
TRACON: Interference-Aware Scheduling for
Data-Intensive Applications in Virtualized Environments

Ron C. Chiang H. Howie Huang
Department of Electrical and Computer Engineering

George Washington University
{rclc, howie}@gwu.edu

ABSTRACT
Large-scale data centers leverage virtualization technology
to achieve excellent resource utilization, scalability, and high
availability. Ideally, the performance of an application run-
ning inside a virtual machine (VM) shall be independent
of co-located applications and VMs that share the physical
machine. However, adverse interference effects exist and are
especially severe for data-intensive applications in such vir-
tualized environments. In this work, we present TRACON,
a novel Task and Resource Allocation CONtrol framework
that mitigates the interference effects from concurrent data-
intensive applications and greatly improves the overall sys-
tem performance. TRACON utilizes modeling and control
techniques from statistical machine learning and consists of
three major components: the interference prediction model
that infers application performance from resource consump-
tion observed from different VMs, the interference-aware
scheduler that is designed to utilize the model for effective
resource management, and the task and resource monitor
that collects application characteristics at the runtime for
model adaption. We simulate TRACON with a wide vari-
ety of data-intensive applications including bioinformatics,
data mining, video processing, email and web servers, etc.
The evaluation results show that TRACON can achieve up
to 50% improvement on application runtime, and up to 80%
on I/O throughput for data-intensive applications in virtu-
alized data centers.

1. INTRODUCTION
Cloud computing has achieved tremendous success in of-

fering Infrastructure/Platform/Software as a Service, in an
on-demand fashion, to a large number of clients. This is evi-
dent in the popularity of cloud software services, e.g., Gmail
and Facebook, and the rapid development of cloud plat-
forms, e.g., Amazon EC2. The key enabling factor for cloud
computing is the virtualization technology, e.g., Xen [4], that
provides an abstraction layer on top of the underlying phys-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SC11, November 12-18, 2011, Seattle, Washington, USA
Copyright 2011 ACM 978-1-4503-0771-0/11/11 ...$10.00.

ical resources and allows multiple operating systems and ap-
plications to simultaneously run on the same hardware. As
virtual machine monitors (VMM) encapsulate different ap-
plications into each separate guest virtual machine (VM), a
cloud provider can leverage VM consolidation and migration
to achieve excellent resource utilization and high availability
in large data centers.

Ideally, an application running inside a VM shall achieve
the performance as it would own a portion of the machine
to itself, that is, independent of co-located applications and
VMs that share the same physical resource. Although ex-
tensive work has been done to achieve this so-called perfor-
mance isolation [21, 25, 29], including various techniques to
ensure CPU fair sharing [20], little attention has been paid
to data-intensive applications that perform complex analyt-
ics tasks on a large amount of data, which have become in-
creasingly common in this environment [13]. Traditionally
assuming the exclusive ownership of the physical resources,
these applications are optimized for the hard drive based
storage systems by issuing large sequential reads and writes.
However, this assumption breaks down in a shared, virtu-
alized environment, and subsequently the previously opti-
mized I/O requests are no longer advantageous. To the con-
trary, multiple data-intensive applications will be in compe-
tition for the limited bandwidth and throughput to network
and storage systems, which very likely leads to high I/O
interference and low performance. In this case, the com-
bined effects from concurrent applications, when deployed
on shared resources, are largely difficult to predict, and the
interference as a result of competing I/Os remains problem-
atic to achieve high-performance computing in a virtualized
environment.

In this work, we study the performance effects of co-located
data-intensive applications, and develop TRACON1, a novel
Task and Resource Allocation CONtrol framework that mit-
igates the interference from concurrent applications. TRA-
CON leverages modeling and control techniques from sta-
tistical machine learning and acts as the core management
scheme for a virtualized environment. The evaluation shows
that TRACON can achieve up to 50% improvement on appli-
cation runtime and up to 80% on I/O throughput for data-
intensive applications.

1In aviation, TRACON stands for Terminal Radar Ap-
proach Control facilities, “for example, Potomac TRACON
handles air traffic going into and out of all the airports
around Washington D.C., Baltimore, MD, and Richmond,
VA.” Source: http://www.faa.gov.

The main contributions of our work are two-fold:

• We characterize the I/O interference from multiple
concurrent data-intensive applications in a virtualized
environment, and build interference prediction models
that reason about application performance in the event
of varied levels of I/O interference. While prior work
has extensively studied the VM interference on CPUs,
caches, and main memory [21, 22, 29], we address
the new challenges that arise when modeling data-
intensive applications in virtualized data centers. Our
statistical models profile the performance of a target
application, when running against a set of benchmarks,
to infer both the runtime and I/O throughput of the
application. We propose to employ nonlinear models
that are critical to capture the bursty I/O patterns in
data-intensive applications. Our models can adapt in
the runtime when it is detected that they no longer
accurately model the application’s performance. This
design utilizes the application characteristics, observed
from the VMs, and maintains a low system overhead.

• We develop a management system TRACON for a vir-
tualized data center to mitigate the interference ef-
fects from co-located data-intensive applications. To
achieve this goal, we incorporate the proposed nonlin-
ear interference prediction models into TRACON and
by doing so, the system can make optimized schedul-
ing decisions that lead to significant improvements in
both application performance and resource utilization.
We conduct a comprehensive set of experiments on dif-
ferent combinations of data-intensive applications.

The rest of the paper is organized as follows. The next
section introduces the virtualization technology and illus-
trates the performance degradation caused by I/O interfer-
ence. Section 3 introduces TRACON system architecture,
and presents the modeling and scheduling techniques for in-
terference reduction. The evaluation setup and results are
presented in Section 4. We conclude in Section 5.

2. BACKGROUND
Virtualized data centers are the most common cloud com-

puting platforms. In this work, we focus on Xen and its
notable paravirtualization technique, where the Xen VMM
works as a hardware abstraction layer to guest operating
systems with the modified kernels. Note that Xen also sup-
ports hardware-assisted full virtualization that emulates the
host hardware for unmodified operating systems. In paravir-
tualization, the VMM is in charge of resource control and
management, including CPU time scheduling, routing hard-
ware interrupt events, allocating memory space, etc. In ad-
dition, a driver domain (Dom0) that has the native drivers
of host hardware performs the I/O operations on behalf of
guest domains (DomU). Fig. 1 depicts a typical Xen I/O
architecture, where each guest domain uses a virtual device
driver (frontend) in cooperation with a corresponding mod-
ule (backend) and the native driver in the driver domain to
accomplish I/O operations.

2.1 VM Interference
When multiple VMs are running on the same physical ma-

chine, severals factors contribute to the degraded application
performance, including virtualization overheads and the im-
perfect performance isolation between VMs. As cloud ap-

VMM

CPU, Memory, Hard drive, etc.

Dom0

(Driver Domain)

Dom1

(Guest

Domain)

Domn

(Guest

Domain)

Drivers Backend Frontend Frontend

Software

Hardware

Figure 1: Xen I/O architecture. Solid lines rep-
resent the I/O channels for data transmission.
Host hardware interrupts are controlled and routed
through VMM and depicted as dashed lines

plications become increasingly data centric, we shall address
additional challenges of the I/O interference when running
data-intensive applications in such virtualized environments.

