
1939-1374 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSC.2015.2469295, IEEE Transactions on Services Computing

1

An Adaptive IO Prefetching Approach for
Virtualized Data Centers
Ron C. Chiang, Ahsen J. Uppal, H. Howie Huang

Abstract—Cloud and data center applications often make heavy use of virtualized servers, where flash-based solid-state drives (SSDs)
have become popular alternatives over hard drives for data-intensive applications. Traditional data prefetching focuses on applications
running on bare metal systems using hard drives. In contrast, virtualized systems using SSDs present different challenges for data
prefetching. Most existing prefetching techniques, if applied unchanged in such environments, are likely to either fail to fully utilize
SSDs, interfere with virtual machine I/O requests, or cause too much overhead if run in every virtualized instance. In this work, we
demonstrate that data prefetching, when run in a virtualization-friendly manner can provide significant performance benefits for a
wide range of data-intensive applications. We have designed and developed VIO-prefetching, consisting of accurate prediction of
application needs in runtime and adaptive feedback-directed prefetching that scales with application needs, while being considerate
to underlying storage devices and host systems. We have implemented a real system in Linux and evaluated it on different storage
devices with the virtualization layer. Our comprehensive study provides insights of VIO-prefetching’s behavior at various virtualization
system configurations, e.g., the number of VMs, in-guest processes, application types, etc. The proposed method improves virtual I/O
performance up to 43% with the average of 14% for 1 to 12 VMs while running various applications on a Xen virtualization system.

Index Terms—Data storage systems, platform virtualization, operating systems.

F

1 INTRODUCTION
Cloud service providers have adapted flash-based solid-
state drives (SSDs) in data centers for high through-
put and low energy consumption [1], [8]. For exam-
ple, Amazon is using SSDs for the DynamoDB ap-
plication in Amazon Web Services (AWS) that offers
virtual machines (VMs), virtual storages and computing
services [29]. Data prefetching is one of, if not the most,
widely-used techniques to reduce access latency, because
it can load data that are likely to soon be accessed from
storage devices into main memory [14], [33]. Future data
centers certainly need novel prefetching technologies
to meet the needs for virtualization and new storage
devices. In this paper, we aim to achieve performance
benefits in a virtualized environment. More specifically,
our goal is to serve data-intensive applications in VMs
with better performance via virtual I/O prefetching.

Cloud service providers heavily rely on virtualization
technology to provide flexible task management and
efficient resource utilization. Nonetheless, such advan-
tage comes with the cost of I/O performance. Operat-
ing systems are traditionally designed to optimize disk
I/O under an assumption that they hold the exclusive
control over storage drives. Nowadays, such assumption
of exclusivity does not exist anymore because virtu-
alization puts operating systems into guest VMs and
hosts many VMs on one physical machine. In addition,
storage devices are now shared among numerous guest

Ron C. Chiang is with the Graduate Programs in Software at University of St.
Thomas, and did part of this research at the George Washington University
(GWU). Ahsen J. Uppal and H. Howie Huang are with the Department of
Electrical and Computer Engineering at the GWU.
E-mail:{cchiang}@stthomas.edu

VMs. Unfortunately, the I/O stacks inside guest VMs
still try to optimize the sequential I/O patterns on an
imaginarily exclusively owned disk. By the time the I/O
requests hit the physical storage devices, they are not
sequential anymore. This effect is called the virtual I/O
blending [36]. The more VMs involved in the blending,
the more obvious the effect. These blurred I/O patterns
are not just because of multiple concurrent I/O pro-
cesses, but also the lack of understanding between the
guest VMs and the host environment.

Besides the new challenges introduced by virtualiza-
tion, emerging SSDs in data centers also significantly
affect the design of a new prefetching method. Tra-
ditional prefetching focuses on rotational hard drives
and is conservative with the amount of data prefetched
for good reasons – because data prefetching consumes
shared system resources. It is likely that aggressive data
prefetching would interfere with normal access and sub-
sequently hinder application performance. As a result,
current techniques often leverage the low cost of sequen-
tial access on hard drives to read data that reside on the
same and nearby tracks. Aggressive prefetching has been
considered too risky by many researchers (given long
seek penalties, limited HDD bandwidth, and limited
system RAM), with one notable exception [32].

For SSDs, we believe that aggressive prefetching could
potentially expedite data requests for many applica-
tions. However, as we will demonstrate shortly, simply
prefetching as much data as possible does not pro-
vide the desired benefits for several reasons. First, data
prefetching on faster devices such as SSDs, if uncon-
trolled, will take the shared I/O bandwidth from existing
data accesses (more easily than on slower hard drives).

1939-1374 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSC.2015.2469295, IEEE Transactions on Services Computing

2

As a side effect, useful cached data may be evicted while
main memory would be filled with mispredicted (and
unneeded) data and applications were waiting for useful
data [14]. Second, not every device has the same per-
formance characteristics, and this is especially true for
SSDs. The performance of an SSD can vary depending on
the flash type (SLC/MLC), internal organization, mem-
ory management, etc. A prefetching algorithm, while
reasonably aggressive for a faster drive, could become
too aggressive for another drive and hinder applications’
performance.

Our work [41] has shown that adaptive prefetch-
ing techniques can be used on SSDs to avoid adverse
effects from both too-conservative and too-aggressive
prefetching. In this paper, we propose a technique called
VIO-prefetching for virtualized servers. VIO-prefetching
is aware of the runtime environment and can adapt to
the changing requirements of devices and applications.
The noticeable features of VIO-prefetching include not
only feedback-controlled aggressiveness, but also the
ability to identify I/O access patterns and providing
inherent prefetching support for virtual I/O in data
centers, which presents a good extension to [41].

To demonstrate its feasibility and benefits, we have
implemented a prototype in Linux that dynamically
controls its prefetching aggressiveness at runtime to
maximize performance benefits, by making good trade-
offs between data prefetching and resource consump-
tion. We evaluate VIO-prefetching with a wide range of
data-intensive cloud applications on a Xen virtualized
system. Evaluation results show that VIO-prefetching
can improve virtual I/O performance up to 43%.

The main contributions of this paper are:

• VIO-prefetching tunes itself to prefetch data in a
manner that matches application needs without
being so aggressive that useful pages are evicted
from the cache. By measuring performance met-
rics in real-time and adjusting the aggressiveness
accordingly, the effectiveness of VIO-prefetching is
significantly improved.

• VIO-prefetching is able to identify I/O access pat-
terns from guest VMs and successfully improve
virtual I/O performance. Our comprehensive study
provides insights of VIO-prefetching’s behavior at
various virtualization system configurations.

• We conduct a comprehensive study of the effects
of VIO-prefetching in the context of heterogeneous
applications. The results show that VIO-prefetching
is essential for identifying application patterns and
prefetching needed data in virtualized environ-
ments.

The rest of the paper is organized as follows: Sec-
tion 2 presents the challenges of building the VIO-
prefetching and Section 3 presents the architecture of
VIO-prefetching and describes each component. The
evaluation is presented in Section 4 and related works
are discussed in Section 5. We conclude in Section 6.

2 CHALLENGES

2.1 Challenge #1: No One-size-fits-all

Migrating VMs among servers is a very common prac-
tice. However, there is no one-size-fits-all solution for
data prefetching because many things could be different
from one server to another. Here we focus on three
aspects: storage devices, applications, and prefetching
techniques.

First, storage devices are different. SSDs are clearly
different from HDDs in many ways. To name a few:
no seek latency, excellent random read and write per-
formance, inherent support for parallel I/O, expensive
small writes, and limited erase cycles. At a high level,
modern SSDs consist of several components such as
NAND flash packages, controllers, and buffers. In our
previous study [41], we tested four different SSDs from
two manufacturers (roughly covering two recent gener-
ations of SSDs): OCZ Vertex and Vertex2, and Intel X-
25M and 510. We compared their performance with a
Samsung Spinpoint M7 (HDD) hard drive. If we look
at the device specifications, the specification numbers
for SSDs are close. However, the differences between
different SSDs tend to be subtle, mostly in architectural
designs. When measured under Linux, the four SSDs
clearly have higher bandwidths than the hard drive
(measured read bandwidth at about 90 MB/s), that is,
the four SSDs outperform the hard drive by 189%, 189%,
294%, and 239%, respectively. The four SSDs differ no-
ticeably, especially in write performance. Their measured
write bandwidths range from 80 MB/s to 200 MB/s.

Second, applications are different. Although data-
intensive applications are in dire need of high-
performance data access, they tend to have different I/O
requirements. When we look at the average application
throughput in I/O operations per second (IOPS) for ap-
plications ranging from large file operations, web server
traces, and video streaming workloads as shown in our
preliminary study [41], the two replayed WebSearch
traces reach the highest throughput at about 6,000 IOPS,
and at the same time LFS needs an order of magnitude
less throughput at 400 IOPS. Furthermore, chances are
that each application will likely go through multiple
stages, each of which has different I/O requirements.

