
Mortar: Filling the Gaps in Data Center Memory

Jinho Hwang† Ahsen Uppal Timothy Wood H. Howie Huang
†IBM T.J. Watson Research Center The George Washington University

jinho@us.ibm.com {auppal, timwood, howie}@gwu.edu

Abstract
Data center servers are typically overprovisioned, leaving
spare memory and CPU capacity idle to handle unpre-
dictable workload bursts by the virtual machines running
on them. While this allows for fast hotspot mitigation, it is
also wasteful. Unfortunately, making use of spare capacity
without impacting active applications is particularly difficult
for memory since it typically must be allocated in coarse
chunks over long timescales. In this work we propose re-
purposing the poorly utilized memory in a data center to
store a volatile data store that is managed by the hypervisor.
We present two uses for our Mortar framework: as a cache
for prefetching disk blocks, and as an application-level dis-
tributed cache that follows the memcached protocol. Both
prototypes use the framework to ask the hypervisor to store
useful, but recoverable data within its free memory pool.
This allows the hypervisor to control eviction policies and
prioritize access to the cache. We demonstrate the benefits
of our prototypes using realistic web applications and disk
benchmarks, as well as memory traces gathered from live
servers in our university’s IT department. By expanding and
contracting the data store size based on the free memory
available, Mortar improves average response time of a web
application by up to 35% compared to a fixed size mem-
cached deployment, and improves overall video streaming
performance by 45% through prefetching.

Categories and Subject Descriptors D.4.2 [Operating Sys-
tems]: Storage Management

General Terms Design; Experimentation; Performance

Keywords Memory Management; Virtualization; Mem-
cached; Disk Prefetching

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
VEE ’14, March 01–02, 2014, Salt Lake City, UT, USA.
Copyright c© 2014 ACM 978-1-4503-2764-0/14/03. . . $15.00.
http://dx.doi.org/10.1145/2576195.2576203

1. Introduction
Cloud data centers can comprise thousands of servers, each
of which may host multiple virtual machines (VMs). Mak-
ing efficient use of all those server resources is a major
challenge, but a cloud platform that can obtain better uti-
lization can offer lower prices for a competitive advantage.
A resource such as the CPU is relatively simple to man-
age because it can be allocated on a very fine time scale,
greatly simplifying how it can be shared among multiple
VMs. Memory, however, typically must be allocated to VMs
in large chunks at coarse time scales, making it far less flex-
ible. Since memory demands can change quickly and new
VMs may frequently be created or migrated, it is common
to leave a buffer of unused memory for the hypervisor to
manage. Even worse, operating systems have been designed
to greedily consume as much memory as they can—the OS
will happily release the CPU when it has no tasks to run, but
it will consume every memory page it can for its file cache.
The result is that many servers have memory allocated to
VMs that is inefficiently utilized, and have regions of mem-
ory left idle so that the machine can be ready to instantiate
new VMs or receive a migration.

R
A

M
 F

re
e

(%
)

Time (1 month total)

Host 1
Host 2
Host 3
Host 4
Host 5

 0

 20

 40

 60

 80

 100

minimum spare memory 5 25 50 75 100
 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

#
 o

f
S

er
v
er

s

Avg. RAM Free (%)

Figure 1: The amount of free memory on a set of five hosts
varying over time (left), and the histogram on 58 servers
from our university’s data center (right).

To illustrate this inefficiency, we have gathered four
months of memory traces from over fifty servers within our
university’s IT department. Each server is used to host an
average of 15 VMs running a mix of web services, domain
controllers, business process management, and data ware-
house applications. The servers are managed with VMware’s
Distributed Resource Management software [24], which dy-
namically reallocates memory and migrates virtual machines
based on their workload needs. Figure 1 shows the amount
of memory left idle on a set of five representative machines

VM

Web Server

Free

Free

Memcached

VM

VM

Web Server

Free

Free

Memcached

VM

<K,V> <K,V>

<
K
,V
>

<
K
,V
>

(a) (b)

client

PM #2 RAM PM #1 RAM PM #1 RAM PM #2 RAMDB

Figure 2: Physical RAM map shows how a physical ma-
chine (PM) composes its memory. (a) Traditional Mem-
cached uses only dedicated memcached space for cache; (b)
Mortar uses all the spare memory in the whole system.

over the course of a month, and the histogram of the amount
of free memory on the full set of 58 servers, ignoring main-
tenance periods where VMs have not yet been started and
nearly all memory is free. We find that at least half of the
machines have 30% or more of their memory free. This
level of overprovisioning was also shown in the resource ob-
servations from [4]. Clearly it would be beneficial to make
use of this spare memory, but simply assigning it back to the
VMs does not guarantee it will be used in a productive way.
Further, reallocating memory from one VM to another can
be a slow process that may require swapping to disk.

To improve this situation, we present the design of Mor-
tar, a system that enhances the Xen hypervisor to pool to-
gether spare memory on each machine and expose it as a
volatile data cache. When a server has spare memory ca-
pacity, VMs are free to add data to the hypervisor managed
cache, but if memory becomes a constrained resource, the
hypervisor can immediately evict objects from the cache to
reclaim space needed for other VMs. This grants the hyper-
visor far greater control over how memory is used within
the data center, and improves performance by making op-
portunistic use of any spare memory available.

