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ABSTRACT
By modelling how the probability distributions of individuals’ states
evolve as new information flows through a network, belief prop-
agation has broad applicability ranging from image correction to
virus propagation to even social networks. Yet, its scant implemen-
tations confine themselves largely to the realm of small Bayesian
networks. Applications of the algorithm to graphs of large scale are
thus unfortunately out of reach.

To promote its broad acceptance, we enable belief propagation
for both small and large scale graphs utilizing GPU processing. We
therefore explore a host of optimizations including a new simple yet
extensible input format enabling belief propagation to operate at mas-
sive scale, along with significant workload processing updates and
meticulous memory management to enable our implementation to
outperform prior works in terms of raw execution time and input size
on a single machine. Utilizing a suite of parallelization technologies
and techniques against a diverse set of graphs, we demonstrate that
our implementations can efficiently process even massive networks,
achieving up to nearly 121x speedups versus our control yet opti-
mized single threaded implementations while supporting graphs of
over ten million nodes in size in contrast to previous works’ support
for thousands of nodes using CPU-based multi-core and host solu-
tions. To assist in choosing the optimal implementation for a given
graph, we provide a promising method utilizing a random forest
classifier and graph metadata with a nearly 95% F1-score from our
initial benchmarking and is portable to different GPU architectures
to achieve over an F1-score of over 72% accuracy and a speedup of
nearly 183x versus our control running in this new environment.

KEYWORDS
GPGPU, Parallelization, graph processing, parallel processing, Bayesian
Networks, Markov Random Fields

ACM Reference Format:
Michael Trotter, Timothy Wood, and H. Howie Huang. 2020. Rumor Has
It: Optimizing the Belief Propagation Algorithm for Parallel Processing. In
49th International Conference on Parallel Processing - ICPP : Workshops
(ICPP Workshops ’20), August 17–20, 2020, Edmonton, AB, Canada. ACM,
New York, NY, USA, 10 pages. https://doi.org/10.1145/3409390.3409401

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICPP Workshops ’20, August 17–20, 2020, Edmonton, AB, Canada
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-8868-9/20/08. . . $15.00
https://doi.org/10.1145/3409390.3409401

1 INTRODUCTION
Born from “attempts to devise a computational model for humans’
inferential reasoning, namely, the mechanism by which people in-
tegrate data from multiple sources and generate a coherent inter-
pretation of that data” [13, p. 241], belief propagation (BP) models
broadly how a change to a node begins a chain reaction of updates
which permeates throughout a graph [10]. Such a simple yet general
model has thus wide utility in countless fields including physics,
medical imaging, artificial intelligence, computer vision, language
understanding, sociology and error correction [18]. However, the
few public implementations of BP limit themselves to graphs of
thousands of nodes in size in the inefficient Bayesian Interchange
Format (BIF) [4]. Thus, any application beyond such a small scale
is simply infeasible with what is available.

Moreover, BP’s amenability to parallelization holds much promise
for optimization research [13]. In the context of trees, updates flow
forward from the root nodes level by level to the terminal nodes
and then backwards from the terminal nodes to the source nodes
and thus can execute concurrently for all nodes in a given level
[10]. Furthermore, a variation of the algorithm called the loopy BP
better suits parallelization and supports general graphs versus just
trees [12]. In this case, all nodes in the graph emit their updates at
once continuously until the states of each of the nodes converge
individually within a given threshold [7]. This broadcasting has no
dependencies aside from the previous state of the graph beforehand
and thus runs simultaneously per iteration until the nodes converge
[12]. Thus, loopy BP in particular is ripe for further refinement.

Alas, there are many obstacles which stymie this endeavor. Op-
erators must take into account the numerous processing intricacies
inherent to the algorithm. Without doing so, naive optimization at-
tempts falter, as we demonstrate with our introductory analysis of
the OpenMP and OpenACC-based parallelization efforts. Hence, we
utilize a host of fine-grained improvements and techniques to realize
the potential of the loopy BP algorithm.

Herein, we describe in depth Credo which can perform BP ef-
ficiently on both large and small graphs by leveraging a suite of
refined solutions and a classification method to automatically match
the best solution to a given graph. To that end, we first detail two
valid approaches to parallelizing loopy BP. We then briefly discuss
our initial parallelization efforts with OpenMP and OpenACC before
exploring our CUDA work in depth. Moreover, we provide a method
to automatically execute the best suited implementation for a given
graph by its metadata a priori with portability in mind. Addition-
ally, we provide memory and processing optimizations to maximize
the performance of our custom built solution. Furthermore, to sup-
port processing graphs of a far larger scale compared to previous
works, we alter an existing large scale graph file format called the
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Matrix Market file format utilized already to store graphs of sizes
beyond billions of nodes [16]. Finally, we evaluate all of our efforts
with a diverse benchmark of graphs. We thus make the following
contributions to realize the full utility of BP:

• A more flexible input file format to support massive sized
graphs to represent Bayesian networks, Markov Random
Fields or any similarly complex graph beyond the thousands
of nodes scale of the existing standard
• Optimized methods for processing graphs by node or edge

encompassing improvements such as memory footprint mini-
mization and supporting work queues tuned to this task
• Support for these methods on both CPU and GPU platforms

to enable our system to significantly outperform prior work
• A method for automatically matching the ideal implementa-

tion from our suite of approaches to an arbitrary graph ahead
of time based solely on its metadata which is portable to
different GPU environments

2 BACKGROUND
2.1 Belief Propagation
Belief propagation (BP) models how updates to one or more nodes’
internal set of beliefs percolate throughout the whole network [10].
The original networks used for BP are the Bayesian network and
Markov Random Field (MRF), which represent potentially complex
cause and effect relationships [13][3]. In particular, BP allows for de-
scribing how these relationships change when some new information
becomes available.

Bayesian networks detail how the probability distribution of an
event being in one of several states, i.e. its belief about its current
state, represented as the nodes in the graph depend on the distribu-
tions of their parent nodes in the graph [18]. Using the prior joint
probability distributions of an event occurring given n causes in
the form p(x |x0,x1, ...,xn ) and treating the parents’ states as prior
distributions, Bayesian networks enable the calculation of posterior
distributions of events occurring [13]. The posterior calculation is
of value when there is new information about an event and how that
change impacts the graph in a process called observation [3].