Third, prefetching for HDDs and SSDs is differ-
ent. Traditional disk drives can read sequential blocks
quickly because the head can be stationary while the
platter rotates underneath. A random read operation
from flash can be completed quickly in a few microsec-
onds, compared to several milliseconds seek latencies on
hard drives. In addition, multiple simultaneous requests
for data on one SSD that address different flash chips
can be satisfied simultaneously– a challenging task for a
hard disk. The internal controllers of SSDs have already
taken advantage of this inherent parallelism for high
performance I/O [1], and it has been shown that this
parallelism can also be exploited at a higher system level.

To clearly explain the parallelism in HDD and SSD,

1939-1374 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSC.2015.2469295, IEEE Transactions on Services Computing

3

suppose that two applications simultaneously issue se-
quential read requests to a hard disk; such patterns
are likely to interfere with each other. To satisfy the
simultaneous requests, the access patterns must occur on
different platters, otherwise the disk heads might move
back and forth to different tracks. An I/O scheduler
will try to minimize head movements, but this move-
ment overhead still limits the number of simultaneous
prefetch operations that can occur on a traditional hard
drive. In contrast, parallel I/Os in SSDs can benefit
greatly from better hardware structure and organization.

2.2 Challenge #2: Virtual I/O Semantic Gaps
Virtualization is widely used among cloud service
providers because virtualization technology provides a
number of advantages, such as flexible task manage-
ment, efficient resource utilization, etc. But, it comes at
the cost of I/O performance. Vanilla operating systems
such as Linux assume an exclusive control of storage
drives and optimize disk I/O under that assumption.
Virtualization puts operating systems into guest VMs
and hosts many VMs on one physical machine. Storage
devices are now shared among numerous guest VMs.
So, that assumption of exclusivity is no longer valid.
However, the I/O stacks inside each guest VM still try
to optimize the I/O patterns for sequential access on
the virtual disk. When these I/O requests are forwarded
to the hypervisor, they will be likely blended in an
unpredictable fashion. By the time the I/O requests
arrive the physical storage devices, they are no longer
sequential [36]. This is called the virtual I/O blending.
The more VMs involved in the blending, the more
obvious the effect.

Fig. 1(a) shows the virtual I/O blending effect on
overall performance. It compares the combined through-
put of sequential read operations on one HDD running
multiple guest VMs, each identically configured with a
benchmark tool called IOZONE [31]. The performance
of a single VM is almost identical to that of a non-
virtualized server. As we add more VMs, the combined
throughput of the HDD decreases dramatically. At eight
VMs, the throughput is about half that of a single VM.
An SSD does mitigate the situation. Fig. 1(b) presents
the same tests on an SSD. The combined throughput
reaches the maximum bandwidth at four VMs. Then,
the performance goes down from there because the test
is running on a four-core machine. However, the guest
systems are not aware of this competition and the host
system does not know the I/O access patterns inside
each guest VMs. Knowing guest I/O process information
can help prefetching methods more effectively capture
targeting patterns. Therefore, we implement a virtual-
ized system which passes through guest I/O process
identifications to the prefetcher in the host system for
more accurately identifying potential patterns. Section 4
demonstrates that our VIO-prefetching can successfully
prefetch needed data by identifying I/O access patterns
and maintain high throughput with feedback control.

0

50

100

150

1 2 4 6 8 10 Th
ro

u
gh

p
u

t
(M

B
/s

)

Number of VMs

(a) HDD

0

100

200

300

1 2 4 6 8 10 Th
ro

u
gh

p
u

t
(M

B
/s

)

Number of VMs

(b) SSD

Fig. 1: Virtual I/O blending and resource competition

3 THE ARCHITECTURE OF VIO-PREFETCHING

At a high level, VIO-prefetching consists of four stages:
trace collecting that accumulates information for each
application I/O request, pattern recognition that aims to
understand the access patterns for a series of requests,
block prefetching that moves data from the drive to the
cache in the background, and feedback monitoring that
compares previous prefetching operations against actual
application requests, and adjusts the prefetching rate
accordingly.

We design an architecture of VIO-prefetching which
implements the four stages in a virtualization environ-
ment. Fig. 2(a) depicts the I/O path in a virtualized
server integrated with VIO-prefetching. Guest VMs use
the front-end drivers to talk to the backend drivers
in the driver domain, and the backend drivers utilize
real device drivers to access the physical devices. To
complete a virtual I/O operation through the commu-
nication between these drivers, the I/O channel also
needs to map memory pages and translate the addresses.
These operations are part of the virtualization overheads.
Because of these complex operations and the semantic
gap among domains, the I/O access patterns are hard to
identify when arriving at physical storage devices. VIO-
prefetching provides a remedy to this problem by bridg-
ing information gaps among domains and identifying
access patterns at the block device level. The in-guest
process identifications are passed to the host domain
for the pattern recognition module of VIO-prefetching.
Then, VIO-prefetching groups and prefetches needed
data by exploiting the underutilized bandwidth on phys-
ical devices.

In a virtualized environment, each VM has its own
view of a disk, called the virtual machine disk (VMDK).
VMDK could be an image file on the host machine’s file
system, a disk partition, or a physical block device on the
host machine. We choose to integrate VIO-prefetching
with virtualized host systems, not guest VMs for the
following reasons:

• There are many I/O layers between a guest VM and
the underlying physical devices. When a sequential
prefetching from a guest VM arrives at underlying
physical devices, it may be no longer sequential.
As a result, prefetching from guest VMs may have
limited benefit.

• VIO-prefetching utilizes underutilized bandwidth

1939-1374 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSC.2015.2469295, IEEE Transactions on Services Computing

4

Logic Drive
VMDK VMDK

VM

Frontend
driver

Driver kernel

Backend
driver

Device
driver

Hypervisor

Backend
driver

Device
driver

VM

Frontend
driver

CPU

Memory

PID PID

(a) The overview of a virtual I/O path. Note that the drivers
are modified to carry the in-guest process identification (PID)
between the guest and host domains.

Guest domains

Host
Buffer

Logic Drive

VM

VMDK

VM

Trace
Collection

Pattern
Recognition

Controller

D
ata Prefetching

Feedback

VMDK

(b) A zoom-out view of VIO-prefetching

Fig. 2: Integrating VIO-prefetching with a virtualized host

for prefetching. Many factors can change the max-
imum bandwidth observed in a guest VM, e.g.,
priority, device types, schedulers, etc. These fac-
tors may change from time to time and complicate
the practical implementation of VIO-prefetching in
guest VMs. Thus, prefetching in virtualization hosts
provides greater advantages than in guest VMs. In
particular, this approach is independent of the types
of guest operating system.

Prefetching in a virtualization host, however, hinders
identifying sequential patterns because of the missing
processes identification. Typically, a backend driver dis-
patches actual I/O requests to storage devices on behalf
of a guest VM. Thus, the driver domain treats all I/O
requests from a VM as from a single process, even if
multiple processes are making requests inside the guest
VM. As a result, it is more difficult for a host prefetcher
to catch a sequential access process inside a VM than in
a host domain.

To assist the pattern recognition module, VIO-
prefetching passes I/O requests’ owner process iden-
tifications in guest domains to the driver domain. A
Xen frontend driver is extended to embed requests’
owner identifications when generating a Xen blkfront
I/O request. Correspondingly, the backend driver is also
enabled to extract requests’ owner identifications when
transforming a Xen block request into a normal one.
Then, the backend driver uses blktrace API [2] to update
traces when submitting the request.

Blktrace uses the Linux kernel debug filesystem to
trace I/O events. Using blktrace requires the BLK-
TRACESETUP and BLKTRACESTART ioctls for a file
descriptor associated with a block device. The blktrace
API offers several useful pieces of context that are
not present in a traditional I/O event queue in the
driver: the events have the timestamps, process ids,
and names of the originating process. VIO-prefetching

can use this information to differentiate requests from
multiple applications. Also, by examining the process
id, requests from VIO-prefetching itself can be ignored
when considering applications’ access patterns. Events
can also be automatically filtered (read vs. write) with a
mask before being delivered to VIO-prefetching.

In the current implementation, an application execu-
tion is identified by using a combination of process id,
in-guest process id, drive id and block region. Note that
original blktrace API did not have a field for in-guest
process id, which is supported in this work.

In order to collect I/O event traces from all VMs
to corresponding VMDKs, all VMDKs are stored in
one logic drive. This is a common practice to manage
storage systems and can be achieved by utilizing Logical
Volume Manager (LVM), loopback devices, or RAIDs.
After placing VMDKs in one single logical drive, VIO-
prefetching monitors the logic drive for virtual I/O event
traces. Fig. 2(b) shows how VIO-prefetching is integrated
with a virtualized host. First, the trace collection module
records every I/O request. Note that not every request
by VMs will actually reach its VMDK because some
of them may be satisfied by the system cache, but
VIO-prefetching traces both issued VM requests and
those that actually reach the disk. Then, the pattern
recognizer wakes up to look at the accumulated I/O
events when a timer expires. The pattern recognizer then
informs the controller whether, where, and how many
to prefetch. The controller optionally adjusts the aggres-
siveness based on recent prefetching performance. The
details of these four stages are described individually in
the following sections.