We present two example usages for the Mortar frame-
work. Our first prototype aggregates free memory through-
out the data center for use as a distributed cache follow-
ing the standard memcached protocol. This allows unmod-
ified web applications to achieve performance gains by op-
portunistically using spare data center memory. Next, we
demonstrate how Mortar can be used at the OS-level to trans-
parently cache and prefetch disk blocks for applications. Pre-
fetching is an ideal candidate for Mortar’s volatile data store
because the aggressiveness of the algorithm can be tuned
based on the amount of free memory available.
The contributions of this paper are as follows:
• A framework for repurposing spare system memory that

otherwise would be idle or poorly utilized.
• A prototype disk prefetching system that aggressively

reads disk blocks into spare hypervisor memory to reduce
the latency of future disk reads.
• An enhanced memcached server that can utilize this hy-

pervisor controlled memory to build a distributed application-
level cache accessible by web applications.
• Cache allocation and replacement algorithms for priori-

tizing access to spare memory and balancing the need to

retain hot data in the cache against the goal of being able
to immediately reclaim memory for other uses.
We have thoroughly evaluated Mortar using microbench-

marks, realistic web applications, and disk access traces.
Our results demonstrate that Mortar incurs an overhead un-
der 0.03ms on individual read accesses, and illustrates the
benefit of making use of all free memory in a data cecnter.
Our fast cache release algorithm can reclaim gigabytes of
memory within 0.1ms. In experiments driven by real server
memory traces, Mortar improves web performance by over
35% by using a spare memory based cache. When using only
500MB of idle server memory for a prefetch cache, Mortar
makes disk reads in an OLTP benchmark three times faster.

2. Background and Motivation
In this work we assume Mortar is run in a public or pri-
vate cloud environment that makes use of a virtualized in-
frastructure to adapt quickly to different user demands. As is
now common, we assume that dynamic resource provision-
ing techniques [3, 11, 19, 23–25] are frequently readjusting
resource shares for virtual machines based on their work-
loads. Even in these automated systems, overprovisioning is
still common since some spare capacity is left on each ma-
chine to handle rising workloads locally without resorting to
more expensive VM migrations.

Ideally, this spare capacity would be opportunistically
used, but then freed when it is needed for a more important
purpose. For resources such as CPU time, this can be easily
accomplished using existing CPU schedulers that can assign
weights for different VMs and can adjust scheduling deci-
sions on the order of milliseconds. Unfortunately, memory
cannot be reassigned as efficiently or as effectively as CPU
shares.

There are two challenges that prevent memory from being
used as a flexible resource like CPU time. First, memory
is generally only helpful if it is allocated in large chunks
over coarse time scales (i.e., minutes or hours). If a VM
has processing to do, it can immediately make use of more
CPU time, but an increased memory allocation can take time
to fill up with useful data. Further, rapidly increasing and
decreasing a VM’s memory share can lead to disastrous
swapping. The second challenge is that adjusting a VM’s
memory share generally has an unpredictable impact on
performance. This is partly because operating systems have
been designed to greedily hoard whatever memory they can
make use of. Over time, a VM will consume any additional
memory pages it is given for its disk cache, but this will
not necessarily have a significant impact on application-level
performance.

One approach that has gained popularity for directly
translating more memory into better performance is the use
of in-memory application-level caches such as memcached.
Many web applications, such as Wikipedia, Flickr, and Twit-
ter, use memcached to store volatile data such as the results

 1

 2

 3

 4

 5

 6

 7
M

em
o

ry
 (

G
B

)

Spare Memory Trace

 0

 1

 2

 3

 4

 5

R
es

p
o

n
se

 T
im

e
(s

ec
)

Time (6 hours total)

Ballooning
Mortar

(a) Web Response Time

 0

 10

 20

 30

 40

 50

 60

1 2 3 4 5

R
e
le

a
se

 T
im

e
 (

se
c
)

Released Mem. (GB)

(b) Swap Time

Figure 3: Ballooning vs. Mortar

of database queries, allowing for much faster client response
times as depicted in Figure 2(a). Each memcached node
holds a simple key-value based data store, and these nodes
are then grouped together to create a distributed in-memory
cache. However, memcached works by allocating fixed size
caches on each server. Thus by itself, memcached is not ef-
fective for making use of varying amounts of spare memory.

Our goal in Mortar is to expose unallocated system mem-
ory so that applications such as memcached can make bet-
ter use of it. By having the hypervisor control access to
this volatile storage area, Mortar can prioritize how differ-
ent guests access the memory and allows it to be reclaimed
much more quickly than if it must be ballooned out of the
guest. Mortar uses a modified Xen hypervisor that exposes
a new hypercall interface for putting and retrieving data in
the free memory pool. We believe that this interface will be
useful for a wide range of scenarios at both the system and
application level. In this paper we present two examples: a
modified version of memcached that taps into spare hypervi-
sor memory and an OS-level disk block prefetching system.

3. Hypervisor-Managed Resources
Traditionally, the guest OS and applications controlled re-
sources that were statically assigned to the VM, and the
hypervisor primarily provided isolation. While this offered
the strictest performance guarantees, the overall resource
utilization of the physical machine could be low because
the hypervisor did not take different workload demands and
spare resources into consideration.

To overcome this limitation, dynamic resource manage-
ment [25] emerged to control the usage of memory accord-
ing to priority and necessity. For instance, the balloon drivers
in the hypervisor can monitor memory access patterns of
each VM and grant more memory to more aggressive ones.
This has many benefits by allowing VMs to grow and shrink
based on their demand, but it can still cause some serious
problems since the hypervisor does not know what memory
is being used for and the VM does not know when it will get
more or less RAM.