During observation, one now knows for certain if an event oc-
curs and consequently statically sets the probability of that event
occurring which in turn sets of a chain of updates to the posterior
probabilities throughout the network in a process called belief prop-
agation [13].

We provide a slightly modified version of a popular example of a
Bayesian network: the family-out problem [3]. A family has a house
with a dog. They leave the dog outside the house if they are out or
the dog is being punished. Similarly, they may leave the lights on
when they are out. Finally, the dog may bark if it is out. The prior
probabilities and joint distributions are all given in Figure 1.

Although the direct posterior calculations in the family-out are
simple enough, they become unwieldy for more complex Bayesian
networks and typically necessitate the Markov assumption, wherein
an event node’s state only depends upon the immediate parents’
states and not on the other nodes in the dependency chain [3] How-
ever, this move necessitates using MRFs instead of Bayesian net-
works, as the latter does not allow for this assumption yet the former

family-out 
(fo)

bowl-
problem(bp)

light-on (lo) dog-out 
(do)

hear-bark 
(hb) 

p(fo) 0.15
p(¬fo) 0.85

p(lo | fo) 0.6
p(¬lo | fo) 0.4
p(lo | ¬fo) 0.05

p(¬lo | ¬fo) 0.95

p(bp) 0.01
p(¬bp) 0.99

p(do | fo,bp) 0.99
p(do | fo,¬bp) 0.9
p(do | ¬fo,bp) 0.97

p(do | ¬fo,¬bp) 0.3

p(¬do | fo,bp) 0.01
p(¬do | fo,¬bp) 0.1
p(¬do | ¬ fo,bp) 0.03
p(¬do | ¬fo,¬bp) 0.7

p(hb | do) 0.7
p(¬hb | do) 0.3
p(hb | ¬do) 0.01

p(¬hb | ¬do) 0.99

Figure 1: The Prior Probabilities of the Root Nodes and the Associated
Joint Distributions Probabilities of the Children Nodes of the family-out
Problem

does at the expense of only allowing for undirected pairwise rela-
tionships [18].

The calculation of the state of an individual node xi with parents
x j and a joint probability distribution p(xi |x j ) linking the two thus
is shown below.

p(xi ) =

(i, j)∏
(j,i)∈E

p(xi |x j ) (1)

Using the Markov assumption, each node in the dependency
chain must compute its new state before broadcasting it down the
chain. Due to the undirected nature of the MRF graph though, child
events can now affect their parents’ own states. Such an event occurs
with multiple parents, and in such a case, the child node does not
broadcast its update to the parent that initially prompted its update
[7]. Thus, this calculation must occur in both directions except for
the additional case of statically fixated observed nodes. Yet another
complication to this computation is that an event needs not have a
single binary state.

Indeed, an event may be in one of a wide range of discrete states
beyond merely true or false. Therefore, the probability of an event
being a given state is of particular value [18]. This marginal prob-
ability computation requires normalizing the final probabilities of
the event’s states [13]. Thus, the belief calculation of a node xi
with parent node x j , child node xk , functions ϕ(i, j) = p(x j )p(xi |x j )
and ψ (i,k) = p(xk )p(xi |xk ) both subject to the aforementioned
constraints and the marginalization factor Z is shown in the below
equation:

p(xi ) =
1
Z

(i, j)∏
(j,i)∈E

ϕ(i, j)

(i,k )∏
(i,k )∈E

ψ (i,k) (2)

To simplify processing, one can break up the BP into three phases.
First, one emits the ϕ-based updates before emitting the ψ -based
updates. Afterwards, one calculates the marginals. A major limitation
of this method is that the updates must be ordered. The ϕ-value
emissions must start from the root nodes and work their way down
the tree. Likewise, theψ -value emissions must start from the terminal
nodes work their way up the tree to the roots.

An alternative to this processing is the loopy BP variant as shown
in Algorithm 1 as described by Gonzalez et al. [5].

This form provides two major benefits. First, all nodes emit all ϕ-
values simultaneously before likewise emitting allψ -values. Second,
these emissions relax the constraint that the graph needs to be acyclic.
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Algorithm 1 Loopy Belief Propagation
1: sum ←∞
2: while sum ≥ threshold do
3: sum ← 0
4: for all v ∈ V do
5: belie f sprevious ← vbelief s
6: for all p ∈ V | (p,v) ∈ E do
7: j ← joint_probability_matrix[p,v]
8: update ← compute_update(pbelief s , j)
9: send(update,v)

10: vbelief s ← combine_updates(v)
11: marдinalize(vbelief s )
12: sum+ = di f f (vbelief s ,belie f sprevious )

However, this method comes with the penalty that requires it to
run until the nodes’ beliefs converge rather than simply twice as
before. Although we implement both versions of the algorithm, an
initial, sequentially-processed evaluation reveals that the original BP
approach has enormous overheads due to determining the levels of
a graph and processing the graph by-level versus the by-node and
by-edge methods of implementing loopy BP presented next.

2.1.1 Comparison of Belief Propagation Algorithms. Using
the 10x40, 100x400, 1kx4k, 10kx4k, 100kx400k, 200kx800k,
400kx1600k, 600kx2400k, 800kx3200k, 1Mx4M and 2Mx8M syn-
thetic graphs alone presented in Table 1 in a single-threaded envi-
ronment, the non-loopy BP implementation is 1032x slower than the
by-edge version and 44x slower than the by-node 10kx40k bench-
mark. This gap in performance widens to at most 11427x and 379x
for the 2Mx8M benchmark respectively. The traditional BP approach
is on average circa 1014x and 300x slower than the by-edge and by-
node versions. Given such a drastic performance difference between
the two algorithms and loopy BP’s better affinity for parallelization,
we ultimately focus on it for the remainder of this paper.