In the following example, we illustrate this problem using
the data collected on a machine managed by Xen, where
two applications, App1 and App2, run in two separate VMs,
VM1 and VM2, respectively. The evaluation environment
will be described in detail in Section 4. In the first scenario
(the first row in Table 1), App1 is a CPU-intensive program
(Calc) that performs algorithmic calculations in VM1 and
its runtimes are measured when program in VM2 is a CPU-
intensive, data-intensive, both CPU- and data-intensive, or
CPU- and data-moderate program. We normalize App1 run-
times to that of App1 running alone, that is, normalize to
without interference. In the second scenario (the second row
in Table 1), App1 is a data-intensive program (SeqRead)
that sequentially reads a large file.

Table 1: Normalized App1 runtime in VM1 while
running various App2 in VM2

XXXXXXXXApp1
App2 CPU I/O CPU & I/O

High High Medium High

Calc 1.96 1.26 1.77 2.52
SeqRead 1.03 10.23 1.78 16.11

As illustrated in Table 1 , while two CPU-intensive appli-
cations show performance slowdowns, the result is not unex-
pected. In this case, because both VMs are multiplexed on
the same CPU, the runtime of App1 is simply doubled due
to Xen’s fair credit scheduling. However, for a data-intensive
program, performance interference is much more severe and
unpredictable. For example, while App1(SeqRead) experi-
ences little change in performance when App2 has a heavy
CPU consumption, it slows down by 10 times when App2
is performing a similar task and competing for I/O devices.
Furthermore, because the driver domain handles I/O op-
erations on behalf of unprivileged guest domains [25, 31],
the interference can become even more severe when App2
demands both CPU and I/O resources - App1 is 16 times
slower in this case. Clearly, a deep understanding of I/O in-
terference is crucial for virtualized data centers to improve
customer experiences and increase resource utilization. In
this work, we build interference prediction models that au-
tomatically infer the effects when there exist varied levels
of concurrent I/O operations, and propose novel scheduling
algorithms to minimize the negative impacts of co-located
applications.

2.2 The Challenges with Existing Techniques
Traditional performance modeling [38, 34, 28] and schedul-

ing techniques [7, 33, 36] focus on the computation-intensive
applications and model CPU utilization and performance.
Extensive work has been done to characterize and predict
the I/O performance, mostly in a non-virtualized environ-
ment [26, 32, 16].

For VM performance modeling, Wood et al. [37] measure
and use application characteristics to model the virtualiza-
tion overheads, and Kundu et al. [22] propose an iterative
model training technique based on artificial neural networks
to build models for predicting application performance in
virtualized environments. Similarly, Mei et al. [25] and Pu
et al. [31] study the network traffic interference in virtual-
ized cloud environments. However, it is unclear how the
above work can be utilized to mitigate the I/O interference
for data-intensive applications.

Our work is closely related to Q-Clouds [29] and pSciMap-
per [39]. Q-Clouds utilizes online feedback to build a multi-
input multi-output (MIMO) model to capture the perfor-
mance interference, and to tune resource allocations to mit-
igate the performance interference. However, Q-Clouds fo-
cuses on the CPU bound workload. pSciMapper is a power-
aware consolidation framework for scientific workflows and
builds the models to relate the resource requirements to
performance and power consumption. Note that energy-
aware scheduling becomes increasingly important in data
centers [27], as the total energy used by the servers is esti-
mated to approach 3% of US electricity consumption [35].
In comparison, TRACON goes further by focusing on the
performance improvement of the whole system. Moreover,
our work investigates data-intensive scientific workflows and
demonstrates the ability to be used in a large scale system
under heavy workloads.

3. TRACON SYSTEM ARCHITECTURE
Most cloud service providers utilize a hierarchical man-

agement scheme to administer the large quantity of ma-
chines [2]. In this environment, each application server has
a similar virtualized environment as shown in Fig. 1, where
VMs are dynamically allocated to run the applications from
the clients. A manager server is responsible for supervising
a group of the application servers, which report their sta-
tus in a time interval to the manager server. The manager
servers can form a tree-like hierarchy for high scalability.

Given a virtualized environment that consists of a large
number of physical machines and different applications, we
utilize statistical machine learning techniques, in particu-
lar statistical modeling for reasoning about the application’s
performance under interference. We share the same philos-
ophy as in [6, 23] that the statistical machine learning will
play an important role in the application and resource man-
agement in large-scale data centers.

As the core management scheme for a virtualized environ-
ment, TRACON, our Task and Resource Allocation CON-
trol framework consists of three major components: 1) the
interference prediction model infers the application perfor-
mance from the resource consumption observed from mul-
tiple VMs; 2) the interference-aware scheduler is designed
to utilize the model and generate optimized assignments of
tasks and physical resources; and 3) the task and resource
monitor that collects application characteristics at the run-

taskstask queue

machine status
task assignments

interference
aware

scheduler

interference
prediction

module

possible
assignments

predicted
interference

model
training
module

update
prediction

module

manager server

VM1 VMn

application server

task/resource monitor

VM1 VMn

application server

task/resource monitor

Figure 2: TRACON system architecture

time and feed to both the model and scheduler. Fig. 2
presents the TRACON architecture and the interactions be-
tween different components.

Upon the arrival of the tasks, the scheduler will generate a
number of possible assignments based on the incoming tasks
and the list of available VMs, which will then be communi-
cated to the interference prediction module. This module
uses the constructed models, the application profiles, and
the machine status to predict the interference effects for the
given assignments. Finally, depending on the predictions,
the scheduler makes the scheduling decision and assigns the
tasks to different servers.

On the application servers, the task and resource monitors
will manage the on-going tasks that is assigned to each VM
and collect application characteristics and the performance
interference. In a simple example where two VMs are to
share the host hardware, the monitor measures the resource
utilization of both VMs via existing system tools (e.g., xen-
top and iostat) while the assigned tasks are running. Xentop
is used to monitor and record the physical CPU utilization
of each domain, because a top command in each domain, in-
cluding the driver domain, can only get the domain’s virtual
CPU utilization. In addition, because Dom0 performs the
I/O operations on behalf of each guest domain, we use iostat
in Dom0 to monitor and record the resource utilization of
physical storage devices. Note that the resource utilization
monitoring in Dom0 is preferable because system adminis-
trators generally do not have access to each guest domain
for security and privacy reasons.

3.1 Interference Prediction Model
On the high level, the interference can be perceived as the

changes in the performance, including the total runtime as
used in prior work [38, 28], and I/O throughput that we have
shown is critical to data-intensive applications. In this work,
we construct the interference prediction models in order to
extrapolate the application performance as a function of the
resource consumption by virtual machines. We apply several
regression analysis techniques that are commonly used for
modeling the relationship between an observed response and
controlled variables [9].

For the data-intensive applications that consume a signif-
icant amount of I/O bandwidth and CPU cycles, we choose
to characterize each application by four key parameters (con-

trolled variables), listed in Table 2: the read throughput, the
write throughput, the local CPU utilization in the current
guest VM domain (DomU), and the global CPU utilization
in the virtual machine monitor (Dom0). The first two pa-
rameters measure the I/O workload from the target applica-
tion in terms of the number of requests per second, and the
third is used to model the CPU consumption from data pro-
cessing of the application. While a model with these three
parameters is a straightforward approach to reason about
an application, such a model is not sufficient to achieve high
accuracy for a virtualized environment, which is the reason
that we introduce the fourth parameter, the global CPU uti-
lization in the virtual machine monitor. Intuitively, because
all the requests from guest VMs are routed through Dom0,
it is crucial to properly account for the CPU consumption
from the I/O handling tasks that are performed in DomU,
as well as in Dom0 that acts on physical devices on behalf
of DomU. If such I/O overheads on CPU utilization were
ignored, the prediction models would produce significantly
larger errors, as we will show in Section 4.