3.1 Trace Collection

VIO-prefetching collects the I/O events with the help
of the operating system in the driver domain. Typically,

1939-1374 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSC.2015.2469295, IEEE Transactions on Services Computing

5

this information includes a timestamp, the process name
and process identifier, the request type (read or write),
and amount. The trace collection facility accumulates
a record for every I/O request that a VM asks the
privileged domain to perform, as well as for every I/O
request that actually reaches the disk and stores them
for the VIO-prefetching pattern recognizer. Not every
request by VMs will actually reach the disk because
some of them may be satisfied by the system cache, but
VIO-prefetching traces both VM requests and those that
actually reach the disk.

The stored requests may come from several different
VMs running on multiple CPUs, and come before any
I/O scheduling has occurred. A received I/O request has
an associated request-type, process id, in-guest process
id, CPU number, timestamp, starting block number, and
block size. The requests collected from each CPU, are
sorted by time, and stored in a buffer for the later use.

3.2 Pattern Recognition
The design of VIO-prefetching for virtualized environ-
ments considers the access patterns from VMs and on
storage devices. Internally, pattern recognition of VIO-
prefetching is designed around the idea of a polling in-
terval. When a timer expires, VIO-prefetching wakes up,
looks at the accumulated I/O events, decides whether,
where, and how much to prefetch, performs the prefetch
request, optionally adjusts its aggressiveness based on
recent prefetching performance, and sleeps for the re-
mainder of the interval. The polling interval determines
how long events accumulate in the I/O request buffer
before VIO-prefetching analyzes them. We have tested
0.25, 0.5, 0.75, · · · , and 2 seconds as the polling interval
and found no obvious differences from 0.25 to 0.75.
When the interval is larger than or equal to 1 second, the
prefetching accuracy is decreased unless the application
has a very large sequential pattern. Therefore, we choose
0.5 seconds as the polling interval.

A single I/O event contains several pieces of informa-
tion, but VIO-prefetching is primarily interested in read
requests, the starting block number, number of blocks
in the request, and the process identification making
the request. If a particular process makes a recognizable
pattern of read accesses within a specific period of time,
VIO-prefetching begins to prefetch the same pattern.
Currently, VIO-prefetching recognizes four major types
of accesses: sequential forward reads, sequential back-
ward reads, strided forward reads, and strided backward
reads. In this discussion a strided pattern is simply a
recurring pattern with a number of blocks read and a
gap where no blocks are read.

In order to perform access pattern recognition, VIO-
prefetching maintains several state machines with a
front-end hash table indexed by process identifications
in the host and guest, and block location on disk.
The distance between subsequent block access events
is compared with the previous distance. If the current

request’s start block is immediately where the previous
request ended, the consecutive block counter is updated
with the length of the current request. Similarly, if the
current request’s end block is immediately where the
previous request started, the reverse block counter is
updated. The current request may also be part of a
strided pattern when the amount of jump is the same as
between the previous two requests in both direction and
size. In this case, the strided block counter is updated. By
incrementing a counter by the request size, larger request
sizes are weighted more heavily than smaller ones.

When the fraction of blocks that occurred in con-
secutive, reverse, or strided requests divided by the
overall count of blocks read exceeds a certain threshold
over the previous time interval, the state machine for
that hash entry is ready to perform a prefetch during
the remainder of the current time interval. Sequential
threshold (Th

SEQ

) determines the percentage of the vir-
tual disk blocks must fit a usable pattern (sequential,
reverse, or strided) before VIO-prefetching attempts to
start prefetching. For example, the default value of 0.60
indicates that if 60 percent of the requests during a
polling interval are sequential, VIO-prefetching guesses
that a sequential access is occurring and will fetch a se-
quential series of blocks for the next interval. We choose
the default threshold based on the data from our testing
applications and machines. The qualified intervals and
their consecutive followers provide an average of 84%
usable blocks, while the threshold of 0.5 gives 73% and
0.7 gives 85%. The selection of the threshold mainly
depends on the access pattern distribution of the system.
It would be an interesting future work to dynamically
adapts the threshold based on observed pattern distribu-
tion. When VIO-prefetching begins prefetching on behalf
of a VM, it simply begins with the next block contiguous
to the most recent request. Next section will demonstrate
how the stop block is set by extrapolating into the future
from the end of the last read operation.

3.3 Block Prefetching
The amount of data to prefetch once a pattern has been
recognized is determined with the goal of reading data
from an SSD into the system cache, but only those
blocks that the application will actually request in the
near future. For simplicity, we describe the logic for
consecutive prefetching. The logic for strided and reverse
prefetching is similar. In VIO-prefetching, we utilize two
key parameters that control the amount of data that will
be prefetched:

Aggressiveness scale factor S is defined as

S =
prefetched data amount

application read data amount

which means how aggressive prefetching is compared
to an application’s measured request rate. While we can
measure an application’s rate to tailor prefetching based
on the application’s needs, we have found that using a
fixed, static scale factor does not work well.

1939-1374 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSC.2015.2469295, IEEE Transactions on Services Computing

6

The optimal value for this scale factor is application-
specific and can be adjusted by feedback (which will be
described in the next section). Our experiments showed
that the values near 1.0 typically work well as the
starting point for the feedback mechanism. A value of 1.0
means that the amount of prefetched data matched the
application’s request rate. If the value is higher than one,
VIO-prefetching might prefetch some unneeded data.
On the other hand, if the value is less than one, some
requests may not be satisfied by the prefetched data.

Maximum disk throughput: This has different opti-
mal values for each disk. During the time interval when
prefetching is occurring, VIO-prefetching is careful to
avoid saturating the available read bandwidth to the
disk with prefetching requests at the expense of actual
application requests that may be mispredicted and have
to go to the disk. If this occurred, the requested prefetch
would take more than the entire allotted time interval
and VIO-prefetching would drift further and behind real
application time. To prevent this, the prefetcher estimates
what amount of application requests will actually reach
disk because they will not be prefetched successfully
and sets the prefetching throughput limit (PF

limit

) to
the maximum disk throughput minus this value. For
this purpose, we use the percentage of consecutive reads
that is already computed in the previous stage of pattern
recognition.

Since the maximum disk throughput depends on
the characteristics of each drive, we measure the raw
throughput from each disk by reading a large, uncached
file, and using this as the maximum. In a virtualized en-
vironment, guest VMs do not know the utilization status
of phyiscal drives. Therefore, VIO-prefetching helps each
VM to prefetch data with device characteristics in mind.

Putting these two parameters together, the prefetcher
uses the last known (read) stop block as its start block
(B

start

) and finds the stop block as follows. It first tries
to determine the linear throughput of the application
(TP

L

) by multiplying the total throughput (TP) with the
percentage of consecutive reads (PCT

SEQ

). We consider
the remainder of the total application throughput to be
from random accesses (TP

R

). Next, the prefetcher uses
the scale factor S and total available bandwidth BW

A

(by subtracting TP
R

from the maximum disk throughput
BW

T

) to determine the stop block (B
stop

) for the next
polling interval. For quick reference, a summary of all
the terms used is listed in Table 1.

Suppose the polling interval is T seconds, the calcula-
tion to find B

stop

shows as follows:

TP
L

= TP ⇥ PCT
SEQ

TP
R

= TP ⇥ (1� PCT
SEQ

)

BW
A

= BW
T

� TP
R

PF
limit

= min(S ⇥ TP
L

, BW
A

)

B
stop

= B
start

+ T ⇥ PF
limit

Once the quota of number of blocks to prefetch for one
application during an interval is found, VIO-prefetching

TABLE 1: Variables in the formulas and the pseudocode

Name Description

Th
SEQ

The threshold on linear operations
to start prefetching

B
start

The block to start prefetching
B

stop

The block to stop prefetching
TP Total throughput
TP

L

Throughput by linear access
TP

R

Throughput by random access
PCT

SEQ

Percentage of sequential reads
BW

A

Available bandwidth
BW

T

The maximum disk throughput

simply issues a system call (e.g., readahead in Linux)
with the starting block number and the number of
blocks to read. (For strided access, there may be mul-
tiple readahead calls.) We leave the details of the cache
management itself to the underlying operating system.