2.2 Algorithmic Refinements for Large Graphs
We refine our broad description of the algorithm to reduce the mem-
ory footprint and to improve performance. Although loopy BP de-
fines unique joint probabilities per edge, this requirement represents
by far the largest amount of memory consumption for the graph.
The joint probability matrix is a floating point matrix whose dimen-
sions are that of the source and terminal nodes’ belief arrays as
shown in the Figure 1 as the probability tables below the fo and bp
nodes. Loading and unloading a separate matrix per belief update
computation also represents a significant performance and mem-
ory bottleneck. Thus, we come to a conclusion: this requirement is
untenable for large graphs.

Indeed, the matrix stems from the statistics assembled to define
the beliefs of a particular node given a specific neighbor’s beliefs [3].
For large scale networks, assembling such statistics is unwieldy and
necessitates using a single estimation for all nodes [3]. For instance,
the operator assumes that the same error rate for any pixel applies
to all others in an image or that a virus affects all people identically.
Consequently, this consideration drastically reduces the size of the
data and enables us to represent networks of millions of nodes.

To gauge the utility of a single joint probability matrix, we provide
a simple demonstration. With this alteration in place and utilizing a
micro-benchmark composed of a subset of just the graphs ranging
from 10x40 to 800kx1200k of the previously used synthetic graphs in
Section 2.1.1, we observe a 2x speedup on average with both C and
the CUDA Edge implementations. Given the high memory access
cost on the GPU and the CUDA Node application’s many more
memory accesses compared to the CUDA Edge version, the impact
of this change is far starker, yielding over 25x speedups for the
larger graphs. Unfortunately, this optimization does break Credo’s
ability to support the original use case and forces the network to
support nodes with beliefs of a constant size. For graphs not in that
form, our initial version of Credo lacking this refinement would
suffice for most cases, for they would also benefit from Credo’s
other processing optimizations.

2.3 GPU Architecture
GPU architecture departs significantly from CPU architecture and
being aware of its intricacies is vital to maximizing of the platform
[15]. A CUDA-compatible GPU consists of a set of Streaming Mul-
tiprocessors (SMX) consisting of numerous CUDA cores on which
a single GPU thread executes [11]. GPU code or kernels execute
on these SMX units in parallel by marshalling a grid consisting of
individual thread blocks running on a single SMX [1]. Within each
thread block are individual warps of 32 threads which may execute
concurrently as shown in Figure 2 [17]. Typically, each of these

Thread
Thread Block

Thread Grid

Local Memory Per-Block Shared 
Memory

Global Memory

Read-Only 
Constant 

Memory Cache

Re-bindable 
Texture Memory 

Cache

Figure 2: GPU SMX Architecture with the Associated Memory Hierar-
chy

threads perform the same instruction on different sections of data in
parallel similar to SIMD architecture in Flynn’s taxonomy [15].

Threads have several options for placing said data which have
huge performance impacts. Each SMX has local memory used for
stack allocated data [15]. Additionally, each thread block is able to
access a small shared memory block for each thread block depending
on the GPU generation capable of fast memory read and write access
[11]. Constant and texture memory caches enable quick reads with
the difference being that the former must be set before the kernel
executes while the latter can be reset during kernel execution [15].
Finally, global memory, while slower than the others, is capable
storing large data in the Video RAM (VRAM) of the GPU [1].
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Figure 2 shows the relationships between threads and these different
types of memory.

Given the benefits and drawbacks of each of these types of mem-
ory, the programmer must consequently take care in placing data
onto the GPU.

2.4 OpenMP and OpenACC Parallelization
Given the difficulty writing such meticulous code with low-level
APIs like CUDA, the programmer can instead use higher-level ones
like OpenMP and OpenACC. They utilize pragma statements which
the compiler then interprets at compile-time to generate parallelized
code for each target platform. These pragma statements include
information about data sharing, atomic operations, reduction opera-
tions, vectorization and in the case of OpenACC, placement on the
GPU versus CPU. Nevertheless, they lack the fine grained control
afforded by the likes of CUDA and come with additional overheads.
We utilize OpenMP to distribute work across 8 CPU cores and Ope-
nACC for the same across 1920 GPU cores as part of our preliminary
attempts at parallelization with the all of the aforementioned opti-
mizations enabled, save for the work queues which require finer
grained control than what OpenACC offers to implement. We apply
these statements directly on our fully-optimized, single-threaded C
implementations’ main loops which govern collecting the updates
from the parent nodes, compute the updated states and send out the
new information. The latter two operations also avail themselves
of the vectorization statements to optimize the vector and matrix
operations involved therein. Due to some aspects of the application
having critical sections, we additionally utilize the atomic statements
to ensure correctness. Moreover, the convergence check calculates
via a reduction hint the sum of the differences between the previous
and current iterations of the nodes’ beliefs. Finally, we utilize Ope-
nACC’s data placement directives to finely manage data transfers
between the CPU and GPU.

Unfortunately, our effort with OpenMP yields poor results. The
performance actually decreases for 131 of the 132 benchmark graphs
in Table 1 with the average performance penalty for running with 2
core case is circa 1.17x, with 4 cores is 1.65x and with all 8 cores
is 4.03x. There is simply not enough work per thread to justify the
overhead of spinning and shutting down threads in the aforemen-
tioned blocks of code as determined by gprof, taking on average
less than 1ms to complete. Additionally, the tail distribution of the
work described earlier which is a poor fit for the default scheduler as
determined by Intel vTune, yet switching to the dynamic scheduler
worsened the problem due to its additional overheads. Compounding
the problem is the memory stalls and hyperthreading due to its usage
of shared resources, yet disabling it only reduces the overhead to an
average of 1.1x for 2 threads and 1.2x for 4 threads. Alas, our effort
with OpenACC fares not much better.