Table 2: Application Characteristics

CPU I/O

Local utilization in DomU Read requests per second
Global utilization in Dom0 Write requests per second

In our model, all four parameters can be easily collected
with the help of the TRACON task and resource monitor.
This approach leverages low-overhead system tools and re-
duces unnecessary interference from system monitoring. We
propose this simple approach to avoid additional changes to
a state-of-art virtualized environment (OS and virtual ma-
chine kernels), which we believe can lead to a wide adoption
in current production systems.

In the following, we present three types of models, the
weighted mean method (WMM), the linear model (LM), and
the non-linear model (NLM), for two different responses -
application runtime and I/O throughput. For simplicity,
we assume that each physical machine supports two virtual
machines (VM1 and VM2), each can be assigned with one
application. For each model, each of these responses relates
to four key parameters for each VM, that is, eight variables
in total, which are the application characteristics in both
virtual machines. For each model, Y (runtime or IOPS)
is the response variable, while XV M1,i and XV M2,i where
i ∈ {1, 2, 3, 4}, the application characteristics on VM1 and
VM2, are the controlled variables.

Weighted mean method is based on the principal com-
ponent analysis (PCA) [18] that utilizes applied linear alge-
bra to the data set in order to produce a set of uncorrelated
variables, i.e., the principal components that capture most
important dynamics in the data. The assumption is that be-
cause the principal components account for most data vari-
ances, chances are that they are a good representation of
the data while other variables with smaller variances mostly
contribute to the noise and redundancy. As such, the PCA
is commonly used to deal with complex data sets, as well as
to reduce the high dimensionality in the modeling process.

Our WMM model similar to [21] calculates Euclidean dis-
tances between the data points in the space spanned by the
first four principle components. Next, it chooses three near-
est data points and uses the reciprocal of their distances as
the weights to get the predicted response. In this work, we

use WMM as the baseline when evaluating the linear and
non-linear models.

Linear models assume there is a linear relationship be-
tween the response variable and controlled variables, which
can be formally presented as

Ŷ = c+

4∑
i=1

αi ·XV M1,i +

4∑
i=1

βi ·XV M2,i (1)

where αi and βi are coefficients and c is a constant. The
error is defined as the difference between the real and ex-
pected value, i.e.,

∣∣∣Y − Ŷ ∣∣∣, and the sum of squared errors

(SSE) is calculated as
∑

(Y − Ŷ)2.

To obtain a linear model with high prediction accuracy,
one needs to search for a good combination of the constant
c and coefficients αi and βi such that SSE is minimized.
However, in our case, a prediction model that consists of
all eight parameters for two VMs may not necessarily have
the best fit to the observed data. In other words, a model
with fewer inputs may have a higher or equivalent predic-
tion accuracy than a more complex one. To this end, we
use a stepwise algorithm [14] that adds or removes possible
variables one at a time into the model fitting process. Af-
ter re-fitting the new model, the algorithm will evaluate the
model’s goodness of fit. The process continues iteratively
and in the end outputs the best model among all the candi-
dates. For comparison, the algorithm needs a good metric
to measure a model’s goodness of fit. Although the goal of
a modeling process is to minimize SSE, it is insufficient to
simply use SSEs because of the trade-off between accuracy
and flexibility [9].

To this end, we utilize the concept of Akaike information
criterion (AIC) [1] that is based on the information theory to
provide scores for evaluating such a trade-off. By definition,
AIC can be described as (−2) × loge (maximum likelihood)
+ 2 × (number of parameters), which describes the quality
of a model with regard to the parameters that are selected
by the maximum likelihood method. Note that a lower value
of AIC indicates a better model. In this work, we use the
stepwise algorithm with AIC as the scoring function to help
select a linear model.

Nonlinear models: Our assessment of the linear mod-
els reveals that while their prediction accuracy is mostly in
par with the weighted mean method, these models cannot be
considered as a good fit of the observed data. As we focus on
data-intensive applications in this work, the bursty I/O pat-
terns in such applications [15, 10] tend to make the linearity
no longer hold and lead to large prediction errors. The need
for an alternative model to both the weighted mean method
and linear models leads us to explore nonlinear models, in
particular with the degree of two, i.e., quadratic models in
our study.

By expanding the controlled variablesXV M1,i andXV M2,i

to all the terms in the expansion of the degree-2 polynomial
(1 +

∑4
i=1XV M1,i +

∑4
i=1XV M2,i)

2, we can construct an
initial non-linear function of the controlled variables for the
regression as equation (2).

In the non-linear modeling process, we use the Gauss-
Newton method [11] to find the coefficients such that SSE is
minimized. The Gauss-Newton method is an iterative pro-
cess that gradually updates the parameters to obtain the
optimal solution. Similarly, we use a stepwise algorithm to

choose a non-linear model with the best AIC value. In gen-
eral, we find that nonlinear models have the best prediction
accuracy compared to the other two methods in predicting
either the runtime or IOPS, as will be shown in Section 4.

Ŷ = c+

4∑
i=1

α
(1)
i ·XV M1,i +

4∑
i=1

α
(2)
i ·XV M2,i +

4∑
i=1

4∑
j=1

β
(1)
i,j ·XV M1,i ·XV M2,j +

4∑
i=1

i−1∑
j=1

β
(2)
i,j ·XV M1,i ·XV M1,j +

4∑
i=1

i−1∑
j=1

β
(3)
i,j ·XV M2,i ·XV M2,j +

4∑
i=1

γ
(1)
i ·X2

V M1,i +

4∑
i=1

γ
(2)
i ·X2

V M2,i (2)

Model training and learning: For a given application,
we generate its interference profile by running it on VM1
while varying the workloads on VM2, for which we develop
a workload generator to exercise both CPU and I/O devices
with different intensities. By doing so, we obtain a collection
of data on interference effects under different background
workloads. For the CPU utilization, the workload generator
executes a set of arithmetic operations in a loop with varied
idle intervals between each iteration so as to the CPU uti-
lization in a guest domain can be controlled in five different
intensities ranging from 0%, 25%, 50%, 75% to 100%. In
the meantime, a storage device is tasked with either read
or write requests. In both cases, the workload generator
reads from or writes to a file. The file is much larger than
the allocated memory size of the guest domain to avoid OS
caching. Similarly, the read requests per second and write
requests per second can also be controlled in five different
intensities ranging from 0% to 100% by adjusting the length
of sleep interval between each iteration. For the purpose of
creating more realistic scenarios, we create in total 125 of
different workloads that serve as the background applica-
tions in profiling the interference. Note that we also include
the performance for each application without interference,
that is, the application runs in one VM while the other VM
is idle.

For a cloud platform, our approach can be simply au-
tomated when a new application comes in. Further, this
approach supports online learning of the interference pre-
diction model, that is, the model shall be dynamically mon-
itored and modified when it cannot accurately capture the
interference relationships among different applications. The
causes may come from the changes in applications, virtual
machines, operating systems, and cloud infrastructures. To
this end, TRACON collects statistics on applications and
virtual machines and keeps tracks of the prediction errors of
the models. Upon the occurrence of some predefined events
(e.g., a significant shift of the mean or a large surge in the
variance), TRACON will start to build a new model with
the latest data.

