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Abstract
A datacenter that consists of hundreds or thousands of
servers can provide virtualized environments to a large
number of cloud applications and jobs that value the re-
quirement of reliability very differently. Checkpointing
a virtual machine (VM) is a proven technique to im-
prove reliability. However, existing checkpoint schedul-
ing techniques for enhancing reliability of distributed
systems have fallen short, either because they tend to
offer the same, fixed reliability to all jobs, or because
their solutions are tied up to specific applications and
rely on centralized checkpoint control mechanisms. In
this work, we first show that reliability can be signifi-
cantly improved through contention-free scheduling of
checkpoints. Then, inspired by the Carrier Sense Multi-
ple Access (CSMA) protocol in wireless congestion con-
trol, we propose a novel framework for distributed and
contention-free scheduling of VM checkpointing to pro-
vide reliability as a transparent, elastic service. We quan-
tify reliability in closed form by studying system sta-
tionary behaviours, and maximize job reliability through
utility optimization. Our design is validated via a proof-
of-concept prototype that leverages readily available im-
plementations in Xen hypervisors. The proposed check-
point scheduling is shown to significantly reduce check-
pointing interference and improve reliability by as much
as one order of magnitude over contention-oblivious
checkpoint schemes.

1 Introduction

Reliability is a critical requirement for modern datacen-
ters. Clearly, high reliability is desirable for many jobs
and applications, because even a small service downtime
may potentially lead to business interruption with hefty
financial penalties. In a public cloud, reliability is pro-
vided as a fixed service parameter, e.g., all Amazon EC2
users are expected to receive 99.95% reliability [1]. In

other words, the best reliability that cloud customers can
get right now is also the worst. Thus it is up to the cloud
customers to harden the jobs running within their VM
instances in order to enhance reliability for critical appli-
cations. Now, applications that provide increased relia-
bility do exist, e.g., Oracle’s payroll and general ledger
programs. However, these approaches are specific to ap-
plications or require specific problem structures, and pro-
viding elastic reliability for the masses remains an elu-
sive goal in cloud computing today.

This paper introduces an approach for assigning elas-
tic reliability to heterogeneous datacenter jobs via dis-
tributed checkpoint scheduling and reliability optimiza-
tion. Virtual Machine (VM) checkpointing is a widely-
employed, application-transparent solution to improve
reliability in public clouds [4, 5]. To optimize reliabil-
ity of a single job, prior work has proposed a number of
models for calculating the optimal checkpoint schedule
[6, 7, 8, 9, 10, 11], and several algorithms for balanc-
ing checkpoint workload and performance overhead have
also been proposed in [14, 15, 16]. Unfortunately, these
solutions fall short in optimizing checkpoints of multi-
ple jobs whose reliability requirements may vary signif-
icantly, due to their inadequacy of taking into account
resource contention among different jobs’ checkpoints.

In a multi-job scenario, uncoordinated VM check-
points taken independently run the risk of interfering
with each other [12, 13] and may cause significant re-
source contention and reliability degradation [2]. In par-
ticular, the time to save local checkpoint images is deter-
mined largely by how I/O resources are shared, while the
overhead to transfer locally saved images to networked
storage relies on how network resources are shared. In
a large datacenter, chances that VM checkpointing, if
unmanaged and uncoordinated, would encounter severe
network and I/O congestion, resulting in high VM check-
pointing overhead and reliability loss. Clearly, for a large
datacenter, a centralized checkpoint scheduling scheme
that micro-manages each job’s checkpoints is impracti-
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cal for handling tens of thousands of jobs. Distributed
checkpoint scheduling is needed for achieving our goal
of providing elastic reliability as a service.

To this end, we propose a novel job-level self-
management approach that not only enables distributed
checkpoint scheduling but also optimizes reliability
assignments to individual jobs. Our contention-free
scheduling solution is inspired by the Carrier Sense Mul-
tiple Access (CSMA) method, a distributed protocol for
accessing a shared transmission medium, wherein a node
verifies the absence of other traffic before transmitting
on the medium [24, 25, 26]. If a job senses any on-
going checkpoint actions at its serving hosts, it waits (or
backs-off) for an indefinite amount of time and keeps
silent if any of its hosts is busy or become busy during
its backoff. We compare our method with contention-
oblivious checkpoint scheduling, wherein each job sim-
ply checkpoints its VMs at a predetermined rate regard-
less of any contention from other jobs’s checkpoint. To
the best of our knowledge, this is the first work using a
CSMA-based scheme for distributed datacenter resource
scheduling and reliability optimization. The main contri-
butions of this paper are summarized as follows:

• We harness CSMA-based interference management
to provide a distributed and contention-free check-
point scheduling protocol. Our solution is well
suited for implementation in large-scale datacen-
ters, as its job-level distributed checkpoint schedul-
ing mechanism can effectively mitigate resource
contentions caused by concurrent job checkpoints.

• Reliability received by each individual job is char-
acterized in closed form by studying the stationary
behavior of our proposed protocol. It enables a joint
reliability optimization where flexible service-level
agreements (SLAs) are negotiated through a joint
assessment of all jobs’ reliability requirements and
total datacenter resources available.

• Results are validated via a proof-of-concept pro-
totype that leverages readily available implemen-
tations in Xen and Linux. The proposed CSMA-
based checkpoint scheduling is shown to signifi-
cantly reduce checkpoint interference and improve
reliability by 1 order of magnitude over contention-
oblivious checkpoint schemes.

The rest of the paper is organized as follows. Section
II introduces the system model and illustrates the neces-
sity for distributed, contention-free checkpoint schedul-
ing. Our theoretical analysis of CSMA-based checkpoint
scheduling and reliability optimization are presented in
Section III. Section IV contains experimental results via
a proof-of-concept prototype, and Section V concludes
the paper.