To show this, we run a memcached VM in an environment
with automated memory ballooning. In the experiment, a
memcached VM is first assigned all spare memory, but then

VM B

OS

App

VM A

OS

Mortar
Bridge

Free Memory Pool

App K,V K,V

K,V

K,V

K,V

VMM Cache Mgr

Figure 4: Mortar allows an application or OS to store Key-
Value data in the hypervisor’s free memory pool.

the allocation changes based on the memory trace shown in
the upper part of Figure 3(a) (see Section 6.5 for the full
experimental setup). As the memory allocated to the VM
varies over time, pages from memcached must be swapped
to disk, causing the response time to rise to several seconds,
worse than not using the cache at all.

Not only is performance terrible due to swapping, the
fact that data needs to be written to disk for each mem-
ory reconfiguration can dramatically increase the amount
of time required for resource management operations. Fig-
ure 3(b) shows the time needed to reduce the memory allo-
cation when using ballooning on a VM with resident data
in memory. This can easily take tens of seconds if multiple
gigabytes must be written to disk.

Both of these problems occur because of the semantic
gap between the hypervisor and VM: the operating system
and applications within the VM cannot distinguish between
memory dedicated to the VM and memory which may soon
be reclaimed by the hypervisor. In Mortar, we bridge this
gap by not only allowing the hypervisor to dynamically
allocate memory at fine granularity, but to understand how
that memory is being used—it separates a VM’s memory
into that used for crucial application data and that used for
volatile pages which can be recovered elsewhere if needed.
While we focus on using this for disk (Guest OS level)
and application level caches, our approach of granting the
hypervisor greater knowledge and control of memory holds
promise for a wide variety of general purposes.

4. Mortar Framework
The Mortar framework is divided into two main components
as shown in Figure 4. The Mortar Bridge is composed of a
pair of interfaces at the hypervisor and kernel levels that al-
low user applications to transfer data to and from the hyper-
visor’s free memory pool. This interface can be accessed via
system calls within user-space, or with direct hypercalls in
kernel-space. The request to put or retrieve data from the hy-
pervisor is passed to the Mortar Cache Manager, which is re-
sponsible for managing the hypervisor’s free memory pool.
This section describes the interface of the Mortar Bridge and
how it is used by our two prototype applications. We then
describe the eviction and management policies supported by
Mortar in Section 5.

4.1 Repurposing Unallocated Memory
A hypervisor maintains a list of spare memory that can be
allocated to VMs on demand. In order to use this spare mem-

!"#$%#&%&'()*

*
*
*

+,-.*/0-*

!*

1(&(23(*1(4*

!*

!"#$%#*

567$(8*,%99*

*

5(:)*17;*

<;;92&%=":*

*

5"&>($*?;(:*

!

5(:)*1(4*

1(&(23(*17;*

!

,9"7(*
*

@2$'*AB.*CD*

AB.CD*

15-*E(%)(#*

+,-.*/0-*

!"#$%#*

B(#:(9*

!")F9(*

*

G#2)H(*

I($@((:*

567$(8*,%99*

%:)*

E6;(#&%99*

AB.CD*

1JK*E(%)(#*

567$(8*,%99*

!"#$%#*

E6;(#327"#*

!")F9(*

*

!(8"#6*

!%:%H(8(:$*

*

AB.CD*

!%:%H(8(:$*

A?-.*B.*CD*

A1J+/1LD*

E6;(#&%99*

A?-.*B.*CD*

A1J+/1LD*

/7(#*5;%&(* B(#:(9*5;%&(* E6;(#327"#*5;%&(*

G2:%#6*-%&>($*

!"#$!%#$!&#$

Figure 5: Mortar Protocol Processing Flow: (a) Equivalent
protocol with memcached supports the same access method
to Mortar so that we do not need to change applications; (b)
System call moves data from user to kernel; (c) Hypercall
bridges between kernel and hypervisor.

ory as a cache, we need a way to easily and quickly trans-
fer data between a guest VM and the hypervisor controlled
free memory pool. Mortar does this by defining a new Linux
system call and a Xen hypercall which together provide the
interface to a key-value store. Both of these calls take a key,
a value, an operation (put, get, or invalidate), and an optional
field that can set an expiration time for a new object. Com-
munication between a VM and the hypervisor in Xen can be
done through hypercalls, event channels plus shared mem-
ory, or the xenstore. Event channels plus shared memory and
xenstore have limitations when transferring large amounts
of data, whereas a hypercall delivers a physical address to
the hypervisor, which can translate the physical address into
the machine address and copy the data, so we use this ap-
proach. Depending on how Mortar is being used, these calls
can originate in a user-space application or inside the guest
VM’s kernel; for this explanation we assume requests orig-
inate in user-space since this subsumes all the steps needed
for the kernel case.

On a put operation, the calling application provides a key
and value to the Mortar kernel module, which copies the data
from user space to kernel space and invokes a hypercall.
Moving objects from user space to hypervisor space via
kernel space is necessary because no direct connection is
possible from the user perspective. While the memory copies
from user space to kernel space and then hypervisor space
has a processing overhead, directly copying non-contiguous
memory from user space is a non-trivial problem since the
hypervisor does not know how the virtual address space is
organized. If the hypervisor has enough unallocated pages
to store the object, it is copied into the host’s free memory.
The pages used for the object are then moved from the
hypervisor’s free page list to a new “volatile page list”,
indicating that the page is being used to store cache data,
but that it can be immediately reclaimed if necessary. A get
operation reverses this procedure: the key is used as an index
to a chained hash table which verifies the object is still in
memory and copies it back to the kernel and then the user
space application. Since the hypervisor is invoked on each
operation it can verify the VM should have access rights to
the data and can enforce prioritization across VMs.