3.2 Interference-Aware Scheduling
Interference prediction completes one side of the story -

with the help of these models, TRACON can now schedule
the incoming tasks to different virtual machines in a way
that minimizes the interference effects from co-located appli-
cations. In general, optimally mapping tasks to machines in
parallel and distributed computing environments has been
shown to be an NP-complete problem [12]. In this work,
we explore a number of heuristic techniques to find a good
solution for the scheduling problem. Specifically, TRACON
aims to reduce the runtime and improve the I/O throughput
for data-intensive applications in a virtualized environment.
Given a set of tasks T and each task t ∈ T has the runtime of
RTt and the I/O throughput of IOPSt, we define the total
runtime RTtotal for this set of tasks as

RTtotal =
∑
∀t∈T

RTt (3)

and the combined throughput IOPStotal as

IOPStotal =
∑
∀t∈T

IOPSt (4)

In this work, we explore three different scheduling strate-
gies: online scheduling that reduces the queueing time for
each incoming task by quickly dispatching them to various
virtual machines, batch scheduling that pairs the incom-
ing tasks based on the predicted interference, and mixed
scheduling that aims to balance between both batch and
online scheduling. For comparison, we use an FIFO sched-
uler as the baseline where the incoming tasks are allocated
to virtual machines in a first-in, first-out order.

Minimum interference online scheduler (MIOS) is
designed to make a quick scheduling decision that becomes
necessary when the tasks arrive at a rapid speed. In such a
scenario, the tasks will arrive at the queue at arbitrary times
and the scheduler will dispatch an incoming task immedi-
ately without waiting for later tasks. We design MIOS based
on the concept of the minimum completion time (MCT)
heuristic [8]. With the goal of minimizing the sum of ex-
ecution times of all tasks, MCT maps each incoming task to
the machine that completes the task in the shortest time.
When a task t arrives, MIOS will predict t’s performance on
each available VM, and assign t to a VM with the best pre-
dicted performance. The advantage of MIOS is the ability
to dispatch a task in a short time. On the downside, the task
assignment may not be better than a batch scheduler that
considers more possible assignments. The MIOS algorithm
is presented in Algorithm 1.

Algorithm 1: MIOS

Data: Task ti;
Pool consists of VMj,k, where j ∈ 1, . . . ,m, and
k ∈ 1, . . . , n ;
Model is the interference prediction model.

Result: t and VMj,k assignments.
begin

for each VMj,k in the Pool do
scorei = Predict(t, VMj,k, Model);

end
VMcandidate = Min(scorei);
Assign(t, VMcandidate);

end

Minimum Interference Batch Scheduler (MIBS) is
a batch scheduling algorithm based on the concept of the
Min-Min heuristic [17]. In a batch scheduling scenario, the
scheduling process takes place when the queue that holds the
incoming tasks is full. In the first step, the Min-Min heuris-
tic finds a machine with the minimum score (e.g., completion
time) for each task on the queue (the first “Min”). In the
second step, among all task-machine pairs, Min-Min finds
the pair with the minimum score (the second “Min”), and
assigns the selected task to its corresponding machine. This
procedure repeats until the queue is empty.

In TRACON, assume we have a queue of incoming tasks
ti, where i ∈ {1, 2, . . . , l} and l is the total number of avail-
able tasks, and virtual machines are denoted as VMj,k, where
j ∈ {1, 2, . . . ,m} and m is the number of VMs per physical
machine; k ∈ {1, 2, . . . , n} and n is the number of physical
machines. First, MIBS takes the first task candidate1 in
the queue as the input to run MIOS. Second, MIBS chooses
another task candidate2 from the rest of the queued tasks
that has the least interference with candidate1. Then, MIBS
takes candidate2 as the input to run MIOS. On one hand,
MIBS needs to calculate the interference between the incom-
ing tasks, which may lead to a longer waiting time in the
queue. However, as MIBS considers the pairing of all in-
coming tasks, it has good chances of improved performance
when the models accurately predict the interference between
different tasks. The algorithm of MIBS scheduling is listed
in Algorithm 2.

Algorithm 2: MIBS

Data: Queue is a task batch of ti, where i ∈ 1, . . . , l ;
VMj,k are VMs on available machines, where
j ∈ 1, . . . ,m, and k ∈ 1, . . . , n ;
Model is the interference prediction model.

Result: ti and VMj,k assignments.
begin

while Queue is not empty do
candidate1 = t1;
MIOS(candidate1, VMj,k, Model);
for each task ti in the Queue, i 6= 1 do

scorei = Predict(ti, t1, Model);
end
// the first "Min"

candidate2 = Min(scorei);
// the second "Min"

MIOS(candidate2, VMj,k, Model);
RemoveFromQueue(candidate1, candidate2);

end

end

Minimum Interference miXed scheduler (MIX) in-
tends to combine two algorithms and possibly improve the
performance. The scheduler will not dispatch an assign-
ment of MIBS immediately. Instead, MIX gives every job a
chance to be the first job in the queue when executing MIBS,
and hopes that future assignments would possibly offer new
opportunities for better scheduling decisions. The obvious
drawback here is that for each task, the delay may be in-
creased, although the overall performance could potentially
be improved. The algorithm of MIX scheduling is listed in
Algorithm 3.

Algorithm 3: MIX

Data: Queue is a task batch of ti, where i ∈ 1, . . . , l ;
VMj,k are VMs on available machines, where
j ∈ 1, . . . ,m, and k ∈ 1, . . . , n ;
Model is the interference prediction model.

Result: ti and VMj,k assignments.
begin

while Queue is not empty do
for each task ti in the Queue do

Mark ti as the first task in Queue;
Assignmenti = MIBS(Queue, VMj,k,
Model);
if Assignmenti is better than
AssignmentMIX then

keep Assignmenti as AssignmentMIX ;
end

end
Execute AssignmentMIX ;
RemoveFromQueue(AssignmentMIX);

end

end

In summary, three scheduling strategies have different ad-
vantages and drawbacks. MIOS has the lowest scheduling
overhead, MIX has the potential to achieve the best perfor-
mance while incurring the highest possible overheads, and
MIBS stands in between which we will show shortly can lead
to a good balance between the scheduling performance and
overhead.

4. EVALUATION
4.1 Data-intensive Benchmarks

As we mostly focus on the I/O performance interference
in a virtualized environment, we select eight data-intensive
benchmarks in this work, covering different applications from
bioinformatics, software development, system administra-
tion, data mining, multimedia processing, and server ap-
plications. Table 3 summarizes the benchmarks used in this
work. For the I/O intensity, a larger number indicates a
higher IOPS and throughput requirement.

Bioinformatics: It is a crucial task to find similar DNA
or protein sequences for the bioinformatics research. Ba-
sic Local Alignment Search Tool (BLAST) [3] is one of the
most widely used algorithms for identifying local similar-
ity between different biological sequences. This is done by
comparing sequences to databases and identifying sequence
regions with statistically significant scores. BLAST can be
used for multiple purposes, and we choose two NIH BLAST
algorithms blastn and blastp, which are used to answer the
nucleotide and protein queries, respectively [30]. For the
inputs, the nucleotide and protein databases used in this
work are NCBI’s (National Center for Biotechnology Infor-
mation) NT (12GB) and NR (11GB) databases that contain
the full-set of non-redundant DNA and protein sequences.