2 System Model and Motivations

2.1 Reliability Model Using Checkpoints
In the simplest form, a Virtual Machine Monitor (VMM)
can periodically record a clear state of the running VMs,
including a full image of the VM’s memory, CPU, and
all the device states, and flush resulting VM images
to a central storage server to establish recovery points
[12, 17, 18]. For a single job consisting of multiple
VMs, uncoordinated checkpoints taken independently of
each other [12, 13] run the risk of cascaded rollbacks if
causality is not respected. This can be avoided by taking
synchronous checkpoints of all the VMs that a job com-
prises, whereas the probability of checkpoint contention
increases as jobs often consist of multiple VMs.

As shown in Figure 1, a single job periodically check-
points all its VMs every Ti seconds. Each checkpoint
requires time Tn + Tf to complete, which includes time
Tn to suspend all its VM executions in order to save a
local checkpoint image, as well as time Tf to transfer
the saved VM images to a remote destination. After a
failure occurs, the job can be restored from an available
checkpoint and rolled back to the last saved state with
recovery time Tr. We define reliability by 1 minus the
fraction of expected service downtime. More precisely,
let a failure occur at time t after the nth checkpoint is
fully completed. Then,

R = 1−E
[

Service Downtime
Total Service Time

]
= 1−E

[
t− (n−1)Ti−Tn−Tf +nTn +Tr

t +Tr

]
,(1)

where nTn is the total service downtime due to taking
checkpoints, t − (n− 1)Ti − Tn − Tf is the lost service
time due to roll-back, and E is an expectation over all
random factors, e.g., checkpoint overhead and failure
time. For clarification, we summarize main notations in
this paper in Table 1.

For a single job, a number of proposals for determin-
ing the optimal temporal scheduling of checkpoints have
been provided in [14, 15, 16, 19, 20]. Further, protocols
for taking consistent snapshots of distributed services
in virtualized environments using OpenFlow hardware
to improve fault tolerance are presented in [21]. How-
ever, these results do not take into account the contention
among different checkpoints in a multi-job scenario. It is
shown that as the size of datacenter grows large, uncoor-
dinated VM checkpoints from different jobs may cause
significant resource contention and result in high check-
point overhead Tn (due to I/O resource contention) and
Tf (due to network resource contention) [2], which di-
rectly translate to severe reliability degradation accord-
ing to (1). Recently, a utility-based framework for joint
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Figure 1: Multiple VMs belonging to the same job must be
checkpointed simultaneously to avoid cascaded rollbacks.
It increases the chance of checkpoint contention.

Figure 2: Fully coordinated checkpoint scheduling in a
pipeline mode significantly reduces resource contention
over parallel checkpoints.

reliability maximization under datacenter resource con-
straints is proposed in [2]. It is shown to reduce expected
service downtime by as much as an order of magnitude,
even though the solution requires centralized coordina-
tion/scheduling and does not allow a distributed imple-
mentation at a large scale.

2.2 Need for Contention-Free Checkpoint
Scheduling

Clearly, job reliability benefits from mitigating check-
point overhead, while checkpoint frequency also has to
be determined to amortize not only service downtime due
to taking checkpoints but also potential service loss due
to failure and roll-back. Due to resource sharing in dat-
acenters, all of these require a joint checkpoint schedul-
ing over all jobs that share a common pool of resources.
Consider two extreme cases for multi-job checkpoint
scheduling: parallel and pipeline scheduling, as illus-
trated in Figure 2. In parallel mode, the checkpoints of

Table 1: Main notation.

Symbol Meaning

N N job indexed by i = 1, . . . ,N
S S hosts indexed by h = 1, . . . ,S
λi Sensing rate of job i
µi Service rate to checkpoint job i
τc

i Mean checkpoint time of job i
τr

i Mean rollback and recovery time of job i
fi Mean failure rate of job i
Ri Reliability of job i
Xk A state in our Markov Chain model

PXk,Xl Transition rate between states Xk and Xl
πk Stationary distribution in state Xk
Ai A set of all states containing job i
E[Y ] Expectation of random a variable Y

all N jobs are done at the same time and the total I/O
and network bandwidth are shared among them. In the-
ory, the time to save a local checkpoint Tn and to transfer
VM images Tf will be at least N times higher than when
checkpoints are taken one at a time, and there can also be
an overhead To for switching between VM checkpoints.
On the other hand, if fine-grained checkpoint control is
possible, checkpoints of jobs can be taken one immedi-
ately after another in a pipelined fashion by overlapping
image-saving time of one job’s checkpoint with the im-
age transfer time of another job. With such completely
coordinated checkpoints, jobs can take full advantage of
all I/O and network bandwidth resource available, caus-
ing minimal interference to others.

Figure 3: Fully coordinated pipeline checkpoint schedule
significantly reduces contention and improves reliability
over parallel checkpoint schedule. Reliability calculated
with 8 failures/year.

To demonstrate the advantage of checkpoint coordina-
tion, we set up a simple experiment involving two hosts
and four VMs on each host to quantify how much reli-
ability is achieved under each scheme. We implement
both parallel and pipeline scheduling, and measure the
checkpoint overhead and VM image transfer time. Fig-
ure 3 shows that pipeline scheduling outperforms parallel
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scheduling by nearly an order of magnitude for various
VM sizes. Further, the reliability improvement increases
as VM size grows because the larger the VM size, the
longer time it needs to save and transfer checkpoint im-
ages, and more likely checkpoint contentions occur.

We conclude that checkpoint scheduling is crucial to
provide high reliability in a multi-job scenario. Even
though pipeline scheduling completely avoids check-
point interference and is able to efficiently utilize all
I/O and network bandwidth available, such a centralized
coordination and micro-management approach is pro-
hibitive in large-scale datacenters hosting tens of thou-
sands of jobs. Therefore, a practical checkpoint schedul-
ing scheme should (i) allow a distributed implementation
without relying on any centralized, fine-grained check-
point control, (ii) be able to schedule contention-free
checkpoints for a large number of jobs that may have
heterogeneous parameters and demands, and (iii) en-
able a joint reliability maximization to assign the opti-
mal reliability level to each job that suits its demand.
To this end, this paper makes novel use of the CSMA
protocol in wireless inference control to derive a dis-
tributed, contention-free checkpoint scheduling protocol
with joint reliability optimization.