Algorithm 1: The Pseudocode for VIO-prefetching
Data: Disk read event ReadDisk;

Requested read event ReqRead;
Number of consecutive blocks B

SEQ

;
Number of total blocks B

total

;
begin

for every T seconds do
// Collect read operations that reached the

physical disk (i.e. not satisfied by cache)

for each ReadDisk do
// Update per-disk counters

Update S, TP
L

, and TP
R

;
end
// Collect read operations that are partially

satisfied by cache

for each ReqRead do
// Track concurrent multiple read

h = Hash(process id, in-guest id, B
start

);
Update the counters of the mapped sate
machine;

end
for each state machine h do

PCT
SEQ

= h.B
SEQ

/ h.B
total

;
if PCT

SEQ

> Th
SEQ

then
// Set a prefetching throughput limit

PF
limit

= min(S ⇥ TP
L

, BW
A

);
end
Prefetch(B

start

,B
stop

);
end
Update S;

end
end

1939-1374 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSC.2015.2469295, IEEE Transactions on Services Computing

7

3.4 Feedback Monitoring
Feedback monitoring classifies the stream of read op-
erations reaching disk as linear (meaning sequential,
reverse, and strided) similar to the way read requests
to the operating system were classified during pattern
recognition. The intuition is that if there are any linear,
easily predictable reads that were not prefetched, and
still reached disk, then the prefetching aggressiveness
(S) should be increased. On the other hand, if there are
no linear reads reaching the disk and the statistics show
that the prefetching amount is more than what the ap-
plications are requesting, we decrease the aggressiveness
accordingly.

In practice, not all linear reads can be predicted so we
increase the prefetch aggressiveness scale factor when
the percentage of linear reads reaching disk is greater
than a predefined threshold. We decrease the aggressive-
ness when it is clear that additional prefetching would
not help. When we see that the number of linear reads
reaching disk is zero and that the number of prefetched
blocks reaching disk is greater than the number of linear
reads that the application requested to the operating
system, the prefetch aggressiveness will be reduced.

During each polling interval, the feedback monitor an-
alyzes the actual performance of the prefetch operations
from the last time interval and adjusts its aggressiveness
accordingly. This monitoring is done by comparing the
access pattern of reads that the application makes to the
operating system (entering the cache) vs. the pattern of
reads reaching disk (missed in the cache). Algorithm 1
presents the high-level pseudocode of VIO-prefetching.

4 EVALUATION

We have implemented a prototype VIO-prefetching in a
Linux system with Xen virtualization. To assist prefetch-
ing in the host domain, VIO-prefetching passes guest
I/O requests’ owner process identifications to the driver
domain by embedding requests’ owner identifications
when generating a Xen blkfront I/O request and extract-
ing them when transforming a Xen block request into
a normal one. In the following sections, we will first
introduce the applications and environments used for
the experiments. Then, we explain the experiments and
results.

4.1 Experiment Environment and Applications
High-performance storage systems are needed in many
different types of data-intensive applications. To evalu-
ate the performance of VIO-prefetching technique, we
choose a wide variety of benchmarks, including nu-
merous cloud applications and file system benchmarks.
Table 2 shows a number of popular cloud applications
and their configurations used in our experiments. In
brief, Cloudstone is a performance measurement frame-
work for Web 2.0 [39]; Wiki with Database dumps is
from Wikimedia foundation [46] and the real request

traces are from the Wikibench web site [42]; Darwin
is an open source version of Apple’s QuickTime video
streaming server; FS, WS, VS, and WP are file, web,
video, and web proxy servers respectively, which are all
from Filebench [28]. All applications are running in eight
concurrent threads/workers unless elsewhere specified.

The test system has two six-core Intel Xeon CPUs at
2 GHz and 32 GB memory. This machine is running
Linux 3.2, Xen 4.1, and eight 120 GB SSDs configured
as RAID0 on a MegaRAID card. Each storage device is
formatted with an ext2 file system, mounted with the
noatime option and filled with one large file which was
connected to a loopback device. The loopback device
is then formatted with an ext3 file system and also
mounted with the noatime option for running the bench-
marks. The noatime option prevents read operations to
the file system from generating metadata updates which
would require writes to the device and is intended to
improve the I/O throughput.

4.2 Interval and Overhead Analyses
When a timer expires, VIO-prefetching parses the ac-
cumulated I/O events, decides whether, where, and
how much to prefetch, performs the prefetch request,
optionally adjusts its aggressiveness based on recent
prefetching performance, and sleeps for the remainder
of the interval. The polling interval determines how
long events accumulate in the I/O request buffer before
VIO-prefetching analyzes them. A long interval may
reduce the overhead of invoking excessive times of
pattern recognition module, but an access pattern may
already be over. In addition, a long interval means more
records to be processed than a short one. However,
if the interval is too short, there may not be enough
accumulated events to discern a pattern. Therefore, we
want the interval to be as small as possible while keeping
reasonable computing overheads.

The 0.5 seconds interval is used as the default in
this prototype because it performs better than other
tested values. Fig. 3 demonstrates part of these tests.
In Fig. 3, each VM is sequentially reading a 10 GB file
with an 1 MB IO size. The lines in Fig. 3 demonstrate
the latency changes at varying polling intervals The
four lines are the test results when 2, 4, 8, and 16
VMs concurrently running, respectively. The Y-axis in
Fig. 3 represents the average latency of reading 1 MB
and the X-axis is the polling interval. In Fig. 3, latency
is decreasing as the interval increases from 0.25 to 0.5
because of the increased accuracy and less interrupts.
The differences are more obvious when there are more
VMs because there are more IO operations in the queue
and more events for VIO-prefetching to process. The
latency doesn’t keep decreasing when the interval is
larger than 0.5 seconds partly because of the processing
overhead of VIO-prefetching as it is shown in Fig. 4.

Fig. 4 shows the average processing time of one VIO-
prefetching event. A longer polling interval means less

1939-1374 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSC.2015.2469295, IEEE Transactions on Services Computing

8

TABLE 2: Applications for testing VIO-prefetching

Name Description Workload Types Data size
Cloudstone Social event application (Olio) Interactive update and read 20 GB
Wiki Wikimedia website Similar to but less updates than WS 60 GB
Darwin Video streaming Heavy sequential read operations 36 GB
FS File server create, delete, read and write files 20 GB
WS Web server open, read, and close multiple files 20 GB
VS Video server sequential read and write 20 GB
WP Web proxy server open, create, read, write, and close files 20 GB

0
2
4
6
8

10

0.25 0.5 1 2

La
te

n
cy

 (
m

s)

Polling Interval (second)

2 VMs 4 VMs 8 VMs 16 VMs

Fig. 3: The average latency on different polling intervals

interrupts and more accumulated events to process.
While doubling the polling interval from 0.25 to 0.5
seconds does not change a lot on the processing time,
intervals larger than one second result in significant
increases on the processing overhead.

0

200

400

600

0.25 0.5 1 2P
ro

ce
ss

in
g

(µ
s)

Polling Interval (second)

2 VMs 4 VMs 8 VMs 16 VMs

Fig. 4: The average processing time of one VIO-
prefetching event

Note that the optimal polling interval depends on
many system characteristics such as the access behavior
and the efficiency of the pattern recognition. As future
work, the next VIO-prefetching will explore the self-
tuning intervals and thresholds based on the perfor-
mance feedback.

4.3 VIO-Prefetching vs. Flashy Prefetching
Flashy prefetching, the preliminary work of VIO-
prefetching, has shown its ability to read ahead just be-
fore needed blocks are accessed by the application [41].
Preliminary results also indicate that flashy prefetching
is capable of adapting the speed of data prefetching
on the fly to match the needs of the application. In
this work, VIO-prefetching adapts flashy prefetching for
virtualized environments by bridging the missed process

identification among domains. To see if this change
makes VIO-prefetching better than flashy prefetching in
a virtualized environment, we start the evaluation sec-
tion with the comparisons between these two prefetching
schemes.

We firstly want to see if the VIO-prefetching performs
as flashy prefetching when there is only one major I/O
process in guest VMs. Therefore, in the first experiment,
there is only one major process which is sequentially
reading 64 KB from a 1 GB file in a guest VM. The
VM has one VCPU and 512 MB memory. The baseline
is running this sequential read process in a guest VM
with the default readahead setting in Linux. Then, we
turn off the default Linux readahead function and run
the same sequential read process with the help of flashy
and VIO-prefetching respectively. The above experiment
is repeated three times at 1, 3, 6, 9, and 12-VM cases
respectively. The average speedups and standard de-
viations are reported in Fig. 5(a). The speedup is ob-
tained by normalizing the measured throughput to the
baseline. Flashy and VIO-prefetching perform closely in
this experiment because there is only one major I/O
threads in guest VMs. Both flashy and VIO-prefetching
have better aggregate throughputs than the baseline. The
average speedups by flashy and VIO-prefetching are 1.19
and 1.2 respectively. The peak speedup of flashy and
VIO-prefetching schemes appear at 6-VM case with the
value of 1.35 and 1.3 respectively. The reason of the
reduced speedup at large numbers of VM is because of
the saturated bandwidth. As the number of sequential
reading process increases, the available bandwidth for
prefetching decreases and thus limits the benefit.