At best, OpenACC offers a 1.25x increase in performance for the
K21 graph with the Edge paradigm. However, BP executes for far
more iterations compared with our other implementations due to
OpenACC’s API failing to precisely compute the convergence check.
Thus, they largely run for longer times than their C implementation
counterparts by terminating much closer to the cap on iterations.
However, the OpenACC execution times per iteration can be smaller,
resulting in the slightly better performance of such benchmarks like

2Mx8M and LJ. We are only able to achieve these results by keeping
most of the data on the GPU after the initial load and only transfer the
convergence check after predetermined number of batched iterations
after overriding the default behavior of the OpenACC scheduler
to try to schedule full transfers of the data between the CPU and
GPU after every iteration. Although both OpenACC and OpenMP
offer poor justification for parallelization, our efforts here act as a
guide for our CUDA work which is uninhibited by such scheduler
and platform overheads while providing the necessary finer grained
control to achieve high performance.

3 CREDO DESIGN
3.1 Overview
In the following subsections, we describe the various components
of Credo. The full system itself comprises of the optimized C and
CUDA implementations derived from our dual processing tech-
niques. Based on a given input graph and its metadata, Credo chooses
the best from these implementations before executing BP with that
method. To support this general functionality, Credo utilizes the
components described in the below subsections.

3.2 Input Processing
In order to begin processing massive graphs, we first need to load
them. There are two standards for this data: the Bayesian Interchange
Format (BIF) and its XML-based sibling (XML-BIF) [4]. The for-
mer necessitates constructing a custom parser for its context-free
grammar (CFG), while the latter requires an XML parser. To be-
gin assembling the input graphs, both parsers must load the entire
input file into memory first and then utilize hooks for each of the
grammars’ production rules for actions like defining a node and its
metadata and constructing an edge. Compounding this problem is
that both formats greatly exceed the size of the extracted graph. The
simple family-out network has a 2KB BIF file size compared to hand-
ful of bytes used for its in-memory representation, and even a graph
of 413 nodes and 602 edges occupying 5.3MB. Indeed, we could not
hold graphs larger than 100,000 nodes in memory on a machine with
32GB of memory. Consequently, we would only be able to operate
on 7 of the 34 binary belief benchmark graphs presented later on in
Table 1. Moreover, the overhead of building the graphs is far larger
than the actual BP execution time. Thus, we seek to obviate these
issues by defining a new input format better suited for large scale
graphs.

We propose a new format derived from the Matrix Market (MTX)
format. Although MTX can support graphs of massive size, it sim-
ply lists out the edges of the graph by node ids after a header line
defining the graph dimensions. Given that MRFs have many floating
point numbers for the probabilities of each node’s states, i.e. beliefs,
and the edge’s joint probability matrix, we break up the format in
two: one for node data and the other for edge data. For both files, our
structure is largely the same: two identifiers followed by the proba-
bilities for the node’s states or the edge’s joint probability matrix. In
preserving the original input format’s basic structure of edges linked
together by node ids, our node input format appears to be nothing but
self-cycling nodes. However, this format is simple enough that it can
be read line-by-line first by nodes and then edges without loading
either fully into memory unlike BIF and BIF-XML. Additionally,
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parsing it is trivial, requiring a handful of simple regular expressions
rather than complex grammars. Moreover, it is general enough to
support any network composed of the interaction of random vari-
ables and their state probabilities. Thus, Credo can support graphs of
millions of nodes, compared with the thousands of nodes of previous
works [12] [5] [6], with our dual processing methods combined with
our other optimizations.

3.2.1 Comparison of Input Processors. We conduct a simple
set of benchmarks to demonstrate the value of this format. The
simple family-out graph presented in Figure 1 takes 162µs and 638µs
to process with the BIF and BIF-XML parsers respectively. The
largest BIF graph we have is circa of 1000 nodes and 2000 edges
in size and takes 21ms to parse, while a similar 1000 node and
2000 XML-BIF file takes 83ms to parse. However, our custom MTX
parser takes a mere 2ms to parse an equivalent file and produce the
same graph logically. The largest BIF-XML file of 100,000 nodes
and 200,000 edges we can parse without exceeding the 32GB of
memory for our test system takes 8.4s. In comparison, our MTX-
based parser can parse a similar 100,000 and 400,000 graph in .28s.
Our BP methods take between 0.05 and 4.7s to process that graph.
Indeed, our parser significantly reduces total execution time while
being capable of parsing a graph of over 250 million edges.

3.3 Per-Node and Per-Edge Processing
Credo supports two possible ways of processing a graph using BP:
by node and edge. In the former, each edge pulls the current state
of the parent node and combines it with the joint probability matrix
along the edge and the child node’s state to produce the new state of
the child node. In contrast, per-node processing pulls the states of
all the parent nodes of a given node, combines them with the joint
probability matrix for the edges linking the parents with the child
before combining the updates with the child node’s state to produce
its new state as shown in Figure 3. Thus, when treating the undirected
edges of an MRF as containing two separate edges to account for
observed nodes being statically set, these two approaches enable
Credo to perform the ϕ andψ calculations described in Equation 2
and implement lines 6-10 of Algorithm 1. All other BP operations
such as marginalization and the convergence check are the same
across these designs. However, there are some trade-offs between
the two which impact the performance of these approaches.

Parent 
1

Parent 
2

Parent 
N

Update 1

Update 2

Update N

NodeCombined 
Update

Parent 
1

Parent 
2

Parent 
N

Update 1

Update 2
Node

Legend
Work Done by 1 Thread

Combined 
Update

(Computed 
Atomically)

Update N

By Node By Edge

Figure 3: Processing by Node and Edge

In particular, there is an issue of the overhead of extra atomic oper-
ations versus memory lookups when moving from a single threaded
environment to a multi-threaded one as shown in Figure 3. With
the edge approach, a child node may have many parents and thus
must combine each edge’s contribution to its new state atomically to
avoid race conditions. In contrast, the per-node approach does not

require the use of extra atomic operations but performs more mem-
ory lookups by querying the state of each parent node for a given
node. Additionally, these lookups occur in random order, hampering
effective caching. Afterwards, the node approach must combine all
of these states in memory with the joint probability matrix for the
combined update message sent to the recipient, while the edge ap-
proach merely only has one state to combine for its message. Given
there are far more edges than nodes in a graph, the latter-based ap-
proach requires more iterations to converge than the former. Yet, as
our evaluation demonstrates later on, deciding which of these two
different approaches for a given graph is not immediately obvious
and Credo provides a mechanism to help choose that approach which
includes both CPU and GPU-based implementations.

