roughly equally benefit both the naive streaming algorithm, as
well as our new streaming algorithm. Thus we did not focus
on using the largest possible parallel implementation, most
efficient data layout, or leveraging hardware accelerators. In
addition, we did not use a divide-and-conquer style algorithm
to speed up the computations for large graphs.

A. Streaming Graph Data

The streaming graph data provided in the GraphChallenge
comes in two variants: emerging edges, and snowball sam-
pling. In emerging edge streaming, the number of nodes is
fixed and edges are randomly sampled and added to the graph
over time. For our current work, we focused on emerging edge
streaming.

B. Streaming Baseline

The streaming baseline we used for comparison uses our
fast static parallel algorithm, run from scratch to completion
after every streamed piece updates the graph. This approach
is somewhat naive, but is simple and easy to understand. It is
particularly wasteful because it discards all of the work done
during the early iterations of the algorithm when the number
of target blocks is repeatedly cut in half.

The naive algorithm is shown in Listing 1 in Python-like
code.

def n a i v e s t r e a m () :
f o r p a r t in range (p a r t s) :

dG= l o a d g r a p h p a r t (p a r t)
G= u p d a t e g r a p h (G, dG)
r u n s t a t i c p a r t i t i o n (G)

Listing 1. Naive Streaming Algorithm

C. Saving and Re-using Algorithm State

Our starting intuition for an efficient incremental streaming
algorithm is that a good partition found during a previous time
serves as a good starting point for partitioning at a the next time
interval. It is also desirable to output a complete partitioning
as each piece is streamed in.

Fig. 1. Bracketing of the optimal number of blocks during each iteration
of static partition. For a naive implementation of streaming partition, this full
bracket search occurs for every time increment of the dynamic graph.

Fig. 2. Cumulative runtime of each iteration of static partitioning as a fraction
of the whole compute time. Early iterations take the majority of the time.

Thus our basic approach is to save the state of the algorithm
at some point, during its partitioning of each piece to com-
pletion. When the next streamed piece arrives, that previous
saved state is updated based on the information contained in
the new piece. The algorithm is then resumed from this updated
state and once again run to completion, with the state of the
algorithm once again being saved for the next piece.

The initial iterations of the partitioning algorithm to reduce
the block counts dominate the runtime of the partitioning. By
re-using the expensive portions of the algorithm state, we aim
to greatly reduce the marginal cost of streaming processing.

The cost of these expensive initial iterations is illustrated
in Figure 1 and Figure 2 for a graph size of N=5000. The
bracketing search for the optimal block count number is shown
in Figure 1. Initially the target number of blocks is cut in
half until the minimum entropy block count is bracketed in
iteration 8 and the fine-grained Golden section search begins.
However the cumulative fraction of the runtime in the first
iteration (which reduces the block count to B=2500) consumes
37.7% of the overall partitioning runtime, and by iteration 8,
the cumulative runtime represents 86.5% of the whole.

But there are complications with this save and reuse
approach. The first tricky parts is to know when precisely the
algorithm state should be saved. When just a small fraction of
the graph has been streamed in, the accuracy of the ultimate
resulting communities may be poor simply because there is not
enough graph data yet. If the state is saved at a late iteration of
the bracketing search for this graph piece, then the quality of
the communities at subsequent iterations will also be adversely
impacted.

We devised a heuristic that works well to determine save
points during graph partitioning. We save off a snapshot when
either the Golden ratio bracket is established or the number
of blocks drops below a minimum threshold. This minimum
threshold is cut in half after every piece is streamed in, and
mostly ensures that enough graph data is present to form stable
communities as the first few pieces are streamed in.

D. Updating Algorithm State

The other tricky part is to how to efficiently update
previously-saved algorithm state with new streamed data.
When a new piece of a dynamic graph has been streamed
in, the saved internal state variables of the algorithm will be
out-of-date and must be adjusted for proper operation. If the
previous saved state was during the Golden section search,
three copies of partition state (corresponding to the low, best,
and high block numbers) must be updated.

The particularly algorithm state that must be updated with
new graph data is, of course, the overall entropy computation.
But all of the block degree counters, and the interblock edge
count matrix must be adjusted since these track cumulative
edge counts between blocks during partitioning.

If the structure of communities in a streaming graph
changes radically (i.e. the number of communities increases
or decreases rapidly), then the Golden section search will no
longer bracket the optimal entropy. We handle these cases by
re-computing the overall entropy for each number of blocks in
the saved bracket, and re-ordering the brackets a. If the Golden
section criterion is no longer satisfies, the static algorithm
will still proceed from the highest block number in the saved
bracket. This method can handle some increases in the number
of communities, but only up to the largest number in the saved
block state. We plan to address this limitation in future work
by restarting partitioning from a higher number when this
condition is detected.