3 Our Proposed Protocol and Reliability
Optimization

In this section, we propose a CSMA-based checkpoint
scheduling protocol and quantify the resulting reliabil-
ity received by each job in closed-form. Unlike ex-
isting work [24, 25, 26] that apply CSMA to wireless
interference management and are often concerned with
data throughput, our reliability analysis quantifies the
reliability received by each job in closed-form and en-
ables joint reliability optimization of all jobs via a util-
ity framework. The protocol is inspired by CSMA but
is applied to datacenter resource sharing to achieve dis-
tributed, contention-free checkpoint scheduling protocol
in large-scale datacenters. Figure 4 shows an overview
of the system architecture. Each job may consist of one
or more VMs, which are distributed to different physical
machines (or servers). Our checkpoints are organized at
job level - if a checkpoint of a job is triggered, all VMs
that belong to the job first save their checkpoint images
to local storage (in order to minimize VM downtime)
and then transfer them to networked storage to avoid host
failure.

In our design, each job achieves reliability optimiza-
tion via self-management in two ways: first, each job au-
tonomously determines its own checkpointing schedul-
ing based on locally available information, e.g., the co-
location of other jobs and occurrence of checkpoint con-

Host 

SLA SLA SLA SLA SLA SLA 

Local 
storage 

Inter-Job Checkpointing  
 Coordination 

Network  
Storage 

checkpoint 

restore 

checkpoint 

restore 

Host 

Local 
storage 

checkpoint 

restore 

checkpoint 

restore 

Backup  Backup 

Network  
Storage 

… 

VM VM VM VM 

Figure 4: Our proposed architecture for checkpoint schedul-
ing.

tention. Second, each job autonomously updates its
checkpoint rate based on locally available optimal solu-
tions, which is done in runtime with no dependence on
any centralized management decisions.

In this section, we will first introduce the CSMA-
based checkpoint scheduling protocol, characterize the
resulting reliability via a Markov Chain analysis of sys-
tem stationary distributions, and then present a joint reli-
ability optimization. Theoretical results obtained in this
section will be validated through a prototype implemen-
tation in Section IV.

3.1 CSMA-Based Checkpoint Scheduling

We consider a datacenter serving N jobs denoted by
N = {1,2, . . . ,N} and using S servers denoted by S =
{1,2, . . . ,S}. Each job i is comprised of hi VMs that are
hosted on a subset of servers, i.e., Hi ⊆S .

As discussed in Section II, mitigating checkpoint con-
tention can significantly reduce service downtime and
improve reliability. To develop a checkpoint scheduling
protocol that is not only contention-free but also fully
distributed, we extend an idealized model of CSMA as
in [24, 25, 26]. CSMA is a probabilistic medium access
control protocol in which a node verifies the absence of
other traffic before transmitting on a shared transmission
medium. Our proposed checkpoint scheduling works as
follows: Each job i makes the decision to create a re-
mote checkpoint image based only on its local parame-
ters and observation of contention. If job i senses on-
going checkpoints at any of its serving hosts (i.e., any
host s such that s ∈ Hi), then it keeps silent. If none
of its serving hosts is busy, then job i waits (or backs-
off) for a random period of time which is exponentially
distributed with mean 1/λi and then starts its check-
pointing.1 During the back-off, if some contending job
starts taking checkpoints, then job i suspends its back-off

1The random backoff time is to ensure that two potentially-
contending jobs that sense no contention from other jobs do not start
checkpointing at the same time and trigger a contention.
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and resumes it after the contending checkpoint is com-
plete. For analytical tractability, we assume that the to-
tal time of saving a local checkpoint and transferring it
to a remote destination is exponentially distributed with
mean 1/µi = E(Tn +Tf ). This assumption of exponen-
tial checkpoint time can be further removed using results
in [26]. In such an idealized CSMA model, if sensing
time is negligible and back-off time follows a continu-
ous distribution, then the probability for two contending
checkpoints to start at the same time is 0 [24]. There-
fore, the CSMA-based protocol, summarized in Figure. 5
achieves contention-free, distributed scheduling of job
checkpoints.

Assign positive sensing rates λi > 0 ∀i

Each job independently performs:
Initialize backoff timer Bi
while job i is running

while Bi > 0
if any server in Hi is busy

Job i keeps silent
Generate new backoff: Bi = exponential with mean 1

λi
end if
Update Bi = Bi−1

end if
Checkpoint all VMs of job i
Generate new backoff: Bi = exponential with mean 1

λi
end while

Figure 5: Our contention-free, distributed checkpoint
scheduling protocol inspired by CSMA.

In contrast to existing CSMA analysis that focuses on
data throughput, this paper aims to quantify individual-
job reliability resulting from such contention-free, dis-
tributed checkpoint scheduling protocol in large-scale
datacenters. It requires us to investigate the distributions
checkpoint interval Ti which is a random variable due
to the CSMA-based, probabilistic checkpoint scheduling
protocol. Given a set of sensing rates λ1, . . . ,λN , we use
Ri to denote the reliability received by job i in the pro-
posed checkpoint scheduling protocol. Notice that reli-
ability also depends on service rates µ1, . . . ,µN and job
failure rate fi, which may further depend on server fail-
ure model and VM placement. In this paper, we focus on
the checkpoint scheduling protocol and reliability maxi-
mization by optimizing parameters λ1, . . . ,λN . Using our
model, we are able to find the reliability received by each
job in closed form and then perform reliability optimiza-
tion jointly over all jobs with respect to their utilities.