3.4 Data Structures
For all of our implementations, we make numerous data structure
optimizations to minimize the size of the graph in memory, to min-
imize costly memory lookups and to maximize performance. We
therefore only store the minimum necessary information about the
graph which is the nodes’ names and beliefs and indices for the edges
between nodes. Before our processing refinement, we also store the
joint probability matrices per edge. To minimize the overhead of
examining each of the edges of the graph during BP computation,
Credo indexes the edges’ nodes and utilize compressed adjacency
lists to represent the edges. Thus, Credo keeps itself largely to these
indices and only touches the actual edge and node values when
performing the actual mathematics involved in BP. However, we
consider two avenues to go about implementing these structures.

In particular, we have options of a struct of arrays (SoA) and an
array of structs (AoS) for storing the belief and joint probability
data, which are simply sequences of single precision floating point
numbers and their dimensions. During the initial development of
Credo, we implement both before the other optimizations below
and perform a limited analysis with the synthetic benchmark graphs
up to and including 100,000 nodes in size (10x40 to 100kx400k)
used for the algorithm comparisons in Section 2.1.1 and profile
the code using valgrind’s cachegrind utility. With the SoA design,
we have large, flattened, parallel-indexed arrays consisting for the
probabilities and dimensions, while for the AoS paradigm, we have
arrays holding structs consisting of a statically allocated float array
and unsigned integers for the dimensions. Regardless of the graph
and processing approach, we see that the AoS approach has circa
56% fewer data cache reads and writes. Thus, we opt to only use the
AoS design with Credo.

3.5 Work Queues
From profiling, we observe that most nodes converge quickly after
a few iterations and that graph convergence becomes dependent on
a few nodes. To only process these nodes, we utilize work queues
for both approaches. Instead of operating on a full list of node or
edge indices depending on the approach, the queues merely consist
of the indices of unconverged nodes or edges. However, after every
iteration, the queue clears itself and populates atomically with the
indices of elements which have yet to converge to a given threshold.
As a result, this computation can drastically reduce the processing
time overall at the cost of additional overhead in managing the queue.
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Thus, we enable them for our C, OpenMP and CUDA implemen-
tations. Although other graph frameworks [17] [1] also make this
optimization, their efforts cannot support BP.

3.6 CUDA Parallelization
Building upon our OpenACC and OpenMP work, our CUDA-based
node and edge approaches parallelize the same loops with the same
atomicity restrictions and aim to minimize CPU-GPU transfers utiliz-
ing batching. However, they incorporate performance optimizations
only available with CUDA. In particular, the reductive sum makes
use of the shared memory per block in Figure 2 to speed up the
computation. Additionally, we make use of the global constant mem-
ory cache in Figure 2 to store the static joint probability matrix
versus storing it in global memory due to its frequent reference.
Nevertheless, there are significant data transfer costs with the CUDA
approaches that limit them to smaller graphs (e.g. 100,000 for 2
beliefs and 1,000 for 32 beliefs with similar complexity). Below
these thresholds, the C versions are faster. Thus, the Edge and Node
implementations in both sequential C and parallel CUDA form the
core of Credo.

3.7 Classification
From our initial evaluation, we could quickly discern a rule to use
the CUDA implementations for when the graph has 100,000 nodes
or more and the C versions for 1,000 nodes or fewer. Yet, this rule
does not account for the middle ground. To alleviate this dilemma,
we construct classifiers from the graph metadata obtained during
input parsing to classify graphs as best suited for either the Node
or Edge approach based on the nodes’ in-degrees and out-degrees
along with the number of nodes and edges. However, given the
inter-dependencies among these variables, we ultimately derive the
following features as inputs to our classifiers after some manual
feature engineering.

Our feature vector consists of the number of nodes, the nodes
to edges ratio, the number of beliefs, the degree imbalance (the
ratio of the max in-degree to the max out-degree) and the skew (the
ratio of average in-degree to max in-degree). We then simply assign
a label of Node for when the a Node implementation is best for
that benchmark and a label of Edge otherwise. Figure 4 shows the
covariances among these features and the labels.

Although the skew is the only one which has some relation to
the other features, dropping it actually reduces the quality of the
resulting classifiers. Using a tuned random forest classifier from
scikit-learn with a max-depth of 6 and 14 estimators is able to attain
over 94% accuracy in F1-scoring with the following contributions
of each feature as shown in Figure 5.

Exploring the benchmarks in finer detail yields significant in-
sights into why the classifier is able to perform as well as it does.
The classifier is able to expand upon our rule to only use the C
Edge implementation for graphs smaller than 1,000 nodes and the
CUDA Node version for graphs with 100,000 nodes or more only
accounts for 80% of the benchmark graphs with the remainder being
dominated by either C Node or CUDA Edge versions. Adding the
nodes to edges ratio boosts the quality of the classifier noticeably.
With these two features alone, a decision tree of max-depth of 2 is

Figure 4: Covariances among the Feature Vectors and the Labels

Figure 5: Percent Contributions to Random Forest Classification

able to achieve over 89% F1-score accuracy with the below structure
with normalized feature values as shown in Figure 6.

Number of Nodes <= -0.425
Node

Edge

True

Nodes to Edges <= 0.25
Node

False

Node Edge

Figure 6: Structure of a Sample Decision Tree of Max-Depth of 2

However, to better account for graphs in the middle ground, the
classifier must take into account the remaining features which de-
scribe the complexity of the graph in terms of data storage require-
ments and connectivity. Thus, they account for the penalties for
overheads such as data transfer and expensive operations specific to
each processing paradigm.
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As a result of the importance of each feature to the quality of
results, running primary component analysis (PCA) preprocessing
on these features results in worse F1-score metrics for our classifiers.
The combination of these features and their associated labels thus
form the inputs for the classifiers discussed in the evaluation section.
By querying any of them after parsing the input graph after applying
the aforementioned rule for determining when to use the C versus
CUDA implementations, Credo can choose the best of its assorted
implementations to process any graph. With all of the optimizations
discussed herein enabled, these implementations enable us to run
more efficiently and outperform previous efforts as demonstrated in
the next Evaluation section.