Software development: Source code compilation is a
commonly used benchmark for storage systems. During the
compilation process, the compiler reads a number of the
source code files at different time points and writes the ob-
ject files to disks. Here we compile the Linux kernel of 2.6.18.

Table 3: Data-Intensive Applications and Benchmarks

Name Category Description Data size File count I/O Intensity

blastn Bioinformatics DNA sequence similarity searching 12 GB 101 6
blastp Bioinformatics Protein sequence similarity searching 11 GB 61 3
compile Software development Linux kernel compilation 2.1 GB 1,358 4
dedup System administration Data compression and deduplication 672 MB 1 7
email Server application Email server workload benchmark 1.6 GB 249,825 1
freqmine Data mining Frequent itemset mining 206 MB 1 5
video Multimedia processing H.264 video encoding 1.5 GB 1 8
web Server application Web server workload benchmark 160 MB 10,000 2

System administration: As digital data grows expo-
nentially, deduplication becomes an important task for sys-
tem administrators to remove data redundancy and reduce
the cost of storage systems. We use dedup from the Parsec
benchmark suite [5]. Dedup applies various data compres-
sions to a data stream in a pipelined manner and writes an
output file with the compressed data. In the test, dedup
uses an input file of 672 MB. Note that we also choose two
other data-intensive benchmarks from Parsec.

Data mining: For data-mining applications, we pick fre-
qmine from Parsec, which mines frequent itemsets from a
206MB input file.

Media processing: Again, we choose a Parsec bench-
mark called video, which is used to encode an H.264 video
file of 1.5GB. Note that video has the highest IOPS among
all the benchmarks.

Server application: We choose to benchmark two typ-
ical enterprise servers, email and web servers. For email
server workload, we use a popular benchmark, postmark [19],
which performs a large number of file operations (create,
read, write, or delete) on small files.

For web server workload, we use the web server profile
in the FileBench [24]. For web benchmark, we evaluate the
IOPS only and do not evaluate runtime because FileBench
takes the runtime as an input. This benchmark simulates
a mix of open/read/close operations of 10,000 files in about
20 directories, and performs append to a file for every ten
reads/writes to simulate the proxy log. In total 100 threads
are used and the average file size is 16KB.

Mixed I/O workload: We utilize eight benchmarks to
generate the workloads with different I/O intensities. In par-
ticular, we create three types of workloads, namely the light,
medium, heavy I/O, which represent a mixture of workloads
with low, medium, and high I/O requirements, respectively.
To this end, we sort eight benchmarks based on their IOPS,
which are shown in Table 3. Each number represents the
rank of an application in terms of the I/O intensity. For
example, number 1 represents email with the lowest IOPS
and number 8 means video with the highest IOPS. We gen-
erate light, median, and heavy I/O workloads by following
the Gaussian distributions with the means of 2.5, 4, and 5.5,
respectively.

4.2 Simulation Settings
We implement a simulator to emulate the TRACON’s per-

formance in large-scale data centers. The simulator can eval-
uate two different scenarios with static and dynamic work-

loads. In the first case, we assume that there is a list of ap-
plications that are waiting to be processed. The number of
applications equals to the total number of available virtual
machines. Upon the arrival of such workload, the simula-
tor queries the interference prediction module for expected
workload interference and generates a schedule based on the
predicted results. The simulator calculates the performance
by using the actual statistics that have been measured in
the real systems.

In dynamic workload scenario, we assume that the work-
load arrival rate follows a given distribution, and each task
can be scheduled as soon as possible. When a scheduling
event is triggered, the simulator takes all the tasks in the
queue and current statuses on all VMs as the input, and
queries the prediction module. Next, the scheduler gener-
ates an assignment based on the predicted results and the
emulator estimates the actual time and system status by
using previously measured data. Since the workloads are
arriving randomly in time, they may be scheduled in be-
tween of executions of their co-located tasks. To address
this, we calculate the new runtime by using the remaining
portion of the work. For example, task A in VM1 and task
B in VM2 are running on the same physical machine from
the beginning. But, task B finishes earlier than task A and a
scheduler puts task C as next task onto VM2. Suppose task
A has already finished 80% of its workload, the remaining
runtime of task A is estimated by assuming that 20% of its
workload runs concurrently with task C.

We run the simulations for a data center with 8 to 1,024
machines, and scale up to 10,000 machines. We measure the
real effects of interference and use the measured data for sim-
ulation. All evaluations and measurements are conducted on
Dell machines with 2.93 GHz Intel Core2 Duo E7500 pro-
cessor, 4GB RAM, and a 1TB Samsung SATA hard drive,
with Linux kernel 2.6.18 and Xen 3.1.2. Each VM is allo-
cated with one virtual CPU, 512MB RAM, and 200GB disk
space. For simplicity, we assume that the machines are ho-
mogeneous in the data center. For all the experiments, we
report the average value of three runs. The emulation results
are compared to the First-In-First-Out (FIFO) scheduler,
which is served as a baseline in the following experiments.

4.3 Performance of Prediction Models
We profile and model the eight benchmarks with the meth-

ods described in Section 3.1. The prediction error is de-
fined as | predicted value − actual value | / actual value.
Fig. 3(a) and 3(b) show the prediction errors of LM, NLM,
and WMM on the runtime and IOPS with respect to differ-

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

blastn
blastp

compile

dedup
email

freqmine

video

P
re

d
ic

ti
o

n
 e

rr
o

r

Benchmarks

 WMM
LM

NLM
 NLM w/o Dom0 CPU

(a) Runtime models

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

blastn
blastp

compile

dedup
email

freqmine

video
web

P
re

d
ic

ti
o

n
 e

rr
o

r

Benchmarks

 WMM
LM

NLM

(b) IOPS models

Figure 3: Model prediction errors. The column heights represent the average prediction errors, and the error
bars represent the standard deviations

ent benchmarks.

For both models, NLM’s prediction errors stay relatively
stable across different benchmarks. For the benchmarks
with many random I/O operations, like compile or web, LM
and WMM have higher prediction errors than those with
mainly sequential I/O operations, like video. The differ-
ences between linear and non-linear models are mostly con-
tributed by the bursty I/O patterns from the applications,
which makes the linearity hard to hold in such cases. We
find that adding degree-2 terms into a model significantly
reduces the prediction error. In general, NLM has 10% pre-
diction errors compared to 20% or more for LM and WMM.
The improvement is bigger when applying the models on
the IOPS. Note that NLM is also more stable with small
standard deviations, shown as the error bars in the figure.

We also want to point out that, as shown in Fig. 3(a), the
fourth parameter, global CPU utilization, is very important
for the model to achieve high accuracy. Without it, NLM
would have much larger prediction errors, e.g., twice as much
for blastn.

