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Abstract—The processing of graph data at large scale, though
important and useful for real-world applications, continues to be
challenging, particularly for problems such as graph partitioning.
Optimal graph partitioning is NP-hard, but several methods
provide approximate solutions in reasonable time. Yet scaling
these approximate algorithms is also challenging. In this paper,
we describe our efforts towards improving the scalability of one
such technique, stochastic block partition, which is the baseline
algorithm for the IEEE HPEC Graph Challenge [1]. Our key con-
tributions are: improvements to the parallelization of the baseline
bottom-up algorithm, especially the Markov Chain Monte Carlo
(MCMC) nodal updates for Bayesian inference; a new top-down
divide and conquer algorithm capable of reducing the algorithmic
complexity of static partitioning and also suitable for streaming
partitioning; a parallel single-node multi-CPU implementation
and a parallel multi-node MPI implementation. Although our
focus is on algorithmic scalability, our Python implementation
obtains a speedup of 1.65x over the fastest baseline parallel C++
run at a graph size of 100k vertices divided into 8 subgraphs
on a multi-CPU single node machine. It achieves a speedup of
61x over itself on a cluster of 4 machines with 256 CPUs for
a 20k node graph divided into 4 subgraphs, and 441x speedup
over itself on a 50k node graph divided into 8 subgraphs on a
multi-CPU single node machine.

I. INTRODUCTION

The analysis of graph data has become ubiquitous in a
diverse array of fields, particularly when mining for hidden
relationships and activities. But performance and scalability
remain challenging issues because the computational complex-
ity of many traditional algorithms, including graph partitioning
(also known as community detection) and subgraph match-
ing are NP-hard. For graph partitioning, the development of
approximation algorithms [2] [3] has been critical in find-
ing feasible solutions for real-world datasets. Unfortunately,
there are major scalability challenges even for approximation
algorithms. These challenges are made even more difficult
for graph partitioning when the number of communities is
not known a priori and there are no a priori cues about the
membership of some of the nodes.

Furthermore, the streaming data adds to the complexity of
the problem. While many theoretical algorithms assume that
the entire graph is known at one time, real-world applications
typically have data arrive in a streaming manner over time. One
major challenge is to efficiently handle fresh streaming data,
and merge its results with the results of the existing dataset.

II. BACKGROUND

The stochastic block partition algorithm used as the
GraphChallenge baseline uses a generative statistical models
based on work by Peixoto [4][5][6].

Since the optimal number of blocks is not known a priori,
the baseline algorithm first proceeds finding optimal partitions
and entropies for partition sizes B of N

2 , N
4 , N

8 , etc. until
the partition with the minimum entropy is bracketed, and then
switches to a Golden section search[7] to find the final partition
and entropy.

For finding an optimal partition with a given block number
of blocks, the baseline algorithm alternates between two pro-
gram phases – agglomerative merging of existing communities,
and nodal updates that move a vertex from one block to
another. Nodal moves are accepted or rejected based on a prob-
ability derived from the resulting change in entropy. Changes
that result in lower entropy are more likely to be accepted,
in the manner of Metropolis-Hastings[8][9]. Agglomerative
merges are greedy. That is potential merges are found for
each source block. Then merges across all blocks are sorted by
entropy and the ones with a minimum change in entropy are
greedily chosen until the block count is sufficiently reduced.
There is no sampling. The overall complexity of the algorithm
is O(N2 log2 N) = O(E log2 E).

III. APPROACH

The C++ implementation of the baseline algorithm has
excellent single-threaded performance on small graphs, but
scaling this performance is difficult. In our single-machine
testing, we found that the speedup of the baseline reference
implementation saturates at 2.5x over sequential, even as the
number of CPU cores increases from 4 to 8 to 16 to 32 as seen
in Figure 1. The overhead from propagating nodal updates with
message-passing on a multi-node system is even greater, thus
limiting the performance of parallel MCMC updates.

In our initial profiling of the serial baseline algorithm
(using the reference Python implementation), we discovered
that for N = 5000 vertices, approximately 72% of the time is
spent in nodal movements and 26% in nodal updates.

A. Agglomerative Merge Parallelism

Parallelization of the agglomerative merge portion is fairly
straightforward. Most of the time in this phase is spent
finding merge candidates for each current block. This problem
decomposes cleanly into a parallel implementation, although
the gains here are limited by Amdahl’s law since this portion
only represents a small part of the overall runtime. Our initial
parallelization efforts using a pool of worker processes for this
phase of the algorithm were relatively easy to implement, and
provided the expected, albeit limited speed up of the overall
program to approximately 35% for N = 5000 vertices.