The second test is to verify if passing in-guest pro-
cess identification can help prefetching in virtualized
environments. To validate this, there are multiple bench-
marking processes in a guest VM. More specifically, we
have 1, 3, 6, 9, and 12-process cases. Each process is se-
quentially reading 64 KB from a 1 GB file. Note that each
process has its own file. There is only one VM in this test,
which has 12 VCPUs and 6 GB memory. We measure the
aggregate throughputs of these processes when using the
baseline, flashy, and VIO-prefetching. Then, the speedup
is obtained by normalizing the measured throughput to
the baseline. The tests are repeated three times and the
average speedups and standard deviations are drawn
as the columns and whiskers in Fig. 5(b). When there is

1939-1374 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSC.2015.2469295, IEEE Transactions on Services Computing

9

0.8

1.0

1.2

1.4

1.6

1 3 6 9 12

Sp
ee

d
u

p

Number of VMs

Linux flashy VIO

(a)

0.8

1.0

1.2

1.4

1.6

1 3 6 9 12

Sp
ee

d
u

p

Number of processes

Linux flashy VIO

(b)

0.8

1.0

1.2

1.4

1.6

1 3 6 9 12

Sp
ee

d
u

p

Number of sequential-read VMs

Linux flashy VIO

(c)

0.8

1.0

1.2

1.4

1.6

1 3 6 9 12

Sp
ee

d
u

p

Number of sequential-read processes

Linux flashy VIO

(d)

Fig. 5: The speedups and standard deviations of three
prefetching systems. (a) Experiments with various num-
bers of VMs; (b) Experiments with different numbers
of in-guest processes; (c) Experiments with multiple
VMs and mixed workload types; (d) Experiments with
multiple in-guest processes and mixed workload types.

only one process, the speedups by flashy (1.19) and VIO-
prefetching (1.18) are close. As the number of processes
increases, VIO-prefetching shows higher speedups than
flashy with the biggest difference of 0.2 at the 6-process
case. On average, the speedup of VIO-prefetching is
higher than the flashy’s by 0.15.

Then, we test the prefetching systems in a more com-
plex environment, which has multiple VMs runs differ-
ent workloads concurrently. There are 12 VMs running
concurrently in the third test. The same as the first test,
each VM has 1 VCPU and 512 MB memory and there
is only one major process in a guest VM. There are
five cases in this test. The first case is that one VM
is doing sequential read and the other VMs are doing
random read and write. The number of sequential-read
VMs is changed to 3, 6, 9, and 12 in the second to fifth
cases respectively. In all cases, the VMs other than the
sequential-read one are doing random read/write 64 KB
from/to 1 GB files with the 50:50 read:write ratio. We
measure the aggregate throughputs of the sequential-
read VMs when using the baseline, flashy, and VIO-
prefetching. Then, the speedup is calculated by nor-
malizing the measured throughput to the baseline. The
tests are repeated three times and the average speedups
and standard deviations are shown as the columns and
whiskers in Fig. 5(c). Similar to the first test, flashy
and VIO-prefetching perform closely in this experiment
because there is only one major I/O threads in each
guest VM. In all cases, both flashy and VIO-prefetching
have better aggregate throughputs than the baseline,
which implies the ability to distinguish sequential and
random I/O processes. The average speedups by flashy
and VIO-prefetching are both 1.13. The overall speedup
in Fig. 5(c) is less than the one in Fig. 5(a) because there

are additional VMs doing random I/O concurrently and
thus the available bandwidth for speedups is limited.

In the fourth test, the setting is the same as the
second test (Fig. 5(b)), except that we add extra random
I/O processes to make it has totally 12 I/O processes
running concurrently in all testing cases. The random
I/O processes are the same as those in the previous
test. The goal of this test is to exam the prefetching
systems with multiple I/O processes in a guest VM. We
measure the aggregate throughputs of the sequential-
read processes when using the baseline, flashy, and VIO-
prefetching. Then, the speedup is calculated by nor-
malizing the measured throughput to the baseline. The
tests are repeated three times and the average speedups
and standard deviations are shown as the columns and
whiskers in Fig. 5(d). When there is only one process, the
speedups by flashy (1.08) and VIO-prefetching (1.10) are
close. In all cases, VIO-prefetching has higher speedups
than flashy. On average, the speedup of VIO-prefetching
(1.13) is higher than the flashy’s (1.06) by 0.07. Because
of the extra random I/O processes, the speedups in
Fig. 5(d) is less than those in Fig. 5(b).

4.4 Evaluation with Cloud Applications
After comparing VIO-prefetching with other prefetching
methods in a virtualized environment, we now evaluate
VIO-prefetching with numerous cloud applications and
file system benchmarks in this section.

Experiments on Different VM Numbers. The experi-
mental environment and applications are described in
Section 4.1. The goal of this test is to see how VIO-
prefetching works at different applications and numbers
of VMs. We have tested 1, 2, 4, · · · , and 12 VMs, while
each VM has 1 VCPU and 1 GB memory.

0.8

1.0

1.2

1.4

1.6

CloudStone Wiki Darwin FS WS VS WP

Sp
ee

du
p

1-VM 2-VM 4-VM 8-VM 10-VM 12-VM

Fig. 6: The speedups by VIO-prefetching for different
applications and numbers of VMs

Fig. 6 shows the speedups of the applications for
different numbers of co-located VMs. At each run, all
co-located VMs are executing the same application. The
results are the average numbers of three runs. The
overall mean of the speedups in Fig. 6 is 1.14. As shown
in Fig. 6, WS and Wiki have relatively little speedups. We
believe this is for two reasons. First, the nature of web
servers are random I/O accesses, thus only a few num-
ber of sequential patterns can be found. Second, most
requests to web servers are small in size, e.g., 4K, which
makes prefetching less effective. On the other hand,
CloudStone, FS, and WP demonstrate good performance

1939-1374 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSC.2015.2469295, IEEE Transactions on Services Computing

10

improvements, up to a 21% speedup on one VM and 2-
7% for 12 VMs, because of more predictable, sequential
access patterns. For example, the FS in the experiments
has the mean file size at 64 MB and each request size
is larger than 1 MB. Note it is fair and reasonable to
use large file sizes because several new distributed file
systems have large file sizes in practice, e.g. the Google
file system uses 64 MB chunk size. For Darwin and VS,
VIO-prefetching can provide over 14% speedup for 1 to
12 concurrent VMs because a number of sequential read
requests are made by these video streaming services.

Note that VIO-prefetching is aware of the maximum
I/O bandwidth of the system. When more VMs are
sharing the same bus and storage, the available I/O
bandwidth is decreasing, which leaves less room for data
prefetching. Therefore, VIO-prefetching has a reduced
benefit when there are more VMs in the system. How-
ever, the I/O performance can be significantly improved
when the VMs are supported by a high-end storage sys-
tem, such as Fibre Channel based Storage Area Network
(SAN), that comes with much larger I/O bandwidth and
lower latency.

Fig. 7 presents the accuracy of VIO-prefetching for
different numbers of co-located VMs and applications.
The accuracy is measured as the amount of prefetched
and used data divided by total data used by VMs. The
higher value the more accurate. The accuracy reasonably
corresponds to the speedups. It is not surprising that
benchmarks with more random access patterns have
lower accuracies. But, VIO-prefetching effectively detects
that these benchmarks have no sequential patterns and
limits the number of attempts to prefetch. Fig. 8 ex-
plains this phenomenon by showing the cost of VIO-
prefetching.

0.0

0.2

0.4

0.6

0.8

1.0

CloudStone Wiki Darwin FS WS VS WP

Ac
cu

ra
cy

1-VM 2-VM 4-VM 8-VM 10-VM 12-VM

Fig. 7: VIO-prefetching accuracy for different applica-
tions and numbers of VMs. The accuracy is on the y-
axis, measured as the amount of prefetched and used
data divided by total used data.

The idea of cost is to show the ratio of waste data
amount to the total data usage. If the cost is smaller, the
system spends less bandwidth in prefetching unneeded
data. Therefore, the cost is defined as the ratio of the
amount of unused prefetched data to the total data usage
of the application and VIO-prefetching. As it is shown in
Fig. 8, although VIO-prefetching does not speed up WS
greatly, the prefetcher does not waste I/O bandwidth on
prefetching data. When the number of VMs is large, the
cost is lower because the available bandwidth is reduced
and thus the prefetched and unused data amount is

also reduced. The cost is higher at small numbers of
VMs because VIO-prefetching aggressively consumes
bandwidth. Note that the higher cost at small numbers
of VMs does not mean lower applications’ performance
because VIO-prefetching is using the spare bandwidth.
This result clearly shows the success of pattern recogni-
tion and feedback control modules.

0.0

0.2

0.4

0.6

CloudStone
Wiki

Darwin
FS WS VS WP

C
o
st

1-VM 2-VM 4-VM 8-VM 10-VM 12-VM

Fig. 8: VIO-prefetching cost for different benchmarks and
number of VMs. VIO-prefetching cost is on the y-axis,
defined as the ratio of the amount of unused prefetched
data to the amount of prefetched data.