Hardware

Application
read(fd, size)

MortarLoad Callbacks I/O Thread

libfuse

VFS FUSE Mortar Kernel Module VFS

Disk
Mortar Cache Manager

<K, V> <K, V>
K=(inode,offset)
V=(rc,bytes[rc])

User

Kernel

Hypervisor

pread_handler
(file, offset, size)

cache_lookup(inode, offset) cache_lookup(inode, offset)

cache_insert(inode, offset)

pread(file, offset, size)

Request
Queue deq req

miss

wakeup

miss

Mortar put systemMortar get system

enq req

Figure 6: MortarLoad disk caching and prefetching.

4.2 Mortar-based Memcached
While Mortar’s data store could be used for many purposes,
our first prototype uses it to store data following the mem-
cached architecture. We have modified the memcached ap-
plication so that instead of using a fixed memory region to
store all cached data, it invokes the Mortar system call to ask
the hypervisor to hold the data. This modified memcached
process can then be run in Dom-0 or a guest VM, and can
be seamlessly merged with an existing memcached server
pool. This lets Mortar instantly be used by many existing
applications to access a distributed memory pool available
throughout the data center.

Mortar modifies the backend memory management rou-
tines in memcached to change the course of the put and get
functions so they route data to the hypervisor rather than user
memory. Since the hypervisor may revoke memory storing
an object without notifying memcached, a get request may
return an error code for a missing object. Note that this is
no different from what would happen in a regular mem-
cached server if the object has been evicted, so we require
no changes to existing applications.

Figure 5 shows the protocols of applications, Mortar-
cached (our modified memcached), kernel, and hypervisor.
First, a web application issues a request to Mortarcached
using the standard memcached protocol. Mortarcached re-
ceives the binary packet and checks the operation code. A
get or put system call is then issued to the Mortar kernel
module, then the kernel module simply delivers the request
to hypervisor space by calling a new hypercall. Later in Sec-
tion 6.2, we will show how much overhead occurs due to
this additional processing. Modifying an application such as
memcached to work with Mortar is a straightforward process
(e.g., adding about 500 lines of code).

4.3 Mortar-based Prefetching
This section describes the design and implementation of our
prefetching and caching system, MortarLoad. This system
leverages the easy access to the free memory pool that is
provided by Mortar to automatically prefetch data from stor-
age systems (local or network disks) based on access predic-
tions, and store the data in Mortar memory to expedite fu-
ture accesses. MortarLoad is completely transparent to user

applications. At the highest level, an application requests
I/O operations through standard read() and write() system
calls, which will be forwarded to MortarLoad. Depending
on where the data is, MortarLoad will fetch it from Mortar,
or pass the request to underlying storage systems.

MortarLoad can be implemented in both kernel and user
spaces. In this work for easy implementation, we implement
a prototype of MortarLoad in Linux as a FUSE filesystem
with backend calls through the Mortar hypervisor API. We
leave a kernel implementation as future work and expect to
achieve higher efficiency and performance. Figure 6 presents
the overall architecture of MortarLoad.

MortarLoad adds an additional cache layer beyond the
operating system’s standard disk cache. This second-level
cache uses spare memory provided by the Mortar frame-
work. The cache management and replacement algorithms
are managed by Mortar in the same way as memcached. In
fact, requests from memcached and the disk can be stored
simultaneously.

MortarLoad translates every I/O request into a tuple of
<key, value>, where the key into the cache represents the
inode of the requested file, file offset, and size of the op-
eration, i.e., a function f (inode, size, offset). Requests are
automatically aligned to 128KB-sized blocks by the FUSE
layer.

For a read request, the Mortar cache is checked for the
presence of this key. This call crosses the system call bound-
ary into the kernel and then as a hypervisor call across the
VM boundary. If the request can be satisfied from cache, a
copy of the data is copied back from the hypervisor by Mor-
tar. If the request is not in cache, it is enqueued for a separate
I/O thread to handle. Serializing disk I/Os through a separate
thread is to improve the performance when there are many
simultaneous readers, especially when there are prefetch re-
quests. This thread has an input request queue and an asso-
ciated condition variable that it waits on.

Each request enqueued to the I/O thread also has a des-
tination buffer and a blocking semaphore. When the I/O
thread wakes up, it dequeues the latest request, performs an
additional cache lookup (in case different threads requested
the same block), and if not found, reads the data from the
disk with a call to pread(). The resulting data and return code
are copied to the location pointed to by the request and the
associated semaphore increased. Another call is also made
to place the key inode, size, offset and data result code, data
bytes into the cache. When the calling context is woken up
after waiting on the semaphore, it copies the data back into
FUSE which then copies it to the application.

Prefetching is handled by having the calling thread place
additional requests on the I/O queue that read several blocks
ahead of the current request. The amount of prefetching is an
adjustable start-up parameter. These requests have no wait-
ing semaphore, but are still placed into the cache after be-
ing read from disk. Our experiments have shown that the

prefetching accuracy is very high (> 99%) for many work-
loads that perform sequential reads. As an enhancement, we
plan to investigate the use of feedback-directed prefetching
to vary the aggressiveness based on recent performance and
the size of memory available to Mortar.

For a write request, MortarLoad currently puts the re-
quest straight into the I/O thread’s input queue without any
cache lookup. In other words, writes are handled with a sim-
ple write-through policy. If the I/O request is a write and
is writing to an already-cached block, that block is first re-
moved from the cache, and then written to disk normally. As
a possible enhancement, we plan to investigate optimizations
including a write-back cache.