B. Nodal Update and Shared State Batching

Profiling reveals that the vast majority of the algorithm
is spent performing nodal updates. One major challenge is
that as large numbers of nodal updates are applied in parallel,
write-intensive memory interconnect traffic will saturate the
memory subsystem. But limiting the synchronization of these
updates results in stale block membership assignments being
visible to the other cores. Although not an issue for eventual
convergence, our testing showed that using one iteration-old
assignments resulted in a significant increase in the needed
number of nodal updates and a consequent increase in runtime.
Figure 2 shows the results of this testing using a single-
threaded simulation of the effect of delayed nodal updates.
Here, the update frequency is measured in terms of nodal
proposals evaluated before accepted proposals are propagated.
For N = 1000 nodes, a frequency of 1000 proposals indicates
a one iteration delay before updates become globally visible.
The results show that while the overall number of nodal moves
increases with the length of the update interval, the overall
runtime increases can increase significantly even with modest
increases in the number of nodal moves. We interpret this to
mean that the quality of nodal updates also increases as the
update frequency increases, and a well-crafted parallel imple-
mentation should strive to minimize the latency of propagating
nodal updates to all workers.

We designed a batch nodal update scheme to carefully bal-
ance the recency of updates against volume of updates. Armed
with these results, we opted to make merge granularity and
low-overhead for processing nodal updates a central feature of
our nodal update efforts. We discuss this further in Section V.

IV. TOP-DOWN DIVIDE AND MERGE ALGORITHM

Parallelism from parallel nodal updates has its limitations
due to traffic and computation induced from sending, receiv-
ing, and merging these updates. Even in a shared-memory
implementation, there are significant overheads to locking and
unlocking shared state in order to perform updates. Our major
contribution is a top-down divide and merge algorithm to
increase the isolation between parallel instances so that a
minimum of shared state is be needed.

This top-down algorithm works by partitioning the input
graph into several pieces, performing block partitioning on
each piece, and then merging together the resulting blocks.
Since the baseline algorithmic complexity is O(N2 log2 N),
slicing N into K pieces results in at least a factor of O( 1

K )
savings aggregated across all instances assuming a fixed-cost
merge overhead. The real-world benefit is greater though,
because each instance of size N

K can be executed entirely in
parallel with no intercommunication.

A. Subgraph Partitioning

The initial partitioning into subgraphs is straight-forward.
For every vertex in the original is mapped to {0 . . .K − 1}
subgraphs by taking its vertex id modulo K. For each sub-
graph, only edges whose endpoints are within that subgraph are
preserved. This results in a large 1

K2 reduction in the number
of edges that must be considered overall. If K is significantly
less than B, the average number of communities per subgraph

remains the same. However as K approaches B, the quality
of subgraph partitions deteriorates rapidly.

B. Subgraph Block Merge

Although the basic idea is intuitive, there are implementa-
tion challenges that must be addressed to make it effective.
First, the number of slices should be small relative to the
number of true communities. Second, the stopping criterion
and method of merging the results from each piece must be
carefully designed to prevent errors from propagating into the
final solution. Finally, the merge itself must be of sufficiently
low overhead to realize these performance gains.

An approach that performs full block partitioning on each
subgraph before merging is fast, but is very sensitive to par-
tition errors in the subgraphs, particularly when the algorithm
finds fewer communities in a subgraph than the true partition.

With these considerations in mind, we devised an approach
that performs block partition on each graph piece, up until
the point at which the Golden ratio bracket is established. At
this establishment, each subgraph has an upper bound on the
number of blocks, of approximately 2B∗ where B∗ is the true
number of blocks. These proto-communities can be aggregated
and the baseline algorithm can be allowed to continue with a
merge-and-move approach of the baseline algorithm with the
unified blocks.

But treating every block from the subgraph as an indepen-
dent community (i.e. lumping), although accurate, is relatively
slow because the resulting inter-block edge count matrix has
dimensions 2KB∗ × 2KB∗.

Merging partitions between subgraphs can be done much
faster than the type of agglomerative merging used in the base-
line algorithm. Consider two partitions from two subgraphs, i,
and j each of size Bi = Bj . A naive approach would treat these
as independent and perform greedy agglomerative merging
between elements of i ∪ j. But since both partitions were
generated from samples of the same graph data, processed the
same way, the elements of i have a near one-to-one mapping
to the elements of j. (This is easy to see in the limiting case
when each partition contains every community from the input
graph.)

A rough agglomerative merge of partitions from two sub-
graphs can proceed as follows. First form the inter-block edge
count matrix M based on each partition with dimensions
(Bi + Bj) × (Bi + Bj). Then for each r ∈ i, find the
corresponding s ∈ j that minimizes the change in entropy
when r is merged with s. The final merged partition has size
Bj .