Putting these ideas together, the pseudo-code for our algo-
rithm is shown in Listing 2 in Python-like code.

def e f f i c i e n t s t r e a m () :
G=None
s t =None
min num blocks=N/ 2
f o r p a r t in range (p a r t s) :

dG= l o a d g r a p h p a r t (p a r t)
G= u p d a t e g r a p h (G, dG)
s t = u p d a t e s t a t e (s t , dG)
s t = r u n s t a t i c p a r t i t i o n (G, s t ,

s t o p =1 , min num blocks)
Note : no saved s t a t e second t i m e
r u n s t a t i c p a r t i t i o n (G, s t , s t o p =0)

Fig. 3. Cumulative processing time of ours and naive baseline for small
graphs.

min num blocks /= 2
re turn

def u p d a t e s t a t e (s t , dG) :
f o r f rom idx , t o i d x in dG . edges :

There may be up t o t h r e e e n t r i e s
t o a d j u s t due t o t h e Golden
b r a c k e t s e a r c h .
f o r j in [0 , 1 , 2] :

i f s t . p a r t i t i o n [j] :
b = s t . p a r t i t i o n [j]
M = s t . i n t e r b l o c k e d g e c o u n t [j]
b ou t = s t . b l o c k d e g r e e s o u t [j]
b in = s t . b l o c k d e g r e e s i n [j]
b a l l = s t . b l o c k d e g r e e s [j]

M[b [f rom idx] , b [t o i d x]] += 1
b ou t [b [f rom idx]] += 1
b in [b [t o i d x]] += 1
b a l l [b [f rom idx]] += 1
b a l l [b [t o i d x]] += 1

f o r j in [0 , 1 , 2] :
i f s t . p a r t i t i o n [j] :

A s s i g n M, b out , b in as b e f o r e .
s t . o v e r a l l e n t r o p y [j] =

compu te en t ropy (M, b out , b in ,
num blocks , N, E)

I f t h e upda ted e n t r o p i e s no l o n g e r
b r a c k e t t h e minimum t h e n r e o r d e r e n t r i e s .
re turn

Listing 2. Our Streaming Algorithm

E. Implementation

For our implementation, we started with our fast parallel
stochastic block partition implementation written in Python.
Our baseline for comparison is our implementation run to
completion after every piece of a graph is streamed in. We
modified this so that the algorithm can stop as it processes a
graph to completion. It stops, stores a snapshot of the state,
then resumes and finishes processing the current graph (but
not further modifying the saved off state).

Fig. 4. Cumulative processing time of ours and naive baseline for medium
graphs.

Fig. 5. Marginal speedup over time of ours against naive baseline for small
graphs.

One major advantage of algorithmic development in Python
is the ease of modification, particularly for high-level op-
erations relative to C++. Internally the implementation uses
NumPy[10] for low-level array operations, and we rely on
Python multiprocessing with shared memory for multi-core
operation.

IV. EVALUATION

Our streaming partitioning experiments use the baseline
datasets from GraphChallenge. Our single-node test machine
is an Intel Xeon E5-2683 server with 56 cores and 512GB
RAM.

We ran experiments on streaming data at graph sizes of
N=(500, 1k, 5k, 20k) and evaluated both the performance
and accuracy of our method. The GraphChallenge streaming
datasets take a graph and divide it into 10 streamed pieces.

A. Performance

One straightforward measure of streaming data perfor-
mance is the amount of time used to perform partitioning. We
instrumented our code to measure just the time spent during
computation, ignoring overheads such as graph load time from
disk. We measured the overall cumulative times as seen in
Figure 3 and Figure 4. Here the overall compute times and
the growth rates are clearly visible. The naive approach has
a growth in compute time that is linear, with each part of

Fig. 6. Marginal speedup over time of ours against naive baseline for small
graphs.

TABLE I. SPEEDUPS

N Vertices Speedup Marginal Speedup Overall
500 7.075 1.96

1000 7.736 1.96
5000 8.553 2.31

20000 25.14 3.56

the streaming graph takes nearly the same amount of time to
run. In fact, the growth is slightly super-linear as seen in the
N=20k growth because there are more edges in the graph over
time. In contrast, our fast incremental algorithm grows sub-
linearly in overall compute time. By re-using program state
from approximately where the Golden ratio bracketing starts,
our algorithm can run much faster overall.

It is also useful to look at the marginal speedup of our algo-
rithm compared to the baseline in Figure 5 and Figure 6. This
compares the compute time taken to process each additional
piece of the graph stream. We obtained marginal speedups
of 1.96x to 25.14x as summarized in Table 1. The speedups
obtained improve with increasing graph size indicating good
scalability to our approach.

B. Accuracy

We also measured the correctness of our approach using
pairwise precision and recall metrics [11] over time. These
are shown in Figure 7, Figure 9, Figure 8, and Figure 10. We
see that the precision quickly converges to 1.0 over time for
our algorithm, just as for the naive baseline. This indicates
that the algorithm rapidly performs correct partitioning once
enough graph data has been streamed in. We see a similar
effect for the recall over time.