There are other filesystem operations which as currently
implemented do not make use of the cache at all, to name
a few, getattr, access, readdir, chmod, chown, and fsyn. In-
stead, these operations write directly to the disk, bypassing
the I/O thread, and invalidate the corresponding cache en-
tries as needed.

5. Cache Management Mechanisms
Mortar’s cache management has two important roles: (1)
handling data replacement/eviction; (2) enforcing VM pri-
orities based on weights.

5.1 Cache Replacement Algorithms
Mortar uses inactive memory to store application data, but
it is possible that this memory will suddenly be needed for
either a new, migrated, or overloaded VM. Fortunately, since
the data store is considered volatile, Mortar can invalidate
cache entries without needing to worry about consistency.
Ideally, cache eviction should follow an intelligent policy
such as removing the least recently used (LRU) entries first,
however, this can be too slow if gigabytes must be freed and
each cache entry is on the order of kilobytes.

The Xen hypervisor uses Two-Level Segregate Fit (TLSF)
[17], which is a general purpose dynamic memory allocator
specifically designed to meet real-time bounded response
times. The worst-case execution time of TLSF memory al-
location and deallocation has to be known in advance and
be independent of application data. With this, Mortar must
support two different memory release schemes: a slower,
but more intelligent scheme used to replace objects when
the cache is full or when only a relatively small amount of
memory needs to be freed, and a fast release approach that
can quickly purge a large portion of memory. This allows
efficient cache management in the normal case, but still al-
lows memory to be rapidly reclaimed when needed for other
purposes.
Slow Cache Replacement Algorithm (SCRA): We use a
hybrid cache replacement algorithm, which prefers to evict
expired objects, but falls back to a combination of LRU and
least frequently used (LFU), called LRFU, to improve the
combined results [12]. LRU requires keeping age records

for caches, and LFU needs to keep reference counts; Mor-
tar tracks this information on a per-object basis, and also
indexes objects by VM in order to support the cache pri-
oritization scheme described in the next section. The algo-
rithm works by alternating between removing the least re-
cently used item or the least frequently used one. The com-
bination of LRU and LFU tries to balance the drawbacks of
each: unpopular objects that happen to have been accessed
recently may still be evicted, and content that was briefly
popular some time in the past may be removed if it has not
been touched recently. Mortar uses SCRA when replacing
objects in the cache, or when a relatively small amount of
memory (e.g., up to 1GB) must be freed for other uses.
Fast Cache Replacement Algorithm (FCRA): Since Mor-
tar tries to fill all the spare memory in the system, it must be
prepared for the situation when the system needs to free a
large amount of memory instantly. Dynamic resource man-
agement techniques may require additional RAM to be al-
located to an important VM, and since the cloud service
model is pay-as-you-go, users may turn off and turn on their
VMs frequently, causing sudden demands for large amounts
of memory. In these scenarios, Mortar must guarantee fast
cache eviction to prevent delays in resource management op-
erations.

Mortar’s fast cache eviction algorithm works by simply
stepping through the hash-chain used to store all of the ob-
ject keys, removing them in order. Since the hash function
essentially randomizes the object keys, this results in a ran-
dom eviction policy. Since no cache frequency or recency
information needs to be used or updated, this can be per-
formed very quickly. While FCRA allows large numbers of
objects to be removed from the cache in a short period of
time, it may harm the performance of applications since hot
data may be inadvertently evicted from the cache.

5.2 Weight-based Fair Share Algorithm
Mortar uses a weight-based prioritization system to deter-
mine how cache space is divided when multiple VMs com-
pete for cache memory. If one VM is assigned twice the
weight of another, then the higher weight VM will be allo-
cated twice as much cache space. However, if a high weight
VM does not use its entire allocation, a lower weight VM
will be able to fill the spare capacity with its own data. If the
high weight VM later needs more storage space, the lower
priority VM’s data will be evicted.

Mortar’s weight-based proportional fair partitioning scheme
works as follows. Let W = {w1,w2, ...,wN} be a set of
weights and C = {c1,c2, ...,cN} be a set of current cache uti-
lizations, where wi and ci are the weight and current cache
use of VM i, and N is the number of VMs. We denote P
as the total cache capacity. The weight ratio of VM i is
ri =

wi
∑

N
j=1 w j

, and the fairness parameter is fi =
ci/P

ri
. If a vir-

tual machine has fi > 1, this indicates that it is using more
than its weighted fair share of the cache.

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Same-VM Diff-VMs Diff-PMs

R
es

p
o

n
se

 T
im

e
(m

s)

Client and Cache Daemon Locations

Memcached
Mortar

(a) Response Time Overheads

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

5 10 50 100 500 1000

R
es

p
o
n
se

 T
im

e
(m

s)

Value Size (KB)

Memcached
Mortar

(b) Mortar Value Size Benefits

Figure 7: (a) The overhead of Mortar is on the order of
0.03ms compared to memcached; (b) Mortar has better per-
formance over memcached when the value size becomes
larger than 50KB.

When the cache is fully utilized, the objective is to ensure:

f1 = f2 = ...= fN . (1)

Equation (1) divides the cache size proportionally based
on the N virtual machines’ weights. This is achieved by Mor-
tar’s Cache Manager with consideration of the fairness met-
rics when handling a put request. If there is spare capacity
in the cache, then Mortar will always allow a VM to add
the object, regardless of its current fairness value. However,
when there is no cache space left, Mortar finds the VM with
the largest fairness metric f and evicts data stored by that
VM in order to fit the new object. This ensures that VMs un-
fairly utilizing excess capacity must release their data when
another VM wishes to use its weight-based allocation.