3.2 Markov Chain Model

In order to optimize reliability, we first need to ob-
tain the reliability each job receives in the CSMA-based

checkpoint scheduling protocol for given sensing rates
λ1, . . . ,λN . We make use of a Markov Chain model,
which is commonly employed for CSMA analysis in
wireless interference management. The Markov Chain
for analyzing the protocol depends on sensing rate λi and
checkpoint overhead µi, as well as datacenter VM place-
ment that determines the pattern of job interference. We
will first describe the model in this subsection and then
use it to derive job reliability in closed form to enable
reliability optimization.

For any time t, we define a system state as the set
of jobs actively taking checkpoints at t. Since our
CSMA-based protocol achieves contention-free check-
point scheduling, in each state, a set of non-conflicting
jobs (known as an Independent Set) are scheduled. We
assume that there exist K ≤ 2N possible states, repre-
sented by Xk ⊆N , for k = 1, . . . ,K. In state Xk, if job i
is not taking checkpoints and all of its conflicting jobs are
not taking checkpoints, the state Xk can transit to state
Xk ∪{i} with a rate λi (i.e., job i starts its checkpoint).
Similarly, state Xk ∪{i} can transit to state Xk with a
rate µi (i.e., job i completes its checkpoints). It is easy
to see that the system state at any time is a Continuous
Time Markov Chain (CTMC).

Unlike existing CSMA analyses for wireless systems
that focus on throughput, our goal is to quantify job re-
liability using the Markov Chain model. According to
(1), this requires the characterization of the distribution
of checkpoint overhead Tn,Tf , and checkpoint interval Ti,
which are related to sojourn time and returning time of
the CTMC. We first transform the CTMC into an embed-
ded Discrete Time Markov Chain (DTMC) that is easier
to analyze. Since the embedded chain also has differ-
ent holding times for its states, we further apply the uni-
formization technique to obtain a randomized DTMC. It
is sufficient to consider transitions between states that
differ by one job because there is no contention in our
idealized CSMA model. Let v be a uniformization con-
stant that is sufficiently large. Then, the DTMC has the
following transition probabilities:

PXk,Xk∪{i} =
λi

v
and PXk∪{i},Xk

=
µi

v
, (2)

where PXk,Xl denote the transition probabilities from
state Xk to state Xl . Due to uniformization, we define
vk = ∑l 6=k v ·PXk,Xl to be the sum of transition probabili-
ties out of state Xk and add a self-transition rate 1−vk/v
so that the transition probabilities form a stochastic ma-
trix. This means we have

PXk,Xk = 1− vk

v
. (3)

Now we can study properties of the original CTMC
through the DTMC whose state transitions occur accord-
ing to the jump times of an independent Poisson Process
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with rate v. Fig. 6 (a) gives an example data center with
3 jobs and 2 hosts. If each host is able to checkpoint 1
VM at a time without incurring any performance loss,
then checkpoints of job 3 conflicts with those of jobs
1 and 2, whereas jobs 1 and 2 can take parallel check-
points without any resource contention. Therefore, this
system has K = 5 feasible states (or Independent Sets):
{·}, {1}, {2}, {3}, {1,2}. State {·} means no job is
taking checkpoints, {i} means a single job i takes check-
points for i = 1,2,3, and {1,2} means jobs 1 and 2 take
checkpoints at the same time.

Figure 6: Example: 3 jobs and corresponding Markov
Chain.

Given the above DTMC model, we are interested in
analyzing its stationary behavior, which reveals the dis-
tributions of checkpoint overhead Tn,Tf , and checkpoint
interval Ti. The transition probability matrix P of the
DTMC has size K by K and its stationary distribution
is denoted by π1, . . . ,πK , satisfying

(π1, . . . ,πK) = (π1, . . . ,πK) ·P, (4)

where πk is the stationary probability that the DTMC
stays in state Xk. In the following lemma, we show that
the stationary distribution can be obtained in closed form
for our DTMC model.

Lemma 1 When no checkpoint interference (i.e., con-
tention) is permitted, the DTMC has stationary distribu-
tion:

πk =
∏i∈Xk

λi ·∏ j/∈Xk
µ j

Cλ

, (5)

where Cλ is a normalization factor such that ∑k πk = 1.

Proof: This lemma can be directly proved by showing
that the stationary distribution in (5) satisfies the detailed
balance equation πkPXk,Xl = πlPXl ,Xk , ∀k, l. Therefore,
the DTMC is time-reversible and its stationary distribu-
tion depends on rates λi,µi of all jobs. �

3.3 Reliability Analysis
Now we can analyze the stationary behavior of the
CTMC through the DTMC and an independent Poisson
Process with rate v. From (1), reliability is defined by 1
minus the percentage of service downtime. It means that
we need to obtain the distributions of checkpoint over-
head Tn,Tf , and checkpoint interval Ti from the Markov
Chain model. We assume that each job has known Mean
Time to Failure (MTTF) 1/ fi and its failure time is mod-
eled by an exponential distribution. In practice, the
MTTF can be estimated from existing failure models or
large-scale datacenter event logs [27, 28]. For example,
if each server has independent failures according to a
Poisson Process with rate f0 and job i is hosted by mi
different servers, then we have fi = mi · f0.

Consider checkpoint overhead Tn,Tf , and checkpoint
interval Ti in our CSMA-based protocol for a single job i.
Let Ai = {Xk : i ∈Xk} be a set of all states containing
job i. It is not hard to see that total checkpoint over-
head Tn + Tf is the sojourn time that the CTMC stays
within Ai, i.e., the time to checkpoint job i’s VMs. Sim-
ilarly, checkpoint interval Ti is the first returning time of
the CTMC to Ai. Clearly, both sojourn time and first
returning time are random variables whose distributions
depend on the Markov Chain model. Using the defini-
tion in (1), we first rewrite reliability Ri with respect to
random checkpoint overhead and checkpoint interval.