4 EVALUATION
For all of the experiments, we utilize the same machine running
Ubuntu 18.04 LTS with gcc 7.4.0, nvcc 10.1.105, pgcc 18.10 and
the 418.56 CUDA driver. It holds 32GB of memory, an Intel Core
i7-7700HQ with 4 physical and 4 logical cores, and an nVidia GTX
1070 with 15 SMX processors, a total of 1920 CUDA cores and
8GB of VRAM. We utilize a block size of 1024 CUDA threads
for all benchmarks. Table 1 shows our benchmark belief networks,
composed of a diverse set of synthetic and real graphs obtained from
the networkrepo [16], to support our three use cases. The first use
case represents a simple binary true/false belief network. The second
one models virus propagation with three states wherein people can
be uninfected, infected or recovered. The final one mimics image
correction with the beliefs in each bit’s value in a 32-bit image’s
pixels.

We have permutations of these graphs adjusted for each use case
and randomly encode generated beliefs into the input files for each
graph for a total of 132 graphs. Due to the sheer size of the bench-
marks, we only render figures for a subset of them with only the first
binary belief use case, yet our analysis applies to all of them. We
denote the subset’s graphs in bold in Table 1. To ensure fairness, we
also include the averages of all benchmarks as the AVG grouping
in Figures 7 and 9. We execute each of the benchmarks until they
achieve a convergence within 0.001 before cutting off at a maximum
of 200 iterations.

4.1 Initial Benchmarking
In our first experiment, we benchmark the C and CUDA versions of
the Node and Edge techniques with the work queues on as shown
with Figure 7. We focus our analysis by comparing our control
single-threaded C implementations against the others.

4.1.1 CUDA Results. The CUDA implementations exhibit no-
ticeable performance gains for graphs with 100,000 nodes or more
while running within 10 iterations of the sequential versions. Below
this threshold, the various overheads involved with GPGPU execu-
tion including GPU memory allocation and transfers, kernel launch,
synchronization and memory stalls prohibit the CUDA implementa-
tions’ performance from overtaking the equivalent C’s performance
[15]. Indeed, for our smallest benchmark, the GPU memory man-
agement overhead alone accounts for 99.8% of the CUDA execution
time which reduces to an average of 71% for the graphs at or above
100,000 nodes. Although the Edge version has at best roughly 3.4x
performance improvement with the 2Mx8M benchmark with three

Figure 7: Runtimes of the C and CUDA Implementations

Figure 8: Probability Distribution Function (PDF) of Benchmark
Speedups by Beliefs

beliefs, the Node version fares even better, attaining a 120x im-
provement with the same graph and over 40x improvements with
benchmarks including the K21, LJ and PO graphs all with three
beliefs. However, the speedup for the Node paradigm decreases be-
yond that three beliefs. Yet for Edges, it consistently increases with
the number of beliefs as shown in Figure 8.

Indeed, for the same K21, LJ and PO graphs with 32 beliefs, the
Node technique only musters a relatively consistent average 29x per-
formance gain for each of those graphs, while the Edge achieves a
similarly consistent average speedup of about 10x. This trend applies
to all of the benchmark graphs as shown in Figure 8. The overhead
of the additional atomic operations of the Edge implementation on
the GPU becomes less stark against the additional memory loads
necessitated by the Node implementation as the number of beliefs
increases. In contrast, the single-threaded environment of the C im-
plementations do not have the overhead of atomic operations but
are still subject to the memory load penalties. Thus, in the C imple-
mentation tend to be dominated by the Edge paradigm. Generally,
these memory loads do not outweigh the cost of the extra atomic
operations except for graphs with high amounts of data complexity
and connectivity as shown in the previous feature analysis. To gauge
the full impact of atomic operations on the GPU, we nevertheless
move on to explore the impact of the other source for their usage:
the work queues.

4.2 Impact of the Work Queues
With 32 beliefs and the same graphs excluding the TW and OR
which exceed the GPU’s VRAM, we compare the impact of the
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Table 1: Benchmark Graphs
Name Abbrev. Description # Nodes # Edges
10_nodes_40_edges 10x40 Synthetic 10x40 graph 10 40
1000_nodes_4000_edges 1k4k Synthetic 1000x4000

graph
1000 4000

kron-g500-logn16 K16 Kronecker generator 55,321 2,456,398
100000_nodes_400000_edges 100kx400k Synthetic

100,000x400,000 graph
100,000 400,000

loc-gowalla GO Gowalla location-based so-
cial network

196,591 1,900,654

soc-google-plus GP Google+ social network 211,187 1,506,896
web-Stanford ST Web graph of stanford.edu 281,903 2,312,497
kron-g500-logn19 K19 Kronecker generator 409,175 21,781,478
web-it-2004 IT IT network graph 509,338 71,784,13
600000_nodes_1200000_edges 600kx1200k Synthetic

600,000x1,200,000 graph
600,000 1,200,000

800000_nodes_3200000_edges 800kx3200k Synthetic
800,000x3,200,000 graph

800,000 3,200,000

com-youtube YO Friendship network on
YouTube

1,134,890 2,987,624

soc-pokec-relationships PO Pokec social network
graph

1,632,803 30,622,564

2000000_nodes_8000000_edges 2Mx8M Synthetic
2,00,000x8,000,000
graph

2,000,000 8,000,000

soc-orkut OR Orkut social network 2,997,166 106,349,209
soc-LiveJournal1 LJ LiveJournal social network 4,846,609 68,475,391
friendster FR Friendster social network 8,658,744 55,170,227
soc-twitter-2010 TW Twitter social network 21,297,772 265,025,809