6. Experimental Evaluation
Our goals for the evaluation is to see the overheads of Mortar
through micro-benchmarks, and to check the performance
for both Mortar-based memcached and prefetching through
real workload-based benchmarks.

6.1 Environmental Setup
System Setup: Six experimental servers, each of which
has quad-core Intel Xeon X3450 2.67GHz processor, 16GB
memory, and a 500GB 7200RPM hard drive. Dom-0 is de-
ployed with Xen 4.1.2 and Linux kernel 3.5.0-17-generic,
and the VMs use Linux kernel 3.3.1.

Memslap1 (micro-benchmark): For our micro-benchmark
experiments, memslap from a memcached client library is
used. It generates a load against a cluster of memcached
servers with configuration options including number of con-
current users, operation type, and number of calls.

CloudStone Benchmark [21]: CloudStone is a multi-
platform benchmark for Web 2.0 and Cloud Computing.
It is composed of a load injection framework called Faban
(client), and a social online calendar Web application called
Olio (server). CloudStone provides a framework to generate

1 http://www.libmemcached.org

 0

 10

 20

 30

 40

 50

 60

 20 30 40 50 60 70 80 90 100 110

R
es

p
o

n
se

 T
im

e
(m

s)

Number Of Concurrent Users

No-Cache
Memcached

Mortar

(a) Home Page

 0

 10

 20

 30

 40

 50

 60

 20 30 40 50 60 70 80 90 100 110

R
es

p
o

n
se

 T
im

e
(m

s)

Number Of Concurrent Users

No-Cache
Memcached

Mortar

(b) Tag Search

Figure 8: When combined with a realistic web application,
Mortar’s overheads are insignificant.

workloads of varying strengths and measure application per-
formance. The PHP-based Olio web application queries a
memcached node before issuing read requests to its MySQL
database.

6.2 Mortar Overheads
Mortar keeps data in hypervisor space, but allows it to be
accessed from both kernel modules and user space appli-
cations. To evaluate the overhead of Mortar’s operations,
Figure 7(a) shows the time to perform a get request using
both standard memcached and our Mortar-based version.
Kernel-based applications that make use of Mortar’s data
store should see a lower level of overhead since data will
not need to be moved to user space. Since Mortar requires
two data copies for each request, it incurs a higher overhead
than a traditional memcached server, which uses only preal-
located user space memory.

We test each system using the memslap benchmark, and
report the average response time and standard deviation for
100 requests, each of which has a 100B key and 5KB value.
We test three scenarios: 1) when the memslap client is in
the same VM as the cache daemon, 2) when in a different
VM but the same host, and 3) when the client is on an en-
tirely different physical machine (the most common case in
practice). In each case, we find that the overhead of Mortar
is quite small, on the order of 0.03ms, less than 15% over-
head if the cache must be accessed over the network. We
believe this overhead is a small price to pay in exchange for
opening up a larger amount of memory for the cache. Of
course, our approach can be used in conjunction with regu-
lar memcached servers, allowing for fast, guaranteed access
for priority applications and slower, best-effort service to ap-
plications using the Mortar memory pool.

We next consider how the data value size affects Mortar’s
overhead. Figure 7(b) shows that data size does not have a
significant impact on Mortar’s response time. Memcached
is designed primarily for web applications that must store
relatively small objects (maximum size ≤ 1MB), but Mortar
is a general data storage framework, so we specifically use
a memory allocator, TLSF, that supports a more consistent
memory (de)allocation speed regardless of size.

 0

 10

 20

 30

 40

2[1] 4[2] 6[3] 8[4] 10[5]

R
es

p
o

n
se

 T
im

e
(m

s)

Cache Size (GB) [# of Machines]

Single Machine (Remote)
Multiple Machines

Single Machine

(a) Response Time

0.0

0.2

0.4

0.6

0.8

1.0

2[1] 4[2] 6[3] 8[4] 10[5]

H
it

 R
at

e

Cache Size (GB) [# of Machines]

Multiple Machines
Single Machine

(b) Hit Rate

Figure 9: Increasing the total cache size (either on a single
machine, or divided across multiple), increases hit rate and
reduces respones time when Mortar is accessed with a Zipf
(α = 0.8) request distribution.

6.3 Web App. Performance Overheads
The previous experiments show the low-level overheads of
Mortar, but it is also important to see how it performs with
a more realistic web application. We use the CloudStone
benchmark [21] to measure how Mortar’s overheads affect
the performance of a real application. We dedicate an iden-
tical amount of memory to both Mortar and regular mem-
cached and measure the client performance under a range of
workloads.

Figure 8 shows the performance of CloudStone when 25
to 100 concurrent users connect to Olio. We consider the
four most common operation types since together they make
up over 95% of all requests; the other request types perform
similarly. The results show that the Home Page (Figure 8(a))
operation has the biggest difference between no-cache and
cache because they involve many database accesses to a
small set of hot content. We find that Mortar and memcached
have essentially no difference in application-level response
time, despite the minor overheads shown by Mortar when
handling small requests in the previous section.

The Tag Search operation shown in Figures 8(b) has simi-
lar performance. Since these operations access a much wider
range of database records, it is less likely that requests will
be found in cache, reducing the overall performance bene-
fit compared to the no-cache case. Once again, we find that
Mortar incurs no overhead compared to a standard mem-
cached deployment.