Lemma 2 Let Ti be the random checkpoint interval of
job i. If job i has Poisson failures with rate fi, then its
reliability is given by

Ri = 1− τ
c
i µiπAi − fiπAiETi− fiτ

r
i −

fiE
(
T 2

i
)

2ETi
(6)

where τc
i is the mean time to save a local checkpoint im-

age, τr
i is mean repair time, and πAi = ∑k∈Ai πk is the

sum of stationary distribution of all states in Ai.

The result is very intuitive. First, πAi is the frac-
tion of time that the Markov Chain spends in states Ai
(i.e., checkpointing job i VMs). Since our protocol is
contention-free, out of E(Tn +Tc) = 1/µi seconds on av-
erage for each checkpoint, job i VMs have to be sus-
pended for E(Tn) = τc

i seconds to save consistent, local
checkpoint images. Therefore, the service downtime due
to taking checkpoints is given by τc

i µiπAi . Second, fiτ
r
i

is the expected downtime due to failure recovery and re-
pair. Further, because of our assumption of Poisson fail-
ures, lost service time due to VM roll-back after each
failure can be derived using the Poisson Arrival Sees
Time Average (PASTA) property, i.e, fiE

(
T 2

i
)
/2ETi. Fi-

nally, when a failure arrives before a checkpoint is com-
pleted (which again has probability πAi ), all VMs must
be recovered from the last available checkpoint images.
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It implies that an additional roll-back time of πAiETi is
incurred on average. A formal proof for this lemma can
be found in our online technical report [32].

Therefore, reliability of job i can be obtained if ETi
and ET 2

i are known. Next we derive them via their coun-
terparts in the embedded DTMC. Since job i takes a
checkpoint if the DTMC is in a state belonging to Ai,
its checkpoint interval Ti can be measured by the first re-
turning time to Ai, denoted by tAi . Let Y1,Y2 . . . be a se-
quence of i.i.d. exponentially-distributed variables with
mean 1/v. We have Ti = ∑

tAi
l=1 Yl , which results in

ETi = EtAi ·EYl =
1
v
EtAi (7)

and

ET 2
i = var(Yl) ·EtAi +(EYl)

2 ·Et2
Ai

=
1
v2

(
EtAi +Et2

Ai

)
. (8)

Here we used the i.i.d. property of Yl , as well as the inde-
pendence between the DTMC and the underlying Pois-
son Process.

Now it remains to find EtAi and Et2
Ai

in the embedded
DTMC. When the number of jobs is large, we can ap-
proximate the first returning time tAi by an exponential
distribution [29]. Then, its second order moment should
be Et2

Ai
= 2Et2

Ai
. To find EtAi , we apply Kac’s Formula

in [29] and obtain the following result:

Lemma 3 The expectation of first returning time tAi for
the DTMC is given by

EtAi = 1+
v
µi

(
1

πAi

−1
)
. (9)

Proof: Checkpoint interval tAi is the time that the DTMC
first returns to any state in Ai since it last left. Let X(n) be
the DTMC state at time n under stationary distribution.
It is easy to see that

tAi = min{T |X(0) ∈Ai,X(1) /∈Ai,X(T ) ∈Ai},(10)

that is the minimum (random) time the chain returns to
Ai after it leaves at time n = 0. Applying Kac’s Formula
[29] to the DTMC, we have 1/πAi = E

[
τ
+
Ai

]
, where

τ
+
Ai

= min{T |X(0) ∈ Ai,X(T ) ∈ Ai,T ≥ 1} is the first
hitting time from a stationary distribution. Using the Law
of total probability, we further have

E
[
τ
+
Ai

]
=

v−µi

v
E
[
τ
+
Ai
|X(1) ∈Ai

]
+

µi

v
E
[
τ
+
Ai
|X(1) /∈Ai

]
,

=
v−µi

v
+

µi

v
E
[
tAi

]
, (11)

where the first step uses P{X(1)∈Ai} = 1 − µi/v and
P{X(1) /∈Ai} = µi/v because departure probability from
Ai is a constant µi/v from all states. The second step
uses the definition of tAi in (10), as well as the fact

that E
[
τ
+
Ai
|X(1) ∈Ai

]
= 1 due to the definition of hit-

ting time. Combining (11) and Kac’s formula 1/πAi =

E
[
τ
+
Ai

]
, we derive the desired equation in (9). This com-

pletes the proof. �
Plugging these results into (6), we can quantify the re-

liability received by each job i in our contention-free, dis-
tributed checkpoint scheduling protocol. Again, we refer
reader to our online technical report [32] for a complete
proof.

Theorem 1 For given rates λ1, . . . ,λK , each job i in our
protocol receives the following reliability Ri:

Ri = 1− fiτ
r
i − τ

c
i µiπAi −

fi

µi
(πAi +

1
πAi)

) (12)

3.4 Reliability Optimization
We can use Theorem 1 to numerically calculate the re-
liability of each job i for any given rates λ1, . . . ,λK and
failure rate fi. Let Ui(Ri) be a utility function, represent-
ing the value of assigning reliability level ri to job i. Our
goal is to derive an autonomous reliability optimization
where flexible SLAs are negotiated through a joint as-
sessment of users utility and total datacenter resources
available. Toward this end, we formulate a joint relia-
bility optimization through a utility optimization frame-
work [30, 31] that maximizes total utility ∑i Ui(Ri), i.e.,

max ∑
i

Ui(Ri) (13)

s.t. Ri = 1− fiτ
r
i − τ

c
i µiπAi −

fi

µi
(πAi +

1
πAi)

),

πAi =
1

Cλ

· ∑
Xk∈Ai

∏
j∈Xk

λ j · ∏
l /∈Xk

µl ,

var. λ1, . . . ,λK

where Cλ is a normalization factor such that ∑k πk = 1.
Here we used the closed-form reliability characterization
in (12) and the stationary distribution in (5).