Name Abbrev. Description # Nodes # Edges
100_nodes_400_edges 100x400 Synthetic 100x400 graph 100 400
10000_nodes_40000_edges 10kx40k Synthetic 10,000x40,000

graph
10,000 40,000

hollywood-2009 HO Hollywood actor network 83,832 549,038
kron-g500-logn17 K17 Kronecker generator 131,071 5,114,375
200000_nodes_800000_edges 200kx800k Synthetic

200,000x800,000 graph
200,000 800,000

kron-g500-logn18 K18 Kronecker generator 262,144 10,583,222
400000_nodes_1600000_edges 400kx1600k Synthetic

400,000x1,600,000 graph
400,000 1,600,000

soc-twitter-follows-mun TF Twitter followers graph 465,017 835,423
soc-delicious DE Delicious social network 536,108 1,365,961
kron-g500-logn20 K20 Kronecker generator 795,241 44,620,272
1000000_nodes_4000000_edges 1Mx4M Synthetic

1,00,000x4,000,000 graph
1,000,000 4,000,000

kron-g500-logn21 K21 Kronecker generator 1,544,087 91,042,010
web-wiki-ch-internal WW Web graph of Chinese

Wikipedia Articles
1,930,275 9,359,108

wiki-Talk WT Communication network
of English Wikipedia

2,394,385 5,021,410

wikipedia-link-en WL Wikipedia English internal
links

3,371,716 31,956,268

tech-p2p TP eDonkey p2p network 5,792,297 8,105,822
average AVG Average across all bench-

mark graphs. Note: merely
a derived statistic

N/A N/A

work queues across the C and CUDA implementations for the Edge
and Node paradigms. Although there is a slight loss in performance
with this optimization enabled for C Edge implementation with
an average reduction of about two percent in performance versus
without the work queue, the CUDA equivalent exhibits an average
1.3x improvement as shown in Figure 9. The latter benefits from this
optimization due to the batching used, although the Edge versions
tend to converge in only a few iterations. Indeed, the Node versions
run for tens of iterations and therefore benefit even more from this
optimization as shown in Figure 9.

Figure 9: Speedups of Work Queues by Implementation

Under the Node processing paradigm, the C version achieves an
approximate average 87x compared to the CUDA implementation’s
average of just over 82x. The CUDA version benefits less from this
optimization due to its faster execution time and the greater impact
of atomic operations on GPU performance from the many more
threads running concurrently versus on the CPU. With the successes
of the aforementioned optimizations, we thus turn our attention to
our final contribution.

4.3 Classification
We first begin our experiments with a tuned decision tree with a max
depth of 2 levels to take into account the small size of our dataset.
With a set of 95 graphs variations of the 34 aforementioned graphs
that can fit into our GPU’s VRAM and for which we consequently

have a full dataset, we train a simple decision tree with a train-
test split of 60-40 to attain an 89.5% F1-score. To improve our
classifications, we refine this approach using an ensemble method:
random forests. With a likewise tuned random forest consisting of a
max-depth of 6 levels and 14 trees, we boost the F1-score to 94.7%.
Consequently, it shows promise to reliably predict best suited Credo
implementation for a given graph and its metadata.

To validate that assertion, we randomly shuffle the input dataset
and draw well-balanced samples from it before applying the same
train-test split as before. Moreover, we compare our tree-based clas-
sifiers with other classifiers available from scikit-learn [14]. Figure
10 shows the impact of the dataset size on these classifiers’ scores
along with the standard deviation of a three-fold cross validation as
the error bars.

Figure 10: Classifier F1-Scores with Varying Training Data Sizes

Although additional training data would yield improved results,
the current dataset is sufficient. Remarkably, the tree-based classi-
fiers need only a dataset of about 40 elements divided in 24 training
samples and 16 testing samples before achieving an F1 score of at
least 80% accuracy with low error especially with 90 or more data
points. Before 40 elements, all classifiers simply overfit, as the F1-
scores of the training set which are nearly perfect. Compared with
the other classifiers, decision trees and random forests are well suited
for this classification compared to others as described by scikit-learn
[14]. Due to the majority of the features being ratios between zero
and one, they are fairly bounded. This heavy normalization limits the
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utility of the remapping that the Support Vector Machine classifier
does, which PCA hints at when it failed to improve upon the original
features. Furthermore, they have largely nonlinear relationships to
one another as shown in Figure 4. Yet, that analysis also reveals
they have some interrelation, which violates the assumptions of the
Gaussian Process and Naive Bayes classifiers. Both classifiers as-
sume a normal distribution of the features and a lack of covariances
among them. This interplay between features also inhibits the k-
Nearest Neighbors classifier which only excels when the features
can yield entirely separable clusters before classification. Finally,
the Gradient Boosting and Multi-Layer Perception classifiers are
poorly suited for this use case despite their decent performances,
as both classifiers needs hundreds of thousands of training data to
be useful. Such a requirement is simply untenable with the current
resources available. Thus, given these limitations, we nevertheless
demonstrate that the decision tree-based classifiers in particular can
indeed predict the most useful implementation for a particular graph
ahead of time by using its metadata alone.

To demonstrate the impact of our classification, we present our
penultimate experiment. As a control, we use a naive assumption of
always choosing the C Edge implementation against our Credo clas-
sifier with all execution overheads included in the analysis. Figure
11 shows the results of this experiment.

Figure 11: Execution Time of Credo vs. C Edge

For very small graphs, Credo offers little improvement over the
C Edge implementation. However, at around 1,000 nodes, the clas-
sifier enters the middle ground area where the Node paradigm may
offer improvements over the Edge paradigm. At 100,000 nodes, the
CUDA aspects of Credo consistently offer noticeably greater perfor-
mance than their C counterparts as described by our observed rule.
Beforehand, the number of beliefs determines where exactly in this
middle ground that this change occurs as shown in Figure 11.

4.4 Portability of Classification
For our last experiment, we examine the portability of the classi-
fiers to a new nVIDIA GPU architecture: Volta. With such a small
dataset, transfer learning is infeasible due to the amount of new data
necessary, while retraining from scratch is antithetical to portability.
We procure a p3.2xlarge in AWS which comes equipped with 61GB
of memory, an Intel(R) Xeon(R) CPU E5-2686 v4 with 8 cores and
an nVIDIA Volta V100 SXM2 16GB GPU with 5120 CUDA cores.
We proceed to run our same 97 benchmarks within this new envi-
ronment and compare the ability of Credo to classify graphs within
this environment. Thus, our random forest classifier trained for the
GTX1070 achieves an F1-score of 72.2% using this setup.