In all of the tests, we find that the performance for Mortar
and standard memcached scales identically as the number of
clients rises. This suggests that our Mortar-enhanced version
of memcached has both minimal additional latency and can
support a similar level of concurrency as traditional mem-
cached.

6.4 Impact of Cache Size
The goal of Mortar is to opportunistically make use of all
free memory, so we next consider how application perfor-
mance varies with the size of cache available. We use a
simple web application that maintains a database filled with
10GB worth of entries, each sized at 50KB. We vary the size
of the cache and measure Mortar’s response time and hit rate.

 0

 1

 2

 3

 4

 5

 6

 7

M
em

o
ry

 (
G

B
) Mortar

Memcached

 0.2

 0.3

 0.4

 0.5

 0.6

R
es

p
o
n
se

 T
im

e
(s

ec
)

 0

 10

 20

 30

 40

 50

H
it

 R
at

e
(%

)

Time (6 hours total)

Figure 10: Mortar makes use of all spare memory, leading to
lower response times and a higher hit rate than memcached.

We allow the cache to warm up to a consistent hit rate after
each size changes.

To demonstrate the benefits of more cache space, Figure 9
shows how cache performance changes while varying the
available memory both in a single machine (accessed either
locally or by a remote client) and for multiple machines (one
local and up to four remotes, each adding 2GB of cache
space). As expected, performance improves as the size rises.

6.5 Dynamic Cache Sizing
To truly see the benefits of using Mortar, we need to consider
a scenario where the amount of memory available for the
cache varies over time—a scenario which memcached is
unable to take advantage of since the cache is statically sized.
To demonstrate this, we take one of the memory traces from
our IT department shown in Figure 1 and condense it down
to a six hour period. We compare two cases: 1) a traditional
memcached server with a fixed cache size of 1.2 GB (the
largest a fixed sized cache can be over the entire trace) and
2) our Mortar implementation that can scale the cache size
up and down based on the server’s free memory. We use
the cache as a frontend to a MySQL database that is filled
with 16GB of data, with an average record size of 50KB.
When memory needs to be reclaimed from the cache, we
use Mortar’s slower, but more accurate, eviction policy; as
will be shown in Section 6.8, this still allows memory to be
freed in under one second.

Figure 10 illustrates the memory available to each cache,
the response time, and the hit rate as web requests are pro-
cessed over the course of the experiment. The clients make
requests at a constant rate, but queries follow a Zipf distri-
bution with α = 0.8, resulting in the type of skewed dis-
tribution commonly seen by web applications that have
a relatively small portion of more popular content [29].
Since memcached has a fixed size cache throughout the
trace, its performance is relatively steady with an average
response time of 0.57 seconds and a hit rate consistently be-
low 20%. In contrast, Mortar’s performance varies based on
the amount of available cache space, with a response time
ranging from 0.3 to 0.52 seconds. Overall, Mortar has an

 0

 5

 10

 15

 20

 25

Uniform α=0.6 α=0.8 α=1.0

N
u
m

b
e
r

o
f

H
it

s
(x

1
0

3
)

Memcached
Mortar

Figure 11: Varying the request distribution affects the like-
lihood of data being within the cache. In all cases, Mortar
has substantially more cache hits since it has more memory
available to it.

average response time of 0.38 seconds, a 35% improvement
over memcached.

We next study the impact of the request distribution on
cache performance. Figure 11 shows the total number of
cache hits when changing the request distribution for the ex-
periment described above. With a uniform distribution or a
Zipf distribution with a low α value, it is less likely that re-
quested content will have been seen recently enough to still
be in the cache. In all cases, Mortar provides a substantial
benefit over memcached since it is able to make use of about
2.6 times as much cache memory over the course of the ex-
periment.

6.6 Multi-Server Caching
The previous experiment illustrates the benefits of Mortar,
but also shows how the variability in free memory on the
caching server can result in less predictable performance.
To mitigate this drawback, we next experiment with Mortar
in a larger scale setting where multiple hosts each run both
applications and a Mortar cache. We use a set of five memory
traces from our university’s data center, which have been
scaled down to prevent the free memory on each host from
becoming over half of the total memory size, as shown
in Figure 12(a). The total spare memory is initially close
to 25GB, but goes through several changes before ending
around 13GB. No host has memory size below 1.2GB (min
memory).

Our goal is to understand how having a larger number
of servers available for caching data can reduce the perfor-
mance variability of the applications using the cache. To-
wards this end, we compare two setups: the single-server
case where a single server acts as a cache, and the multi-
server case where five servers use their combined spare
memory for the cache. In each case we vary the number of
applications active on each physical host from one to five.
For the single-server case we select the trace that on average
has the most free memory available, and this is used to cache
data by up to five applications. In the multi-server case, up
to twenty-five applications distribute their data across all five
hosts. If the data cannot be stored in the cache it must be re-
trieved from a MySQL database.

S
p
ar

e
M

em
o
ry

 S
iz

e
(G

B
)

Time (1 month)

5 Hosts

 0

 5

 10

 15

 20

 25

 0 50 100 150 200 250 300 350

min spare memory

total memory

(a) Memory Trace

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 1 2 3 4 5

A
v
er

ag
e

R
es

p
o
n
se

 T
im

e
(m

s)

of Apps per Physical Machine

MySQL
Single Server

Multiple Servers

(b) Response Time

0.0

0.2

0.4

0.6

0.8

1.0

 1 2 3 4 5

H
it

 R
at

e

of Apps per Physical Machine

MySQL
Multiple Servers

Single Server

(c) Hit Rate

0.0

0.2

0.4

0.6

0.8

1.0

 0 10 20 30 40 50 60 70 80 90 100

C
D

F

Response Time (ms)

Multiple Servers
Single Server

MySQL

(d) CDF

Figure 12: Running Mortar on more servers reduces performance variability; (a) depicts the system memory traces over time;
(b) shows the average response times; (c) illustrates the hit rates; (d) cumulative density functions (CDFs) for response time.