The reliability optimization is computed by maximiz-
ing an aggregate utility ∑i Ui(Ri) over all feasible sens-
ing rates λ1, . . . ,λK . In a dynamic setting, such reliability
optimizations must be solved for each job arrival and de-
parture to balance reliability assignment autonomously.
We notice that many local search heuristics, such as Hill
Climbing [33] and Simulated Annealing [34], can be em-
ployed to solve the reliability optimization in (13) by in-
crementally improving the total utility over single search

7
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Figure 7: Comparison of the reliability values from our
theoretical analysis with a prototype experiment using 24
VMs in Xen. Our reliability analysis can accurately esti-
mate reliability in the proposed contention-free checkpoint
scheduling protocol within a margin of ±1%.
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Figure 8: Plot convergence of sensing rates λ1,λ2 when
Hill Climbing local search [33] is employed to solve the
reliability optimization in (13) with 2 classes of jobs and
a utility 2R1 +R2. The algorithm converges within only
a few local updates to the optimal sensing rates.

directions. Under certain conditions, we can also charac-
terize the optimal solution in closed form.

Theorem 2 If there exists a set of rates λ1, . . . ,λK and
a positive constant Cλ satisfying the following system of
equations, then the rates maximize the aggregate utility
in (13) for arbitrary non-decreasing functions:

∑Xk∈Ai ∏ j∈Xk
λ j ·∏l /∈Xk

µl =Cλ ·
√

τc
i µ2

i
fi

+1,∀i

∑
K
k=1 ∏ j∈Xk

λ j ·∏l /∈Xk
µl =Cλ (14)

These rates simultaneously maximize the reliabilities re-
ceived by all jobs, i.e.,

Ri = 1− fiτ
r
i −2

√
τc

i +
fi

µi

2
, ∀i. (15)

Proof: We apply the following inequality, ax + b/x ≥
2
√

ab for all positive a,b,x > 0, to the reliability in (12).
It implies

Ri = 1− fiτ
r
i − τ

c
i µiπAi −

fi

µi
(πAi +

1
πAi)

)

≤ 1− fiτ
r
i −2

√
τc

i +
fi

µi

2
, (16)

where we used x = πAi , a = τc
i µi +

fi
µi

and b = fi
µi

in the
inequality. Notice that the last step holds with equality
only if x =

√
b/a. For arbitrary non-decreasing utility

functions Ui(Ri), it is easy to see that aggregate util-
ity ∑i Ui(Ri) is maximized if (16) holds with equality

for all i = 1, . . . ,N, i.e., all reliability values are maxi-
mized simultaneously. This proves the maximum achiev-
able reliability in (15), which can be achieved only if

πAi =

√
τc

i µ2
i

fi
+1, ∀i. Plugging the stationary distribu-

tion in (5), this is exactly conditions (14). �
Remark: Theorem 2 establishes the maximum utility our
checkpoint scheduling algorithm can achieve. If the con-
ditions in Theorem 2 are satisfied, then solving (14) gives
us a set of rates λ1, . . . ,λK , which maximize the aggre-
gate utility in (13) for arbitrary non-decreasing utility
functions. As an example, if all jobs share a common
resource bottleneck that allows only a single checkpoint
at each time, then we have Ai = {i} ∀i because any pair
of jobs conflict with each other. It is easy to verify that
the following rates satisfy conditions (14), and therefore
the reliability optimization can be solved in closed form
for arbitrary non-decreasing utility functions:

λi =

√
τc

i µ2
i

fi
+1

∑
N
j=1

√
τc

j µ2
j

f j
+1

·
1−∏

N
j=1 µ j

∑
N
j=1 ∏l 6= j µl

, ∀i. (17)

Once the optimal solutions are obtained (through ei-
ther local search heuristics or the sufficient conditions
above), each job only has to update its checkpoint rate
according to the optimal solutions. Due to the distributed
nature of CSMA-based scheduling, jobs can easily re-
configure their checkpoint rates on-the-fly without rely-
ing on any centralized checkpoint coordination.

Validation of theoretical analysis. To validate the

8
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Figure 9: Reliability for different failure rates.
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Figure 10: Reliability for different checkpoint time intervals.

reliability analysis in Theorem 1, we implement a pro-
totype of the contention-free, distributed checkpoint
scheduling protocol with 3 servers supporting 24 Xen
VMs each with 1GB DRAM. The detailed implemen-
tation parameters are provided later in Section IV. We
first benchmark necessary parameters in our theoretical
model using Markov Chain analysis, i.e., mean check-
point local-saving time τc

i = 30.2 seconds, mean check-
point overhead 1/µi = 71.5 seconds, and mean repair
time τr

i = 80.2 seconds for all jobs i = 1, . . . ,24. So all
jobs in the experiment receive equal reliability value. For
a sensing rate of λi = 1/(2.5 days) and exponential fail-
ures with fi ranging from 2 to 16 failures per year, we
compare the reliability values from our theoretical anal-
ysis to the values obtained from the experiment. Fig-
ure 7 shows that our theoretical analysis can accurately
estimate the reliability values received in the proposed
protocol, with a small error margin of ±1%. This im-
plies that our theoretical reliability analysis provides a
powerful tool for reliability estimation and optimization.

Example for reliability optimization. To give a nu-
merical example of the proposed reliability optimization,
consider a data center with 2 classes of jobs: 10 large
jobs that contain 10 VMs each and 100 small jobs that
contain 2 VMs each. Assume that at most 2 jobs can
take non-contending checkpoints at each time. Average
checkpoint overhead is τc

1 = 50 seconds for large jobs
and τc

2 = 25 for small jobs. Recovery time is τr
1 = 400

seconds and τr
2 = 200 seconds. Assume that each host

has independent failures with rate f0 =2/year. Then,
large jobs have failure rates f1 = 10 · f0 = 6.43e−7 and
small jobs f2 = 2 · f0 = 1.29e− 7. Finally, total check-
point time is 1/µlarge = 200 seconds for a large job and
1/µlarge = 100 seconds for a small job. We implement
Hill Climbing local search [33] to find the optimal sens-

ing rates λ1,λ2 that maximize a utility 2R1 + R2. As
shown in Figure 8, the algorithm converges within a
few local updates to the optimal sensing rates. At op-
timum, large jobs receive a higher reliability R1 = 0.99
than small jobs R= 0.90 because the weight of large jobs
is twice as that of small jobs in the optimization objective
2R1 +R2.