4.4 Task Scheduling with Different Models
We evaluate the effectiveness of different prediction mod-

els when used in the scheduler. In each run, we generate a
batch of tasks by randomly uniformly sampling tasks from
the eight applications. For a batch of tasks, three schedules
are generated by MIBS with WMM, LM, and NLM respec-
tively. The performance numbers are normalized to those
from the FIFO scheduler. Let the total runtime of tasks
scheduled by a scheduler S be RTS and the one by FIFO be
RTFIFO. The runtime improvement, speedup, is defined as

Speedup =
RTFIFO

RTS
. (5)

Similarly, let the total IOPS of tasks scheduled by a sched-
uler S be IOPSS and the one by FIFO be IOPSFIFO. The
throughput improvement, IOBoost, is defined as

IOBoost =
IOPSS

IOPSFIFO
. (6)

Let the MIBSRT be the MIBS with the goal to mini-
mize the total runtime and MIBSIO be the MIBS with the
goal to maximize the total IOPS. Fig. 4 shows Speedup and
IOBoost by MIBSRT and MIBSIO when using WMM, LM,
and NLM respectively. NLM not only has lower prediction

errors than WMM and LM, but also has better performance
in assisting the scheduler to minimize the runtime and in-
crease the I/O throughput. In this experiment, a batch of
32 tasks are scheduled on to a cluster with 16 machines and
each machine has two VMs.

 1

 1.5

MIBSRT MIBSIO

S
p

ee
d

u
p

IO
B

o
o

st

Scheduler

 WMM LM NLM

Figure 4: Task scheduling with different models.
The column heights represent the average runtime
and IOPS improvements, and the error bars repre-
sent the standard deviations

4.5 NLM Prediction Accuracy
In this section, we analyze NLM’s ability in determining

the minimum runtime and maximum throughput. Fig. 5
shows the predicted minimum, measured (real) minimum,
average, and maximum runtimes of each application when
it runs concurrently with other applications. One can see
that NLM is able to closely predict a benchmark’s minimum
runtime, and the predicted minimum never goes beyond the
measured average or maximum runtimes. Similarly, NLM
performs well on the IOPS predictions as shown in Fig. 6.
The predicted maximum IOPS is always within a small dis-
tance from the measured maximum throughput.

4.6 Model Adaption
Our models can make dynamic adjustments to improve

the prediction accuracy during the runtime. In this experi-
ment, we build an initial interference model of blastn with
application statistics (a total of 500 data points) collected
on a machine with local storage devices. Then we use this
model to predict the blastn’s runtime and IOPS on the ma-
chine with identical software and hardware setting, but in-
stead using remote storage devices via the iSCSI (Internet
SCSI) interface.

0.0

1.0

2.0

3.0

4.0

blastn
blastp

compile

dedup
email

freqmine

video

N
o

rm
al

iz
ed

 r
u

n
ti

m
e

Benchmarks

Pred Min
Min
Avg
Max

Figure 5: Predicted minimum runtime of each ap-
plication compared to measured minimum, average,
and maximum runtimes

 0

 2

 4

 6

 8

 10

 12

 14

blastn
blastp

compile

dedup
email

freqmine

video
web

N
o

rm
al

iz
ed

 IO
P

S

Benchmarks

Min
Avg
Max
Pred Max

Figure 6: Predicted maximum IOPS of each applica-
tion compared to measured minimum, average, and
maximum IOPS

In Fig. 7, we can see that different storage devices can re-
sult in dramatic drops in prediction accuracy for our blastn
models - the prediction error of IOPS model increases from
12% to 83%, and the prediction error of runtime increases
from 12% to 160%. In this case, TRACON continues to
collect the application statistics from the runtime environ-
ment, and gradually replaces the old training data with the
newly collected data. We rebuild the models when every 160
new data points are collected. As shown in Fig. 7, TRA-
CON is able to reduce the prediction accuracy quickly to
the same level of around 10% as it was before. If the en-
vironment remains unchanged, that is, the local storage is
used throughout the experiment, the model can be slightly
improved although the difference between the old and new
models is too small to be distinguishable in Fig. 7.

0.0

0.4

0.8

1.2

1.6

0 160 320 480 720 800

P
re

d
ic

ti
o

n
 e

rr
o

r

Number of new samples

Runtime NLM - Local
Runtime NLM - Network

IOPS NLM - Local
IOPS NLM - Network

Figure 7: Online model learning

In summary, NLM has a lower prediction error and better
performance than both LM and WMM. In addition, it is able
to dynamically adjust its prediction accuracy when adapting
to a different environment. Therefore, we will use NLM as
the prediction module in the following experiments.

4.7 Performance of Scheduling Algorithms
Static workload: In a static workload scenario, we use

workloads with different I/O intensities to examine the im-
provements when we schedule it using MIBSRT and MIBSIO.
Fig. 8 demonstrates the speedups from MIBSRT and MIBSIO

with respect to different numbers of machines and I/O work-
loads. For the heavy I/O workload, both MIBSRT and
MIBSIO get limited speedups because there is no much room
to reduce the interference - almost all combinations in this
workload likely severely interfere with each other. MIBSRT

outperforms MIBSIO in this case because the I/O band-
width has been saturated. When the workload has the light
I/O intensity, both MIBSRT and MIBSIO achieve signifi-
cantly better performance, with 30% speedups, than with
the heavy I/O workload. Intuitively, in this case, even FIFO
could have a good chance to encounter less interference.

The best performance is achieved for the medium I/O
workload, where both MIBSRT and MIBSIO obtain more
than 40% improvement over FIFO. In addition, MIBSIO

beats FIFO by 1.5 times when there are 1,024 machines.
Note that MIBSIO outperforms MIBSRT in this case be-
cause it can effectively increase the I/O utilization without
utilizing all the bandwidth.

1.0

1.1

1.2

1.3

1.4

1.5

1.6

8 16 32 64 128 256 512 1024

S
p

ee
d

u
p

Number of machines

MIBSRT-Light I/O
MIBSRT-Medium I/O
MIBSRT-Heavy I/O

MIBSIO-Light I/O
MIBSIO-Medium I/O
MIBSIO-Heavy I/O

Figure 8: Speedup by MIBSRT and MIBSIO

Dynamic workload: Most data centers are dealing with
the tasks that arrive dynamically and need to schedule them
in a real-time fashion. In this section, we assume that task
arrival rate follows a Poisson process with an average rate
of λ tasks per minute. The throughput TS is defined as the
number of tasks completed on a system with the scheduler
S in a time period. The normalized throughput is defined
as TS / TFIFO.

Suppose that the schedulers are MIBS8, MIOS, and MIX8

where the subscripts here represent a queue length of eight
tasks and there are ten hours to process tasks in a data
center with 64 machines. We present in Fig. 9 the nor-
malized throughputs of MIBS8, MIOS and MIX8 when the
workloads have light, medium, or heavy I/O intensities, re-
spectively. When λ is small, three schedulers have similar
throughputs because the data center is idle for most of the
time. That is, a scheduler can always find an idle machine
for an incoming task. As λ goes up, the machines are gradu-
ally occupied, and the advantages of a scheduling algorithm

1.0

1.2

1.4

1.6

1.8

2.0

20 40 60 80 100N
o

rm
al

iz
ed

 t
h

ro
u

g
h

p
u

t

λ

MIBS8-Light I/O
MIBS8-Medium I/O
MIBS8-Heavy I/O

MIOS-Light I/O
MIOS-Medium I/O
MIOS-Heavy I/O

MIX8-Light I/O
MIX8-Medium I/O
MIX8-Heavy I/O

Figure 9: Normalized throughputs of MIBS8, MIOS
and MIX8 at λ tasks per minute

1.0

1.2

1.4

1.6

1.8

2.0

20 40 60 80 100N
o

rm
al

iz
ed

 t
h

ro
u

g
h

p
u

t

λ

MIBS8-Light I/O
MIBS8-Medium I/O
MIBS8-Heavy I/O

MIBS4-Light I/O
MIBS4-Medium I/O
MIBS4-Heavy I/O

MIBS2-Light I/O
MIBS2-Medium I/O
MIBS2-Heavy I/O

Figure 10: Normalized throughputs of MIBS for dif-
ferent λ and queue lengths

become more obvious. In this case, although MIX8 has the
best performance, MIBS8’s performance is very close with
a smaller overhead, which makes it more suitable for dy-
namic workloads. Similar to the previous results for static
workload, three schedulers can achieve higher throughputs
for the medium I/O workload than the light and heavy I/O
workloads.