There are several factors which inhibit the portability. Chief
among them is that Volta significantly alters the thread synchro-
nization by introducing independent thread scheduling, forcing us
to move our invocations of the __syncthreads function to different
code locations to adhere to this new scheduler [15]. Consequently,
the overhead for the atomic operations is lower on this architecture.
Additionally, Volta introduces a considerably 1.5x higher memory
bandwidth over Pascal, resulting in improved performance reading
from global memory. Accounting for these factors, the CUDA Edge
implementation surpasses the CUDA Node implementation in 8.3%
more test cases from our benchmark suite. However, the difference
between the two versions is seldom significant with the CUDA Node
running on average 0.27 seconds and the CUDA Edge running in
0.30 seconds.

Indeed, Credo demonstrates similar behavior as before against
always choosing the C Edge implementation as shown in Figure 12.

Figure 12: Execution Time of Credo vs. C Edge on a p3.2xlarge

Initially, Credo always chooses the C Edge implementation before
the pivot point determined by the number of beliefs. Afterwards, it
switches to the relevant CUDA implementation before always choos-
ing the CUDA Node implementation. As a result of the performance
improvements between the GPU architectures, we observe faster
runtimes with the switch to the CUDA implementations. Indeed,
on average the Edge and Node implementations are 3.2x and 3.8x
respectively faster compared with the Pascal architecture. Indeed,
our CUDA Node implementation improves its speedup to almost
183x faster C Node implementation on the p3.2xlarge.

5 RELATED WORK
5.1 Belief Propagation Parallelization
While deploying BP onto the GPU is the subject of some research,
these efforts are limited in scope and operate on small graphs.
Bistaffa et al. [2] recompile the graph into a optimized form called
a “junction tree” for GPU computation but limit themselves to only
belief networks consisting of a few thousand nodes. While they ob-
tain nearly a 20x speedup in some cases, the actual execution times
are in the range of milliseconds for all of their graphs regardless
of implementation. The transfer time for data onto the GPU is like-
wise on this scale which defeats the purpose of using their solution
[15]. Grauer-Gray and Palaniappan [8] implement a version of BP
optimized for stereo image processing and motion tracking for a
paltry 5x speed gain versus the CPU for a total of 15s on the GPU.
However, they operate on the pixels’ intensities rather than values
and limit themselves to images of 512x512 resolution. Moreover,
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they break the images down significantly to 256x256 blocks for the
actual computations which does introduce additional errors into their
results from not fully processing the graph. Thus, there is still much
opportunity for efficiently parallelizing BP for large graphs without
making the sacrifices to input size or actual processing.

Indeed, efforts utilizing parallelization techniques ranging from
dynamically scheduling to MapReduce and MPI have found great
success. Nevertheless, they too limit themselves to small graphs. Ma
et al. [12] implement a custom scheduler using pthreads to efficiently
schedule updates on a 40-core CPU to process graphs of roughly
4,000 nodes in 4s, while we can process a similar graph in about
1ms. Gonzalez et al. [5] utilize MapReduce to parallelize traditional
BP by performing the updates at a given level of a tree in parallel
to process a 460,000 node graph in about 12s, while in another
effort, Gonzalez et al.[6] take 6.4s for a 58,000 edge graph using 40
servers using pthreads and OpenMPI. In contrast, Credo can process
graphs of comparable size in 0.7s and 0.06s respectively. Kang
et al. [9] successfully employ BP to process massive-scale graphs
consisting of billions of edges using the message passing interface
(MPI) library, although this effort necessitates reprocessing the graph
into a form amenable to this distributed environment. Additionally,
due to network latencies from the frequent message passing inherent
to BP, their solution takes hours to process our benchmark graphs as
previewed during our analysis. However, Credo can process similar
graphs in 2-3s. In contrast to these previous works, our GPU design
for BP does not suffer from the overhead of CPU-based pthreads,
does not limit itself to trees in terms of input graph structure and can
process considerably larger graphs of at least an order of magnitude
greater size in seconds rather than hours.

5.2 Graph GPU-based Frameworks
Several GPU-based frameworks enable application developers to
process massive graphs using common algorithms such as single-
source shortest path (SSSP) and PageRank [17] such as Gunrock,
nvGRAPH and Groute [1] [15] [17]. Although they do not imple-
ment BP and are heavily reliant on the CSR format, there are several
optimizations they utilize of note. nvGRAPH [15] borrows the con-
cept of semi-rings from linear algebra to genericize common graph
operations and provides a custom scheduler optimized for semi-rings.
Gunrock abstracts all graph operations as a series of advance, filter
and computation steps operating either on nodes or edges utilizing
optimizations such as kernel fusion, push-pull traversal, idempotent
traversal and priority queues. Groute [1] asynchronous execution
using a custom scheduler for multi-GPU support using nVIDIA’s
NCCL library. However, all of these optimizations are useless to
complex graph algorithms like BP which do not adhere directly to
the CSR format and its assumption of one floating point number or
integer per node. Consequently, these frameworks cannot perform
complex graph processing on the level of BP, despite their impres-
sive results. Meanwhile, our solution can while also profiting from
several of their optimizations.

6 CONCLUSIONS
Through the course of our research, we successfully enable belief
propagation to run for small and large scale graphs utilizing Credo.
To support this endeavor, we present a simple yet flexible input

format to represent those graphs. We provide a host of designs
utilizing significant workload, memory and threading management
optimizations to handle a plethora of benchmark graphs. We even
attain speedups over 120x in some cases versus our control single
threaded implementations on our initial evaluation system and over
184x speedup in other environments. Finally, we describe a viable,
portable method for selecting a priori the best implementation for a
given graph and process the graph using that method automatically
with Credo.
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