4 Implementation and Evaluations

We have implemented a prototype of the contention-free
checkpoint scheduling in C. We use a cluster of four ma-
chines with Intel Atom CPU D525, 4GB DRAM, 7200
RPM 1TB hard drives, and interconnected with a 1GB/s
network. Note that I/O and network bandwidths rather
than CPU and memory are the major limiting factors for
our tests. To simulate the workload, each VM runs a
CPU intensive benchmark [35] with 1 VCPU, 512MB or
1GB DRAM, and 10GB VDisk. The host OS is Linux
2.6.32 and Xen 4.0. If not specified, the failure rate is
eight times per year, and each reliability result is the av-
erage of three runs.

Figure 9 shows the reliability of a job when the annual
failure rate varies from 4 times to 128 times per year. In
this experiment, we run three jobs (two VMs per job, and
six VMs in total) and present the average reliability. For
small failure rates, the reliabilities for both contention-
oblivious and contention-free scheduling are very high.
But as more failures occur, the benefit of contention-
free scheduling becomes very obvious, achieving much
higher reliability.

Reliability as a function of checkpoint interval is
shown in Figure 10. Overall, contention-free scheduling
can achieve a reliability of two nines (> 99%), compared

9
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Figure 12: Normalized downtime for different annual failure
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Figure 11: Reliability of 128 jobs for both contention-free and
contention-oblivious checkpoint scheduling.

to one nine (> 90%) for contention-oblivious scheduling.
For contention-free scheduling, the reliability of the sys-
tem keeps increasing as the checkpoint interval becomes
larger. At the same time, the contention-oblivious mech-
anism increases at a slower pace, but it can also poten-
tially reach as high reliability as contention-free schedul-
ing. This happens because when the checkpoint inter-
val becomes large enough, chances for checkpoint con-
tention from different jobs are small. To demonstrate the
scale of our approach, we also extend this test to sim-
ulating 128 jobs. In this experiment, we intentionally
intensify the job checkpointing rate in our cluster. As
shown in Figure 11, almost all contention-free config-
uration jobs can achieve a reliability of two nines but
the major percentage of contention-oblivious jobs falls
into one nine reliability range. In addition, we present
the normalized downtime for different annual failure rate
settings in Figure 12. Note that the downtime of a system
includes the checkpoint time, and recovery time if the
host is down. All times are normalized to the downtime
for contention-oblivious scheduling with 128 failures per

year. One can see that our contention-free checkpointing
can achieve a reduction in downtime of upto 18.3% com-
pared to contention-oblivious scheduling.

In Figure 13, we show the effect of VM memory size
(and, therefore, checkpoint duration) on reliability. Un-
der the same checkpoint interval and failure rate, a job
with VM memory size of 512 MB achieves higher re-
liability due to its smaller memory footprint. The rea-
son is that a larger DRAM size requires more time to
suspend the VM and transfer the VM image from the
host machine to the destination storage. But the over-
all trend still shows that our contention-free checkpoint-
ing mechanism significantly outperforms contention-
oblivious scheduling.

5 Conclusions

Inspired by the CSMA protocol for wireless interference
management, we propose a new protocol for distributed
and contention-free checkpoint scheduling in large-scale
datacenters, where jobs’ requirements for reliability vary
significantly. The protocol enables datacenter operators
to provide elastic reliability as a transparent service to
their customers. Using Markov Chain analysis of sys-
tem stationary behaviours, the reliability that each job
receives in our protocol is characterized in closed form.
We also present optimization algorithms to jointly max-
imize all reliability levels with respect to an aggregate
utility. Our design is validated through prototype im-
plementations in Xen and Linux, and significant reliabil-
ity improvements over contention-oblivious scheduling
checkpointing are demonstrated via experiments in real-
istic settings.
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6 Collection of Proofs

6.1 Proof of Lemma 1
It is easy to verify that the stationary distributions
in Lemma 1 satisfies the detailed balance equation,
πkPXk,Xl = πlPXl ,Xk , ∀k, l. It also implies that the
Markov chain is time reversible [29].

Stationary distribution of DTMC satisfies the detailed
balance equation, πkPXk,Xl = πlPXl ,Xk , ∀k, l, where P
is the Markov transition matrix, i.e., PXk,Xl is the prob-
ability of transition from state Xk to state Xl , and
πk and πl are the equilibrium probabilities of being
in states Xk and Xl , respectively. Substitute πk =
∏i∈Xk

λi·∏ j/∈Xk
µ j

C(~λ )
into the detailed balanced equation as:

∏i∈Xk
λi ·∏ j/∈Xk

µ j

C(~λ )
·PXk,Xl =

∏i∈Xl
λi ·∏ j/∈Xl

µ j

C(~λ )
·PXl ,Xk

And jobs are either in a state or not in a state. Also since
in our DTMC, adjacent states only differs in one single
job, Xk and Xl only differs in one element, let us say
job m, then ∏i∈Xk

λi and ∏i∈Xl
λi only differs in one

element, λm, so is ∏ j/∈Xk
µ j and ∏ j/∈Xl

µ j. assuming
m ∈ Band /∈ A , the lemma holds if we assume other-
wise, thus we have

∏
i∈Xl

λi = λm · ∏
i∈Xk

λi

,
∏

j/∈Xk

µ j = µm · ∏
j/∈Xl

µ j

then after cancellation for the equal components the left
and right hand side of the equation becomes equal:

µm ·
λm

v
= λm ·

µm

v

This shows the detailed balance holds for πk =
∏i∈Xk

λi·∏ j/∈Xk
µ j

C(~λ )
This completes the proof.