Prefetching on Different Read/Write Ratios We have
demonstrated the experiment results on multiple VMs
with a single in-guest process in Fig. 5(c) and one VM
with multiple in-guest processes in Fig. 5(d). We now
study how the VIO-prefetching reacts at workloads with
different read/write ratios. To see how VIO-prefetching
works in a more complicated environment, we demon-
strate the experiments of different read/write ratios in
a multiple VMs and in-guest processes environment.
The following experiments are conducted on a server
with two six-core Intel Xeon CPUs at 2 GHz and 32 GB
memory. This machine is running Linux 3.2, Xen 4.1, and
eight 120 GB SSDs configured as RAID 0 on a MegaRAID
card. There are eight VMs and each has one VCPU
and one GB memory. We use four in-guest processes in
each VM to synthesize read/write ratios. For example,
a system has a read/write ratio of 75/25 means each
VM has three sequential read and one sequential write
processes where the I/O size is 64 KB and file size is
one GB for each process. We draw box plots in Fig. 9
to show the results. As the read ratio increases, the
speedup on the VM’s throughput is enhanced because of
prefetching. VIO-prefetching successfully identifies read-
intensity processes and prefetches data for future use.
The overall average speedup is 1.1.

0.95

1.05

1.15

1.25

25 50 75 100

Sp
e

e
d

u
p

Read ratio (%)

Fig. 9: Box plots of speedups at different read/write
ratios

Prefetching on Different Schedulers System admin-

1939-1374 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSC.2015.2469295, IEEE Transactions on Services Computing

11

istrators could configure I/O schedulers for specific
storage devices and applications to achieve higher per-
formance. All experiments above use NOOP scheduler
in both guest and host domains because NOOP has
been recommended for guest domains and SSDs. Be-
cause the default I/O scheduler on most Linux dis-
tributions is CFQ, we test difference combinations of
CFQ and NOOP in both guest and host domains. The
application here is the Darwin video streaming in a
VM with eight VCPUs and eight GB memory. Fig. 10
shows the average throughputs and standard deviations
of ten runs at different I/O scheduler combinations. VIO-
prefetching improves most on CFQ-CFQ. One character-
istic of CFQ is fairly sharing between VMs. However,
this feature may increase the latency and underutilize
the bandwidth. VIO-prefetching as an assistant to the
request issuer effectively prefetches required data when
the issuer is forced to wait by CFQ. Note that the good
speedup on CFQ-CFQ does not mean CFQ-CFQ is the
best combination. In fact, NOOP-NOOP has the best
performance in this test.

1.8
2.0
2.2
2.4
2.6

Original VIO-prefetching

GB
/s

CFQ-CFQ CFQ-NOOP NOOP-CFQ NOOP-NOOP

Fig. 10: Average throughputs and standard deviations
with and without VIO-prefetching at different scheduler
combinations

Prefetching on Different Workload Mixtures One
user may be running video streaming services and a
user’s VM is hosting web pages. But, there are many
incentives, e.g., high utilization, for service providers to
consolidate different VMs on the same physical machine.
Thus, VMs on the same server may not run the same
application. In this test, we want to see how VIO-
prefetching works at different workload mixes. Because
video streaming’s sequential I/O patterns are good for
prefetching, we control the number of VMs that run
streaming services (Darwin) from 0, 2, 4, 6, to 8 VMs.
The rest VMs are randomly assigned to run either a
file server, web server, web proxy, or data server. These
are all multi-threaded applications and there are totally
8 VMs running concurrently. Each VM has one VCPU
and one GB memory. Average speedups and standard
deviations of ten runs are shown in Fig. 11. The trend
shows that VIO-prefetching brings more speedup when
the number of video streaming VMs increases in the
workload mix. The overall average speedup is 1.07.

Prefetching on Different Request Queue Sizes A
bigger I/O request queue could provide more chances
for merging multiple small random requests into a large
sequential one. We benchmark Darwin and YCSB3 to
test how VIO-prefetching works at various I/O request

0.95
1.00
1.05
1.10
1.15

0 2 4 6 8

Sp
e

e
d

u
p

Number of streaming VMs

Fig. 11: Box plots of speedups at different workload
mixes

queue sizes, where Darwin is an open source ver-
sion of Apple’s QuickTime video streaming server and
YCSB3, which emulates Hadoop workloads, is from a
performance measurement framework for cloud serving
systems, YCSB (Yahoo! Cloud Serving Benchmark) [10].
The default queue size is 128 and both the guest and
host have I/O request queues. In our experiments, the
guest/host queue is fixed at the default size when
varying host/guest queue sizes from 128, 512, 2048, to
8192. Fig. 12 shows the average speedups and standard
deviations of ten runs. VIO-prefetching has improved
Darwin’s performance a lot at the default queue size.
When increasing either guest or host queue sizes, the
speedup improvement on Darwin is limited. When in-
creasing guest queue sizes, the speedup of YCSB3 could
be improved from 1.04 to 1.1 because more random
requests become a sequential one from guest machines.
However, the large variance shows the unsteadiness at
this setting. On the other hand, increasing host queue
sizes does not improve the speedup of YCSB3. This
setting may not increase the ratio of merging random
requests to sequential requests because the host queue
is handling requests from all guests and the random
guest requests are distributed onto different separate
files (virtual disks) on the storage devices.

0.9
1.0
1.1
1.2
1.3

Guest Host Guest Host
Darwin YCSB3

Sp
ee

du
p

Queue size

128

512

2048

8192

Fig. 12: Average speedups and standard deviations at
different queue sizes and request patterns

4.5 Observations
The evaluation demonstrates how VIO-prefetching
works under different system settings, e.g., I/O sched-
ulers, queue sizes, and polling intervals. The experi-
ments at different system settings provide useful infor-
mation for the future of VIO-prefetching. We plan to
explore the features of self-tuning intervals and thresh-
olds based on the system overhead and performance
feedback. Also, by utilizing the information of access

1939-1374 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSC.2015.2469295, IEEE Transactions on Services Computing

12

patterns, VIO-prefetching can also dynamically adapt
queue size and scheduler settings to improve the per-
formance. By bridging the semantic gaps and providing
a comprehensive virtual I/O prefetching scheme among
domains, VIO-prefetching effectively utilizes the avail-
able bandwidth and detects access patterns to control
prefetching and enhance virtual I/O performance. The
feedback and pattern recognition modules successfully
improve the accuracy and reduce the cost of prefetching
in the evaluation.

5 RELATED WORK
There has been a rich set of prior research on data
prefetching on hard disks, which we cannot possi-
bly enumerate. Some representative techniques include
probability graph [15], data compression [11], data min-
ing [25], semantics-aware [5], [38], address tracking [13],
[14], compiler support [30], [4], off-line information [20],
[21], and hints [7]. Data prefetching can also be done at
both block level (e.g., [25], [12]) and file level (e.g., [23],
[50], [45]), and has been closely studied with caching
[47], [50], [14], [3], [51] and parallel I/O [6]. In addition,
prefetching techniques are common for fetching data
from main memory on high-performance processors into
processor caches where similar challenges about I/O
bandwidth and pollution apply, notably [40], [16].

Our proposed method is orthogonal to techniques pre-
viously applied on bare metal systems using hard drives
in the sense that we focus on prevailing virtualized
servers with emerging flash-based solid-state drives and
SSD based RAIDs whose high throughput provides new
opportunities and challenges for data prefetching. In
particular, sharing the self-monitoring and self-adapting
approach as in [35], we work on the adaptation of
prefetching aggressiveness in runtime to meet the needs
from virtualized applications and stress SSDs within
a reasonable range. In essence, our technique is also
similar to freeblock scheduling [27] that utilizes free
background I/O bandwidth in a hard drive. We believe
that our technique can be potentially combined with a
few existing prefetching techniques, e.g., [7], [50], [45].

Note that SSD devices are performing data prefetching
on a small scale by utilizing parallel I/Os and an internal
memory buffer. Work has been started to measure and
understand this effect [8], [22], [17]. In comparison, our
proposed prefetching is designed and implemented in
the software layer, which can be used to complement
the hardware-based approach.

Current operating systems do not have a good support
for data prefetching on solid-state drives. For example,
Windows 7 recommends computer systems with SSDs
not use features such as Superfetch, ReadyBoost, boot
prefetching, and application launch prefetching, and by
default turns them off for most SSDs [37]. The key reason
is that such features were designed with traditional hard
drives in mind. It has been shown that enabling them
provides little performance benefit [43]. Linux develop-
ers also realize the need to have a tunable I/O size as

well as the need for more aggressive prefetching [48].
Development efforts on improving prefetching perfor-
mance on SSDs are ongoing, and we believe that our
findings will be beneficial in this area.

FAST is a recent work that focuses on shortening
the application launch time and utilizes prefetching on
SSDs for quick start of various applications [19]. It takes
advantage of the nearly identical block-level accesses
from run to run and the tendency of these reads to
be interspersed with CPU computations. This approach
uses the blktrace API with an LBA-to-inode mapper
instead of using a loopback device like us. A similar
work to FAST is C-Miner [25], which discovers block
correlations to predict which blocks will be accessed.
This approach can cope with a wider variety of ac-
cess patterns while ours is limited to simpler strided
forward and backward patterns. Our approach differs
from these two in that it can handle request streams
from multiple simultaneous applications and includes
an aggressiveness-adjusting feedback mechanism. We
believe that incorporating block correlations would im-
prove VIO-prefetching’s accuracy in some cases and plan
to investigate this approach in the future.