Fig. 10 shows these normalized throughputs of MIBS are
improved as λ increases. We vary the queue length of MIBS
from two, four, to eight. The trend remains that for different
queue lengths, MIBS works best for medium I/O workload.
The performance improves when the queue length increases,
e.g., at λ of 100, MIBS8 achieves about 10% higher through-
put than MIBS4 and MIBS2.

4.8 Scalability
We explore the performance of different schedulers when

using 8 to 1,024 machines with λ = 1, 000. Fig. 11 shows
MIBS8’s throughput is close to MIX8’s and the gap is re-
duced as the number of machines increases. In this case,
MIBS8 is a better solution because it has a smaller schedul-
ing overhead while achieving an approximate throughput as
MIX8. In contrast, MIOS has the least performance im-
provement over FIFO. If we scale the data center to 10,000
machines and λ = 10, 000, the normalized throughput of
MIBS8 with the medium I/O workload remains high with
40% improvement.

Fig. 12 demonstrates the changes in normalized through-
puts of MIBS8, MIBS4, and MIBS2 when the number of
machines increases. Similar to varied λ in Fig. 10, MIBS
with a longer queue has a higher I/O throughput than ones
with a shorter queue.

1.0

1.2

1.4

1.6

1.8

2.0

8 16 32 64 128 256 512 1024N
o

rm
al

iz
ed

 t
h

ro
u

g
h

p
u

t

Number of machines

MIBS8-Light I/O
MIBS8-Medium I/O
MIBS8-Heavy I/O

MIOS-Light I/O
MIOS-Medium I/O
MIOS-Heavy I/O

MIX8-Light I/O
MIX8-Medium I/O
MIX8-Heavy I/O

Figure 11: Normalized throughputs of MIBS8,
MIOS and MIX8 for different number of machines

1.0

1.2

1.4

1.6

1.8

2.0

8 16 32 64 128 256 512 1024N
o

rm
al

iz
ed

 t
h

ro
u

g
h

p
u

t

Number of machines

MIBS8-Light I/O
MIBS8-Medium I/O
MIBS8-Heavy I/O

MIBS4-Light I/O
MIBS4-Medium I/O
MIBS4-Heavy I/O

MIBS2-Light I/O
MIBS2-Medium I/O
MIBS2-Heavy I/O

Figure 12: Normalized throughputs of MIBS for dif-
ferent number of machines and queue lengths

5. CONCLUSION
Virtualization has become the key for data centers to

achieve excellent resource utilization, scalability, and high
availability. In this work, we investigate the performance
effects of co-located data-intensive applications in virtual-
ized environments, and propose a management system TRA-
CON that mitigates the interference effects from concurrent
data-intensive applications and greatly improves the overall
system performance. First, we study the use of statisti-
cal modeling techniques to build three different models of
performance interference, and propose to use the non-linear
models as the prediction module in TRACON. Second, we
develop three scheduling algorithms that work with the pre-
diction module to manage the task assignments in virtual-
ized data centers.

In the future, we plan to extend this work with different
modeling techniques to build a more accurate model and
reduce the modeling and profiling overheads. We also plan
to investigate new scheduling algorithms to further reduce
scheduling overheads while maintaining a good system per-
formance. Furthermore, we will explore I/O interference ef-
fects on various storage devices, e.g., RAID and solid-state
drives (SSD), as well as network storage systems.

6. ACKNOWLEDGMENTS
This material is based on research sponsored by the Na-

tional Science Foundation under grant OCI-0937875. The
authors are grateful to the anonymous reviewers for their
helpful comments and feedback.

7. REFERENCES
[1] Hirotugu Akaike. A New Look at the Statistical Model

Identification. IEEE Transactions on Automatic
Control, 19(6):716–723, 1974.

[2] Mohammad Al-Fares, Alexander Loukissas, and Amin
Vahdat. A scalable, commodity data center network
architecture. SIGCOMM Comput. Commun. Rev.,
38:63–74, August 2008.

[3] Stephen F. Altschul, Warren Gish, Webb Miller,
Eugene W. Myers, and David J. Lipman. Basic local
alignment search tool. Journal of molecular biology,
215(3):403–410, October 1990.

[4] Paul Barham, Boris Dragovic, Keir Fraser, Steven
Hand, Tim Harris, Alex Ho, Rolf Neugebauer, Ian
Pratt, and Andrew Warfield. Xen and the art of
virtualization. In Proceedings of the nineteenth ACM
symposium on Operating systems principles, SOSP
’03, pages 164–177. ACM, 2003.

[5] Christian Bienia. Benchmarking Modern
Multiprocessors. PhD thesis, Princeton University,
January 2011.

[6] Peter Bod́ık, Rean Griffith, Charles Sutton, O Fox,
Michael Jordan, and David Patterson. Statistical
machine learning makes automatic control practical
for internet datacenters. In Proceedings of the 2009
conference on Hot topics in cloud computing, pages
12–12. USENIX Association, 2009.

[7] Carlos Boneti, Roberto Gioiosa, Francisco J. Cazorla,
and Mateo Valero. A dynamic scheduler for balancing
hpc applications. In Proceedings of the 2008
ACM/IEEE conference on Supercomputing, SC ’08,
pages 41:1–41:12. IEEE Press, 2008.

[8] Tracy D. Braun, Howard Jay Siegel, Noah Beck,
Ladislau L. Bölóni, Albert I. Reuther, Mitchell D.
Theys, Bin Yao, Richard F. Freund, Muthucumaru
Maheswaran, James P. Robertson, and Debra
Hensgen. A comparison study of static mapping
heuristics for a class of meta-tasks on heterogeneous
computing systems. In Heterogeneous Computing
Workshop (HCW), pages 15 –29, 1999.

[9] Kenneth P. Burnham and David R. Anderson. Model
selection and multimodel inference: a practical
information-theoretic approach. Springer, 2nd edition,
July 2002.

[10] Philip Carns, Kevin Harms, William Allcock, Charles
Bacon, Samuel Lang, Robert Latham, and Robert
Ross. Understanding and improving computational
science storage access through continuous
characterization. In Mass Storage Systems and
Technologies (MSST), 2011 IEEE 27th Symposium on,
pages 1 –14, May 2011.

[11] Edwin K. P. Chong and Stanislaw H. Zak. An
Introduction to Optimization (Wiley-Interscience
Series in Discrete Mathematics and Optimization).
Wiley-Interscience, 3 edition, February 2008.

[12] Edward G. Coffman. Computer and Job Shop
Scheduling Theory. John Wiley & Sons Inc, New York,
1976.