6.2 Proof of Lemma 2
Let R be the fraction of downtime due to rollback when a
failure happens, then according to PASTA, the probabil-
ity that a failure arrives in any range during a checkpoint
interval is the same as when it’s seen as average. Then
we have:

P(R≥ x) =
∫

∞

x (Ti− x) fTi(u)du
ETi

where fTi(u) is the probability density function of check
point interval Ti, let FR(x) and fR(x) be the cumulative
distribution function and probability density function of

downtime due to rollback R respectively, then we have
Thus

FR(x) = 1−P(R≥ x) = 1−
∫

∞

x (Ti− x) fTi(u)du
ETi

Take derivative with respect to x of both sides,

fR(x) =
∫

∞

x fTi(u)du
ETi

Then the average downtime due to rollback can be ex-
pressed as:

ER =

∫
∞

0 (
∫

∞

x fTi(u)du)xdx
ETi

=

∫
∞

0 (1−FTi(x))xdx)
ETi

,

where we used
∫

∞

x fTi(u)du = 1 −
∫ x

0 fTi(u)du = 1 −
FTi(x) in the last step.

ET 2
i =

∫
∞

0
u2 fTi(u)du =−

∫
∞

0
u2d(1−FTi(u))

=
∫

∞

0
(1−FTi(u))2udu−u2(1−FTi(u))

= 2
∫

∞

0
(1−FTi(u))udu−u2(1−FTi(u))|

∞
0

= 2
∫

∞

0
(1−FTi(u))udu

Since FTi(u) is to 1 when u goes to infinity and u2(1−
FTi(u)) goes to 0, also, when u = 0, u2(1−FTi(u)) = 0 as
well.

It is easy to verify that the second moment of Ti can
be expressed by ET 2

i = 2
∫

∞

0 (1−FTi(u))udu. Hence we

have ER =
ET 2

i
2ETi

. Also with failure rate fi, the aver-
age downtime due to rollback when a failure arrives is

ER f ailure =
fiET 2

i
2ETi

. This completes the proof.

6.3 Proof (7) and (8)
Assuming that i.i.d. random variables {Yl} have moment
generating functions(MGF) φY (s), and random sum Ti =

∑
tAi
l=1 Yl has MGF φT (s), then φT (s) is expect value of

E[esTi |Ti = t], with respect to Ti. Then we have

φT (s) =
∞

∑
t=0

E[esTi|Ti=t ]PTi(t) =
∞

∑
0
E[e(Y1+Y2+···+Yt )]PTi(t)

Let W = Y1 +Y 2+ · · ·+Yt , then according to the defini-
tion of MGF, φW (s) = [φY (s)]n, which gives

φT (s) =
∞

∑
t=0

[φY (s)]nPTi(t)

in addition we can write [φY (s)]n = [elnφY (s)]n =
e[lnφY (s)]n, which then gives

φT (s) =
∞

∑
t=0

e[lnφY (s)]nPTi(t)
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, where the sum on the right hand side is actually φtAi
(s)

evaluated at s = lnφY (s), therefore,

φT (s) = φtAi
(lnφY (s))

. Then by the chain rule of derivatives,

φ
′
T (s) = φ

′
tAi

(lnφY (s))
φ ′Y (s)
φY (s)

, with φY (0) = 1, φ ′Y (0) = E[Yl ] and φ ′tAi
(0) = E[tAi ], set-

ting s = 0 the equation above becomes:

E[Ti] = φ
′
T (0) = φ

′
tAi

(0)
φ ′Y (0)
φY (0)

= EtAiE[Yl ] =
1
v
EtAi

Take the second derivative of φY (s), we have

φ
′′
T (s) = φ

′′
tAi

(lnφY (s))(
φ ′Y (s)
φY (s)

)2

+φ
′
tAi

(lnφY (s))
φY (s)φ ′′Y (s)− [φ ′Y (s)]

2

φ 2
Y (s)

Setting s = 0 we have

ET 2
i = Et2

Ai
(EYl)

2 +EtAivar(Yl) =
1
v2 (EtAi)+Et2

Ai

6.4 Proof of Theorem 1
From Lemma 2:

Ri = 1− τ
c
i µiπAi − fiτ

r
i − ( fiπAiETi +

fiET 2
i

2ETi
)

And from Theorem 1:

Ri = 1− τ
c
i µiπAi − fiτ

r
i − (

fi

µi
+

fi

2µiπAi

)

Apply equation (7) and (8) to Lemma 2 we have:

fiπAiETi = fiπAi

1
v
EtAi

fiET 2
i

2ETi
= fi

1
v2 (EtAi +Et2

Ai
)

2EtAi
v

where since tAi is exponential distributed, its second mo-
ment

Et2
Ai

= 2(EtAi)
2

, this gives
fiET 2

i
2ETi

=
fi

2v
(1+2EtAi)

in Lemma 2. Plugging in these results to Lemma 2 we
have:

Ri = 1− τ
c
i µiπAi − fiτ

r
i − fi(πAi

1
v
EtAi +

1
2v

+
1
v
EtAi)

Combining equation (9) we have:

1
v
EtAi =

1
v
+

1
µi
(

1
πAi

−1)

Apply this to Lemma 2:

Ri = 1−τ
c
i µiπAi− fiτ

r
i − fi(

πAi

v
+

1−πAi

µi
+

1
2v

+
1
v
+

1
µiπAi

− 1
µi
)

To simplify:

Ri = 1− τ
c
i µiπAi − fiτ

r
i − fi(

πAi +3
2v

−
πAi

µi
+

1
µiπAi

)

as v→ ∞ we have
πAi+3

2v → 0, thus we have:

R− i = 1− fiτ
r
i − τ

c
i µiπAi −

fi

µi
(πAi +

1
πAi)

)

This completes the proof.
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