We would also like to point out that some researchers
have expressed reservations against data prefetching
on solid-state drives. IotaFS chooses not to implement
prefetching among the file system optimizations it used
for SSDs [9]. In addition, FlashVM [34] found out that
disabling prefetching can be beneficial to some bench-
marks. As we have discussed before, prefetching is not
always helpful – for some applications, prefetching has
limited benefits and may even lead to some modest
regressions.

For virtual I/O prefetching, Li et al. choose to im-
plement their prefetching method in guest OS [24]. Al-
though prefetching in guest OS has a clear view of I/O
processes in guest domain, this approach does not have
the knowledge of physical disk block mappings, where
the sequence of disk blocks is critical to prefetching
performance. Xu and Jiang [49] proposed a scheduling
framework, called stream scheduling (SS), which judi-
ciously tracks I/O requests in both time and spatial
domains for identifying streaming access patterns. Then,
the I/O scheduler keeps serving I/O requests in the
current stream until the stream is broken or a request
with a higher priority arrives. SS does not require pro-
cess information and only uses characteristics of I/O
requests, e.g., request arrival times and addresses. This
feature makes SS can work in a virtualized system with-
out knowing the guest process information. On the other
hand, VIO-prefetching solves this problem by bridging
information gaps among domains and identifying access
patterns at the block device level. We make VMs pass the
in-guest process identifications to the host domain for
the pattern recognition module of VIO-prefetching. Note
that customizing the virtual I/O channels to enhance
performance is a common practice. For example, the
paravirtualization framework uses customized drivers

1939-1374 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSC.2015.2469295, IEEE Transactions on Services Computing

13

to improve I/O performance. VIO-prefetching, which
shares a similar philosophy as the paravirtualization
technique, modifies the frontend and backend drivers to
improve pattern recognition for prefetching. Several pre-
vious works utilize caching in the hypervisor to improve
virtual I/O performance [18], [26], [44]. These caching
techniques are orthogonal to prefetching and may be
combined to provide better virtual I/O performance.
It would be an interesting future work to investigate
the effectiveness of VIO-prefetching with a hypervisor
managed cache at various cache sizes.

6 CONCLUSIONS
We have designed and implemented a virtualization-
friendly data prefetching method for prevailing virtu-
alized servers with emerging high-performance storage
devices, including flash-based solid-state drives that de-
tects application access patterns, retrieves data to match
both drive characteristics and application needs, and dy-
namically controls its aggressiveness with feedback. The
prominent features of VIO-prefetching include not only
taking advantage of the high bandwidth and low latency
of SSDs, but also providing inherent support for virtual
I/O and feedback-controlled aggressiveness, demanded
by virtualized, shared servers in data centers. We have
implemented a prototype in Linux and conducted a
comprehensive evaluation on a Xen virtualization server
with a wide range of data-intensive cloud applications.
VIO-prefetching has shown the ability to speedup a
number of I/O-intensive cloud applications at various
virtualized configurations. The proposed method im-
proves virtual I/O performance up to 43% with the
average of 14% for 1 to 12 VMs while running various
applications on a Xen virtualization system.

In brief, the main contributions of this paper are:
• A self-tuned prefetching architecture that matches

application needs without being so aggressive. Mon-
itoring performance metrics in real-time and ad-
justing the aggressiveness accordingly significantly
improves the effectiveness of prefetching.

• We integrate VIO-prefetching with the Xen virtu-
alization system. The evaluation results show that
VIO-prefetching successfully improve virtual I/O
performance. Our comprehensive study also pro-
vides insights of VIO-prefetching’s behavior at var-
ious virtualization system configurations.

• The effects of VIO-prefetching in the context of het-
erogeneous applications are comprehensively stud-
ied, which indicate that adaptive prefetching and
bridging the semantic gap of virtualization are
essential for identifying application patterns and
prefetching needed data.

7 ACKNOWLEDGMENTS
The authors are grateful to the anonymous reviewers
for their feedback and suggestions. This work is in part
supported by the National Science Foundation under

grants OCI-0937875. Ron Chiang did part of this research
at the GWU.

REFERENCES
[1] N. Agrawal, V. Prabhakaran, T. Wobber, J. Davis, M. Manasse, and

R. Panigrahy, “Design tradeoffs for SSD performance,” in USENIX
Annual Technical Conference, 2008, pp. 57–70.

[2] J. Axboe and A. D. Brunelle. (2007) blktrace user guide.
[3] S. H. Baek and K. H. Park, “Prefetching with adaptive cache

culling for striped disk arrays,” in USENIX Annual Technical
Conference, 2008, pp. 363–376.

[4] A. D. Brown, T. C. Mowry, and O. Krieger, “Compiler-based
I/O prefetching for out-of-core applications,” ACM Trans. Comput.
Syst., vol. 19, no. 2, pp. 111–170, 2001.

[5] N. C. Burnett, J. Bent, A. C. Arpaci-Dusseau, and R. H. Arpaci-
Dusseau, “Exploiting gray-box knowledge of buffer-cache man-
agement,” in USENIX Annual Technical Conference, 2002, pp. 29–44.

[6] S. Byna, Y. Chen, X.-H. Sun, R. Thakur, and W. Gropp, “Parallel
i/o prefetching using mpi file caching and i/o signatures,” in
Proceedings of the 2008 ACM/IEEE conference on Supercomputing.
IEEE Press, 2008, p. 44.

[7] F. Chang and G. A. Gibson, “Automatic I/O hint generation
through speculative execution,” in Proceedings of the third sym-
posium on Operating Systems Design and Implementation. USENIX
Association, 1999, pp. 1–14.

[8] F. Chen, D. Koufaty, and X. Zhang, “Understanding intrinsic
characteristics and system implications of flash memory based
solid state drives,” in Proceedings of the eleventh international joint
conference on measurement and modeling of computer systems, 2009,
pp. 181–192.

[9] H. Cook, J. Ellithorpe, L. Keys, and A. Waterman. Iotafs:
Exploring file system optimizations for ssds. [Online]. Available:
http://www.stanford.edu/⇠jdellit/default files/iotafs.pdf

[10] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and
R. Sears, “Benchmarking cloud serving systems with ycsb,” in
Proceedings of the 1st ACM symposium on Cloud computing, ser.
SoCC ’10. ACM, 2010, pp. 143–154.

[11] K. M. Curewitz, P. Krishnan, and J. S. Vitter, “Practical prefetch-
ing via data compression,” in Proceedings of the ACM SIGMOD
international conference on management of data, 1993, pp. 257–266.

[12] X. Ding, S. Jiang, F. Chen, K. Davis, and X. Zhang, “Diskseen:
exploiting disk layout and access history to enhance i/o prefetch,”
in USENIX Annual Technical Conference, 2007, pp. 20:1–20:14.

[13] B. S. Gill and D. S. Modha, “SARC: sequential prefetching in adap-
tive replacement cache,” in USENIX Annual Technical Conference,
2005.

[14] B. S. Gill and L. A. D. Bathen, “AMP: adaptive multi-stream
prefetching in a shared cache,” in Proceedings of the 5th USENIX
conference on File and Storage Technologies, 2007.

[15] J. Griffioen, “Performance measurements of automatic prefetch-
ing,” Proceedings of the International Conference on Parallel and
Distributed Computing Systems, pp. 165—170, 1995.

[16] Y. Guo, P. Narayanan, M. A. Bennaser, S. Chheda, and C. A.
Moritz, “Energy-efficient hardware data prefetching,” IEEE Trans.
Very Large Scale Integr. Syst., vol. 19, no. 2, pp. 250–263, Feb. 2011.

[17] H. Huang, S. Li, A. Szalay, and A. Terzis, “Performance modeling
and analysis of flash-based storage devices,” in IEEE 27th Sympo-
sium on Mass Storage Systems and Technologies, 2011, pp. 1–11.

[18] S. T. Jones, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau,
“Geiger: monitoring the buffer cache in a virtual machine envi-
ronment,” in Proceedings of the 12th international conference on ar-
chitectural support for programming languages and operating systems,
2006, pp. 14–24.

[19] Y. Joo, J. Ryu, S. Park, and K. Shin, “FAST: quick application
launch on solid-state drives,” in Proceedings of the 9th USENIX
conference on File and Storage Technologies, 2011, pp. 19–19.

[20] M. Kallahalla and P. J. Varman, “Optimal prefetching and caching
for parallel i/o sytems,” in Proceedings of the thirteenth annual ACM
symposium on parallel algorithms and architectures, 2001, pp. 219–228.