[13] Ewa Deelman and Ann Chervenak. Data management
challenges of data-intensive scientific workflows. In
Cluster Computing and the Grid, 2008. CCGRID ’08.
8th IEEE International Symposium on, pages 687

–692, May 2008.

[14] Norman Richard Draper and Harry Smith. Applied
Regression Analysis. John Wiley and Sons, New York,
1981.

[15] H. Howie Huang and Andrew S. Grimshaw.
Automated performance control in a virtual
distributed storage system. In Proceedings of the 2008
9th IEEE/ACM International Conference on Grid
Computing, GRID ’08, pages 242–249. IEEE
Computer Society, 2008.

[16] H. Howie Huang, Shan Li, Alex Szalay, and Andreas
Terzis. Performance Modeling and Analysis of
Flash-based Storage Devices. In Proceedings of the
2011 IEEE Symposium on Massive Storage Systems
and Technologies (MSST’11), 2011.

[17] Oscar H. Ibarra and Chul E. Kim. Heuristic
algorithms for scheduling independent tasks on
nonidentical processors. J. ACM, 24:280–289, April
1977.

[18] Richard Arnold Johnson and Dean W. Wichern,
editors. Applied multivariate statistical analysis.
Prentice-Hall, Inc., Upper Saddle River, NJ, USA,
1988.

[19] Jeffrey Katcher. Postmark: a new file system
benchmark. Network Appliance Tech Report TR3022,
October 1997.

[20] Vahid Kazempour, Ali Kamali, and Alexandra
Fedorova. Aash: an asymmetry-aware scheduler for
hypervisors. In Proceedings of the 6th ACM
SIGPLAN/SIGOPS international conference on
Virtual execution environments, VEE ’10, pages
85–96. ACM, 2010.

[21] Younggyun Koh, Rob Knauerhase, Paul Brett, Mic
Bowman, Zhihua Wen, and Calton Pu. An analysis of
performance interference effects in virtual
environments. In In Proceedings of the IEEE
International Symposium on Performance Analysis of
Systems and Software (ISPASS), 2007.

[22] Sajib Kundu, Raju Rangaswami, Kaushik Dutta, and
Ming Zhao. Application performance modeling in a
virtualized environment. In High Performance
Computer Architecture (HPCA), 2010 IEEE 16th
International Symposium on, pages 1 –10, 2010.

[23] Dara Kusic, Jeffrey O. Kephart, James E. Hanson,
Nagarajan Kandasamy, and Guofei Jiang. Power and
performance management of virtualized computing
environments via lookahead control. Cluster
Computing, 12(1):1–15, 2009.

[24] Richard McDougall and Jim Mauro. Solaris Internals:
Solaris 10 and OpenSolaris Kernel Architecture.
Prentice Hall, 2006.

[25] Yiduo Mei, Ling Liu, Xing Pu, and S. Sivathanu.
Performance measurements and analysis of network
i/o applications in virtualized cloud. In Cloud
Computing (CLOUD), 2010 IEEE 3rd International
Conference on, pages 59 –66, 2010.

[26] Michael P. Mesnier, Matthew Wachs, Raja R.
Sambasivan, Alice X. Zheng, and Gregory R. Ganger.
Modeling the relative fitness of storage. In Proceedings
of the 2007 ACM SIGMETRICS international
conference on Measurement and modeling of computer
systems, SIGMETRICS ’07, pages 37–48. ACM, 2007.

[27] Justin Moore, Jeff Chase, Parthasarathy
Ranganathan, and Ratnesh Sharma. Making
scheduling “cool”: temperature-aware workload
placement in data centers. In Proceedings of the annual
conference on USENIX Annual Technical Conference,
ATEC ’05, pages 5–5. USENIX Association, 2005.

[28] Farrukh Nadeem and Thomas Fahringer. Predicting
the execution time of grid workflow applications
through local learning. In Proceedings of the
Conference on High Performance Computing
Networking, Storage and Analysis, SC ’09, pages
33:1–33:12. ACM, 2009.

[29] Ripal Nathuji, Aman Kansal, and Alireza
Ghaffarkhah. Q-clouds: managing performance
interference effects for qos-aware clouds. In Proceedings
of the 5th European conference on Computer systems,
EuroSys ’10, pages 237–250. ACM, 2010.

[30] NIH. BLAST: Basic Local Alignment Search Tool.
http://www.ncbi.nlm.nih.gov/BLAST/.

[31] Xing Pu, Ling Liu, Yiduo Mei, S. Sivathanu,
Younggyun Koh, and C. Pu. Understanding
performance interference of i/o workload in virtualized
cloud environments. In Cloud Computing (CLOUD),
2010 IEEE 3rd International Conference on, pages 51
–58, 2010.

[32] Hongzhang Shan, Katie Antypas, and John Shalf.
Characterizing and predicting the i/o performance of
hpc applications using a parameterized synthetic
benchmark. In Proceedings of the 2008 ACM/IEEE
conference on Supercomputing, SC ’08, pages
42:1–42:12. IEEE Press, 2008.

[33] Fengguang Song, Asim YarKhan, and Jack Dongarra.
Dynamic task scheduling for linear algebra algorithms
on distributed-memory multicore systems. In
Proceedings of the Conference on High Performance
Computing Networking, Storage and Analysis, SC ’09,
pages 19:1–19:11. ACM, 2009.

[34] Ryutaro Susukita, Hisashige Ando, Mutsumi Aoyagi,
Hiroaki Honda, Yuichi Inadomi, Koji Inoue, Shigeru
Ishizuki, Yasunori Kimura, Hidemi Komatsu,
Motoyoshi Kurokawa, Kazuaki J. Murakami,
Hidetomo Shibamura, Shuji Yamamura, and Yunqing
Yu. Performance prediction of large-scale parallell
system and application using macro-level simulation.
In Proceedings of the 2008 ACM/IEEE conference on
Supercomputing, SC ’08, pages 20:1–20:9. IEEE Press,
2008.

[35] US Environmental Protection Agency (EPA). Report
to congress on server and data center energy
efficiency: Public law 109-431. 2008.

[36] Xiaodan Wang, Eric Perlman, Randal Burns, Tanu
Malik, Tamas Budavári, Charles Meneveau, and
Alexander Szalay. Jaws: Job-aware workload
scheduling for the exploration of turbulence
simulations. In Proceedings of the 2010 ACM/IEEE
International Conference for High Performance
Computing, Networking, Storage and Analysis, SC ’10,
pages 1–11. IEEE Computer Society, 2010.

[37] Timothy Wood, Ludmila Cherkasova, Kivanc Ozonat,
and Prashant Shenoy. Profiling and modeling resource
usage of virtualized applications. In Proceedings of the
9th ACM/IFIP/USENIX International Conference on

Middleware, Middleware ’08, pages 366–387.
Springer-Verlag New York, Inc., 2008.

[38] Yuanyuan Zhang, Wei Sun, and Yasushi Inoguchi.
Predicting running time of grid tasks based on cpu
load predictions. In Proceedings of the 7th IEEE/ACM
International Conference on Grid Computing, GRID
’06, pages 286–292. IEEE Computer Society, 2006.

[39] Qian Zhu, Jiedan Zhu, and Gagan Agrawal.
Power-aware consolidation of scientific workflows in
virtualized environments. In Proceedings of the 2010
ACM/IEEE International Conference for High
Performance Computing, Networking, Storage and
Analysis, SC ’10, pages 1–12. IEEE Computer Society,
2010.