V. RELATED WORK

Previous GraphChallenge works haves used a shared mem-
ory Louvain implementation [12] and spectral clustering meth-
ods [13] to achieve large speedups in partitioning performance
that obtain large speedups over the baseline stochastic block
partition algorithm. Our work differs in that our focus is
narrowly on improving the streaming performance of the
stochastic graph partition baseline algorithm. One advantage of
the stochastic approach is that more complex rules that govern
the goodness of communities in different application domains
can be easily adapted to a stochastic method.

Fig. 7. Precision over time for ours and naive baseline. Convergence rates
are very similar.

Fig. 8. Precision over time for ours and baseline. Convergence rates are very
similar.

VI. FUTURE WORK

Our preliminary work in this area suggests several poten-
tially fruitful areas for future work. Most prominently, our
current multi-process solution can be combined with our previ-
ous distributed static graph partitioning implementation. With
some adaptions, our streaming solution can also be extended
to support snowball streaming. Handling edge deletions is
more challenging, possibly requiring splitting existing blocks
and increasing the number of blocks over time. We also plan
to handle radical changes in community structure by storing
more entropy and partition state, and backtracking further
when the optimal number of blocks increases suddenly. Finally,
we plan to investigate leveraging the performance benefits of
the Louvain and spectral clustering approaches to seed the
stochastic block partition.

VII. CONCLUSION

We have described our new stochastic block partition for
streaming graphs. We have developed a prototype that shows
excellent performance gains over the baseline, especially at the
margin.

In the future, we would like to further develop and enhance
our algorithm, particularly to improve computational perfor-
mance, handle rapidly changing communities, and extend to a
distributed streaming solution.

Fig. 9. Recall over time for ours and naive baseline.

Fig. 10. Recall over time for ours and baseline.

VIII. ACKNOWLEDGMENT

This work was supported in part by The National Science
Foundation CAREER award 1350766 and grants 1618706 and
1717774.

REFERENCES

[1] E. Kao, V. Gadepally, M. Hurley, M. Jones, J. Kepner, S. Mohindra,
P. Monticciolo, A. Reuther, S. Samsi, W. Song, D. Staheli, and S. Smith,
“Streaming graph challenge: Stochastic block partition,” 2017.

[2] T. P. Peixoto, “Entropy of stochastic blockmodel ensembles,” Physical
Review E, vol. 85, no. 5, p. 056122, 2012.

[3] ——, “Parsimonious module inference in large networks,” Physical
review letters, vol. 110, no. 14, p. 148701, 2013.

[4] ——, “Efficient monte carlo and greedy heuristic for the inference of
stochastic block models,” Physical Review E, vol. 89, no. 1, p. 012804,
2014.

[5] B. Karrer and M. E. Newman, “Stochastic blockmodels and community
structure in networks,” Physical review E, vol. 83, no. 1, p. 016107,
2011.

[6] J. Kiefer, “Sequential minimax search for a maximum,” Proceedings of
the American mathematical society, vol. 4, no. 3, pp. 502–506, 1953.

[7] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and
E. Teller, “Equation of state calculations by fast computing machines,”
The journal of chemical physics, vol. 21, no. 6, pp. 1087–1092, 1953.

[8] W. K. Hastings, “Monte carlo sampling methods using markov chains
and their applications,” Biometrika, vol. 57, no. 1, pp. 97–109, 1970.

[9] A. J. Uppal, G. Swope, and H. H. Huang, “Scalable stochastic block par-
tition,” in High Performance Extreme Computing Conference (HPEC),
2017 IEEE. IEEE, 2017, pp. 1–5.

[10] S. v. d. Walt, S. C. Colbert, and G. Varoquaux, “The numpy array: a
structure for efficient numerical computation,” Computing in Science &
Engineering, vol. 13, no. 2, pp. 22–30, 2011.

[11] A. Banerjee, C. Krumpelman, J. Ghosh, S. Basu, and R. J. Mooney,
“Model-based overlapping clustering,” in Proceedings of the eleventh
ACM SIGKDD international conference on Knowledge discovery in
data mining. ACM, 2005, pp. 532–537.

[12] M. Halappanavar, H. Lu, A. Kalyanaraman, and A. Tumeo, “Scalable
static and dynamic community detection using grappolo,” in High
Performance Extreme Computing Conference (HPEC), 2017 IEEE.
IEEE, 2017, pp. 1–6.

[13] D. Zhuzhunashvili and A. Knyazev, “Preconditioned spectral clustering
for stochastic block partition streaming graph challenge (preliminary
version at arxiv.),” in High Performance Extreme Computing Conference
(HPEC), 2017 IEEE. IEEE, 2017, pp. 1–6.