[21] ——, “Pc-opt: Optimal offline prefetching and caching for parallel
i/o systems,” IEEE Trans. Comput., vol. 51, no. 11, pp. 1333–1344,
Nov. 2002.

[22] J. Kim, S. Seo, D. Jung, J.-S. Kim, and J. Huh, “Parameter-aware
i/o management for solid state disks (SSDs),” IEEE Transactions
on Computers, vol. 99, 2011.

1939-1374 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSC.2015.2469295, IEEE Transactions on Services Computing

14

[23] T. M. Kroeger and D. D. E. Long, “Design and implementation of a
predictive file prefetching algorithm,” in USENIX Annual Technical
Conference, 2001, pp. 105–118.

[24] C. Li, K. Shen, and A. E. Papathanasiou, “Competitive prefetching
for concurrent sequential i/o,” SIGOPS Oper. Syst. Rev., vol. 41,
no. 3, pp. 189–202, Mar. 2007.

[25] Z. Li, Z. Chen, S. M. Srinivasan, and Y. Zhou, “C-Miner: mining
block correlations in storage systems,” in Proceedings of the 3rd
USENIX Conference on File and Storage Technologies, 2004, pp. 173–
186.

[26] P. Lu and K. Shen, “Virtual machine memory access tracing with
hypervisor exclusive cache,” in Proceedings of the USENIX Annual
Technical Conference, ser. ATC’07, 2007, pp. 3:1–3:15.

[27] C. R. Lumb, J. Schindler, and G. R. Ganger, “Freeblock scheduling
outside of disk firmware,” in Proceedings of the Conference on File
and Storage Technologies, 2002, pp. 275–288.

[28] R. McDougall and J. Mauro, Solaris Internals: Solaris 10 and Open-
Solaris Kernel Architecture. Prentice Hall, 2006.

[29] C. Metz, “Flash Drives Replace Disks
at Amazon, Facebook, Dropbox,”
URL:http://www.wired.com/wiredenterprise/2012/06/flash-
data-centers/.

[30] T. C. Mowry, A. K. Demke, and O. Krieger, “Automatic compiler-
inserted i/o prefetching for out-of-core applications,” SIGOPS
Oper. Syst. Rev., vol. 30, no. SI, pp. 3–17, Oct. 1996.

[31] W. Norcott and D. Capps, “IOzone file system benchmark,” URL:
www.iozone.org.

[32] A. E. Papathanasiou and M. L. Scott, “Aggressive prefetching: an
idea whose time has come,” in Proceedings of the 10th conference
on Hot Topics in Operating Systems - Volume 10, 2005, pp. 6–11.

[33] R. H. Patterson, G. A. Gibson, E. Ginting, D. Stodolsky, and
J. Zelenka, “Informed prefetching and caching,” SIGOPS Oper.
Syst. Rev., vol. 29, no. 5, pp. 79–95, 1995.

[34] M. Saxena and M. M. Swift, “FlashVM: revisiting the virtual
memory hierarchy,” in Proceedings of the 12th conference on Hot
Topics in Operating Systems, 2009, pp. 13–13.

[35] M. Seltzer and C. Small, “Self-monitoring and self-adapting op-
erating systems,” in The Sixth Workshop on Hot Topics in Operating
Systems, May 1997, pp. 124 –129.

[36] J.-Y. Shin, M. Balakrishnan, L. Ganesh, T. Marian, and H. Weather-
spoon, “Gecko: a contention-oblivious design for cloud storage,”
in Proceedings of the 4th USENIX conference on Hot Topics in Storage
and File Systems, ser. HotStorage’12, 2012, pp. 4–4.

[37] S. Sinofsky. MSDN Blogs. Engineering windows 7.sup-
port and Q&A for solid-state drives. [Online].
Available: http://blogs.msdn.com/b/e7/archive/2009/05/05/
support-and-q-a-for-solid-state-drives-and.aspx

[38] M. Sivathanu, V. Prabhakaran, F. I. Popovici, T. E. Denehy, A. C.
Arpaci-Dusseau, and R. H. Arpaci-Dusseau, “Semantically-smart
disk systems,” in Proceedings of the 2nd USENIX conference on File
and Storage Technologies, 2003, pp. 6–22.

[39] W. Sobel, S. Subramanyam, A. Sucharitakul, J. Nguyen, H. Wong,
A. Klepchukov, S. Patil, A. Fox, and D. Patterson, “Cloudstone:
Multi-platform, multi-language benchmark and measurement
tools for web 2.0,” in The first workshop on Cloud Computing and
its Applications, ser. CCA ’08, 2008.

[40] S. Srinath, O. Mutlu, H. Kim, and Y. N. Patt, “Feedback di-
rected prefetching: Improving the performance and bandwidth-
efficiency of hardware prefetchers,” in Proceedings of the 2007
IEEE 13th International Symposium on High Performance Computer
Architecture, 2007, pp. 63–74.

[41] A. Uppal, R. Chiang, and H. Huang, “Flashy prefetching for high-
performance flash drives,” in Mass Storage Systems and Technologies
(MSST), 2012 IEEE 28th Symposium on, April 2012, pp. 1 –12.

[42] G. Urdaneta, G. Pierre, and M. van Steen, “Wikipedia workload
analysis for decentralized hosting,” Elsevier Computer Networks,
vol. 53, no. 11, pp. 1830–1845, July 2009.

[43] S. Villinger. Super-fast ssds: Four rules for how to treat
them right. [Online]. Available: http://itexpertvoice.com/home/
super-fast-ssds-four-rules-for-how-to-treat-them-right/

[44] A. Warfield, R. Ross, K. Fraser, C. Limpach, and S. Hand, “Par-
allax: managing storage for a million machines,” in Proceedings of
the 10th conference on Hot Topics in Operating Systems - Volume 10,
ser. HOTOS’05, 2005, pp. 4–4.

[45] G. Whittle, J.-F. Pâris, A. Amer, D. Long, and R. Burns, “Using
multiple predictors to improve the accuracy of file access predic-
tions,” in 20th IEEE/11th NASA Goddard Conference on Mass Storage
Systems and Technologies, Apr. 2003, pp. 230–240.

[46] Wikimedia Foundation, “Wikipedia:Database download,” http://
en.wikipedia.org/wiki/Wikipedia:Database download.

[47] T. M. Wong and J. Wilkes, “My cache or yours? making storage
more exclusive,” in USENIX Annual Technical Conference, 2002, pp.
161–175.

[48] F. Wu, “Sequential File Prefetching in Linux,” Advanced Operating
Systems and Kernel Applications: Techniques and Technologies, p. 218,
2010.

[49] Y. Xu and S. Jiang, “A scheduling framework that makes any
disk schedulers non-work-conserving solely based on request
characteristics,” in Proceedings of the 9th USENIX conference on File
and stroage technologies, ser. FAST’11, 2011, pp. 9–9.

[50] C. Yang, T. Mitra, and T. Chiueh, “A decoupled architecture for
application-specific file prefetching,” in USENIX Annual Technical
Conference, FREENIX Track, 2002, pp. 157–170.

[51] Z. Zhang, A. Kulkarni, X. Ma, and Y. Zhou, “Memory resource
allocation for file system prefetching: from a supply chain man-
agement perspective,” in Proceedings of the 4th ACM European
conference on Computer systems, 2009, pp. 75–88.

PLACE
PHOTO
HERE

Ron C. Chiang is a member of IEEE and an As-
sistant Professor at the University of St. Thomas.
He received his Ph.D. in Computer Engineer-
ing from the George Washington University in
2014. His research interest includes virtualiza-
tion, cloud computing, task scheduling, and stor-
age systems. He received a distinguish per-
formance award for advancing Taiwan’s J2ME
development in 2005 and the best student paper
award finalist in the International Conference
for High Performance Computing, Networking,

Storage and Analysis, 2011 (SC’11).

PLACE
PHOTO
HERE

Ahsen Uppal is a Ph.D. student in Computer
Engineering at The George Washington Univer-
sity, with industry experience in software en-
gineering, operating systems, embedded soft-
ware, and signal processing. He previously re-
ceived a B.S. in Electrical Engineering and a
B.S. Computer Science from the University of
Maryland, College Park and an M.S. in Com-
puter Engineering at The George Washington
University. His research interests include emerg-
ing memory architectures, storage systems, and

infrastructure support for high-performance computing, cloud comput-
ing, and GPUs.

PLACE
PHOTO
HERE

Howie Huang is an Associate Professor in
Department of Electrical and Computer Engi-
neering at the George Washington University.
His research interest is in the general areas of
Computer Systems and Architecture, including
Cloud Computing, Big Data, High-Performance
Computing and Storage Systems. Dr. Huang
received the National Science Foundation CA-
REER Award in 2014, GWU Outstanding Young
Researcher Award of School of Engineering
and Applied Science in 2014, NVIDIA Academic

Partnership Award in 2011, and IBM Real Time Innovation Faculty
Award in 2008. He received his PhD degree in Computer Science from
the University of Virginia in 2008.