When generalized across subgraph partitions, the algorithm
will take 16 partitions, merge down into 8, then lump all
blocks from all eight together and proceed with stochastic
block partition, as if the Golden bracket search has not started
and the exponential block reduction is still in effect. Here we
made one small change to use a smaller reduction rate, 0.35
instead of 0.50 as in the baseline algorithm. The reasoning is
that merged partitions are much closer to the stopping point
and hence should be searched more finely.

Thus our approach to top-down subgraph partitioning and
merging is a combination of these ideas. It partitions the



input graph, finds block partitions from each subgraph until
the Golden ratio bracket is established, aggregates proto-
communities from each piece, does a fast and rough agglom-
erative merge, and then continues with a merge-and-move
approach of the baseline algorithm with the unified blocks.
Because most of the runtime of the overall baseline algorithm
is spent before the Golden ratio bracket is established, this
approach yields considerable performance gains, while pre-
serving accuracy.

Note that our approach, while fast, cannot arbitrarily divide
the input graph into smaller and smaller pieces. At a point
where the number of pieces approaches the number of actual
block partitions, the community structure in each subgraph is
lost. This algorithm is also amenable to efficiently merge in
streaming graph data to an existing partition when the streamed
pieces are sufficiently large. Although we do not examine
streaming graph data here, we plan to explore this in future
work.

V. IMPLEMENTATION

For our implementation, we started with the serial baseline
algorithm implementation written in Python which we then
modified and optimized. The major advantage of developing
in Python is the ease of development and rapid prototyping
relative to C++. Our implementation uses NumPy[10] for low-
level array operations, Python multiprocessing with shared
memory for single-node multi-core operation, and MPI for
multi-node operation using mpi4py[11]. Although our focus
in this work is on scalability and algorithmic performance, it
is worth noting that the raw performance of optimized C++
is difficult to match with Python, especially for small graphs
and low CPU counts where language runtime overheads are
higher.

A. Nodal Updates with Shared Memory

Nodal updates are inherently write-intensive, have a rel-
atively high ratio of communication to computation, and are
dependent on updates from other workers. Global updates to
shared state can be an expensive operation due to the volume
of data, especially for the interblock edge count matrix.

Based on simulations of the impact of batch sizes for
MCMC nodal updates, we designed our implementation to
allow careful management of the granularity of messages in
both directions, and with an effort to minimize the amount of
data transferred.

Our design uses a pool of worker processes, each of
which proposes nodal movements and computes the associated
acceptance probability and accepts or rejects accordingly. Each
worker is responsible for a group of graph vertices. A worker
will report the changes in state back to a main aggregator.
The aggregator reads nodal movements from each worker,
computes the impact on shared global state, and uses a shared
memory mechanism to efficiently pass these updates back to
each worker. A worker only checks for changes in shared state
at the beginning of an update cycle for a node, and makes a
private copy only if the state has changed. Furthermore, in
many cases, only those entries in the shared state that actually
changed are copied. This is done by tagging each global update
with an identifier, including which entries are affected.

Fig. 1. Scalability of Baseline Parallel C++ Implementation Single-Node
Multi-CPU.

Fig. 2. Single-Threaded Effect of Nodal Update Frequency. The number
of nodal moves and algorithm runtime are shown as ratios over the normal
configuration which has an update frequency of 1 proposal (i.e. instant
visibility).

Separating the aggregation of shared state from the workers
proposing updates does create some overhead because certain
information has to be re-computed. However these avoid
heavy-weight synchronization mechanisms such as row locks,
and allow careful batching of both shared state updates from
main to the workers as well as nodal movement updates from
the workers to main.

B. Multi-node MPI

Our top-down algorithm runs isolated block partition in-
stances before a final merge, it makes it ideal for cluster
computing situations where communication is through mes-
sage passing that is relatively more expensive than shared
memory IPC. To explore this configuration, we wrote an
MPI implementation of our algorithm with mpi4py. To pre-
serve performance, low-level nodal updates and agglomerative
merging are still done with the multiprocessing library and
using shared memory updates while high-level MPI-spawned
instances handle different subgraph pieces on each compute
node.

VI. EVALUATION

Our static partitioning experiments use the baseline datasets
from GraphChallenge, as well as some synthetic datasets
we generated using the reference graph generator program.



Fig. 3. Runtime of small graphs baseline and our implementation dividing
into 1, 2, and 4 pieces.

Fig. 4. Scalability of small graphs baseline and our implementation dividing
into 1, 2, and 4 pieces.

Summary statistics for the static partition datasets are shown
in Table I.

Our single-node test machine is an Intel Xeon E5-2683
server with 56 cores and 512GB RAM. Our multi-node cluster
evaluation was done on Amazon EC2 with four m4.4xlarge
instances, each with 64 CPUs and 64 GB RAM.

The runtimes for small-sized (N=1k, 5k) graphs are shown
in Figure 3 while the associated speedups are shown in Figure
Figure 4 as the number of processes increases. The different
lines here show the two baseline C++ results compared to the
different subgraph divide sizes for the top-down divide and
merge algorithm. While the Python implementation is slower,
the overall speedup as the number of processes increases shows
much better speedup. Indeed, the speedup is robust to over-
subscription of the number of processes relative to the number
of CPUs (56 in this case). Our best parallel Python speedups
over the fastest baseline parallel C++ run at the equivalent
graph sizes are 2.09 and 1.02 for N=1k and 5k respectively.

The equivalent results for large-sized graphs (N=20k, 50k,
100k) show similar results in Figure 5 and Figure 6. The
runtimes for our version greatly lag the baseline C++ at small
numbers of processes, but scale much better. Our best parallel
Python speedups over the fastest baseline parallel C++ run
at the equivalent graph sizes are 0.984, 0.869, and 1.649, for
N=20k, 50k, and 100k respectively.

The scalability for both large and small sizes also show the

Fig. 5. Runtime of large graphs baseline and our implementation dividing
into 2, 4, and 8 pieces. Note the log scale used on along both axes.

Fig. 6. Scalability of large graphs baseline and our implementation dividing
into 2, 4, and 8 pieces.

effect of the new top-down divide and conquer algorithm. The
curves for speedups obtained by dividing into more pieces,
come to dominate the curves for a smaller number of pieces.
This shows how dividing the original graph into subgraphs
reduces the overall amount of computation required. These
gains are limited by the eventual loss of community structure
from dividing the input into too many pieces. In our testing,
dividing into 8 pieces preserves accuracy for large graph sizes
while yielding good results.

Our scalability is also good for the MPI implementation
running on our EC2 cluster. These results are shown in
Figure 7 and Figure 8. For a 20k vertex graph, the speedup at
4 nodes (dividing into 4 subgraphs and using 256 processors
total) is 61x faster than the single processor runtime.

Here we briefly discuss the precision and recall of our tech-
nique. These are summarized in Tables 2 and 3. Overall, our
algorithm produces fairly good precision and recall numbers
especially relative to the baseline C++ implementation. We

TABLE I. STATIC GRAPH STATISTICS

N Vertices E Edges Truth Partitions
1000 20135 11
5000 101973 19

20000 408778 32
50000 1018039 44

100000 2037415 56



Fig. 7. Runtime of MPI implementation for 20k graph on 1, 2, and 4 nodes
with 64 CPUs each.

Fig. 8. Scalability of MPI implementation for 20k graph on 1, 2, and 4 nodes
with 64 CPUs each.

have noticed that errors during top-down subgraph processing
can propagate back to the solution, especially affecting the
recall.

VII. FUTURE WORK

Our preliminary work in this area suggests several po-
tentially fruitful areas for future work. First, an optimized
C/C++ implementation is likely to be significantly faster than
our Python implementation. Second, our top-down merge
algorithm can likely be applied to efficiently process streaming

TABLE II. PAIRWISE PRECISION

N Vertices Baseline Div 2 Div 4
1000 1 1 -
5000 1 0.9314 1

20000 1 0.8445 0.9133
50000 1 0.7318 0.9536

100000 0 .9982 - 0.9113

TABLE III. PAIRWISE RECALL

N Vertices Baseline Div 2 Div 4
1000 0.9425 1 -
5000 0.8822 0.9848 1

20000 0.8358 0.9634 1
50000 0.8443 0.9918 0.9401

100000 0.8736 - 0.9631

graph data.

More prominently, the graphs in our synthetic datasets, as
well typical graphs used in real-world community detection
applications tend to be highly sparse. Indeed for the N =
100000 graph, there are E = 2037415 edges, or about 0.02
percent.

We experimented with using sparse array implementa-
tions to manage the inter-block edge count matrix, but found
that current implementations, including linked-list, compressed
sparse column, and compressed sparse row are very slow. This
is because the matrix is traversed both by row and by column.
A better data structure to support efficient traversal of non-zero
entries across either dimension could be of great benefit.

VIII. CONCLUSION

We have described our preliminary work towards scaling up
the stochastic block partition. We have developed a prototype
that shows good scalability across single-node multi CPU and
multi-node systems. In the future, we would like to develop and
enhance this algorithm further while improving the accuracy
further.
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