Figures 12(b) and 12(c) illustrate the average response
time and the hit rate over the entire memory trace. Even
though the multiple server scenario has a larger number of
total applications running, it has both a 20ms better response
time and 20% better hit rate than the single server setting.
This happens because the variations in free memory on each
of the five hosts do not generally occur at the same time,
increasing the chance that at least some application data
will be found in the cache compared to the single server
case where periods of memory scarcity significantly impact
all applications. Figure 12(d) depicts the distribution on re-
sponse times, and further reaffirms the result that spreading
Mortar’s data across multiple servers leads to not only im-
proved response times, but a lower standard deviation.

6.7 Disk Prefetching with Mortar
We next evaluate the overheads and benefits of MortarLoad
using the following I/O benchmarks: Slowcat is a synthetic
benchmark written by us to compute typical I/O times in a
carefully controlled manner. This program will read in a file
in increments of a configurable block size and sleep for a
configurable amount of time per read. It reports several us-
age statistics, including the total time spent waiting for read
operations to complete. Videoserver is part of the Filebench
suite of I/O benchmarks [8]. It is intended to mimic the be-
havior of a streaming video server that reads and writes to
several video files at a time. In our configuration, we set
it up for reading three videos and writing one. The overall
I/O amount is approximately 8GB read and 1.5GB written.
OLTP is the database application benchmark in Filebench,
which has a significant percentage of non-sequential reads.

 0

 2

 4

 6

 8

 10

Miss Hit Miss Hit Miss

m
se

c
p
er

 r
ea

d

Linux MortarLoad FUSE

(a) Elapsed Time for Single Reads

0.0

0.1

0.2

0.3

0.4

0.5

Caching Caching+Prefetching

S
p
ee

d
u
p

(b) Videoserver Speedup

Figure 13: Caching + Prefetching Experiments

MortarLoad Overheads: We first study the overheads
of our FUSE based MortarLoad when prefetching is turned
off. Figure 13(a) shows the average read time in milliseconds
measured with slowcat for a 1GB input file read with 1 MB
block sizes under different conditions. We first measure the
uncached base Linux time by forcibly dropping caches, and
executing the program. Once this completes, we re-run it
to measure the time taken when the entire file fits in the
Linux page cache. To measure the impact of MortarLoad,
we mount the MortarLoad file system to act like a caching
loop back file system with a Mortar cache size greater than
the input file size. We perform a similar measurement, this
time flushing the Mortar cache (and Linux cache) before the
first pass and re-running for a second pass (with just Linux
caches dropped) over the Mortar cached data. The final bar
measures the cache miss cost on vanilla FUSE, which is
known to actually improve performance for certain cases,
which turns out to be the case for this particular workload.

Our results show that MortarLoad has similar perfor-
mance to Linux when they experience a cache miss and must
read from disk. A MortarLoad cache hit is slower than a stan-
dard Linux cache hit but in normal operation, the Linux page
cache acts as a first-level cache, only reading from Mor-
tar when it fails to hit in the page cache. This means there
is not a performance reduction to regular cache hits from
using MortarLoad, but that a second-level cache hit to the
prefetched data is somewhat slower than the base cache. We
expect that the MortarLoad cache hit latency can be reduced
by further optimizing our implementation and moving it into
the kernel.

Cache Size (MB)
100 500 1000

Avg. Read Latency Speedup 2.84 3.14 3.79
Avg. Hit Percentage 4.51 22.06 59.72

Table 1: Data prefetching with different memory sizes run-
ning the OLTP benchmark.

Cache and Prefetching Benefits: We next study how
MortarLoad can improve the performance of the Videoserver
benchmark by providing both a larger cache and prefetching.
Figure 13(b) shows the overall speedup with and without
prefetching compared to a baseline without FUSE. These

10
-4

10
-3

10
-2

10
-1

10
0

10
1

 0 1 2 3 4 5 6 7 8

R
el

ea
se

 T
im

e
(s

ec
)

Amount of Memory Released (GB)

SCRA
FCRA

(a) Release Time

 30

 40

 50

 60

 70

 80

 90

 100

 0 20 40 60 80 100 120 140 160 180

H
it

 R
a
te

 (
%

)

Number of Queries (x100)

44 secs

71 secs

SCRA
FCRA

(b) Recovery Time

Figure 14: (a) FCRA releases memory an order of magni-
tude faster than SCRA. (b) However, the speed of FCRA has
the cost of reducing cache performance for a longer period.

results are measured using an initially empty 1GB cache.
The benefits of using prefetching are substantial over using
a plain LRU disk cache (speedup of 45% compared to 15%).

We next evaluate the performance of the OLTP server
while we vary the size of Mortar cache. As shown in Ta-
ble 1, with a 100MB cache, the server sees 2.8× speedup
on average read latency when compared to the case of native
read. When the cache size is set to 1GB, the hit rate is fur-
ther increased to 60% and as the result the read improvement
reaches 3.8×.

Our results illustrate how re-purposing spare memory for
an extended disk cache with prefetching provides substantial
performance improvements. Further, Mortar transitions the
management of memory from inside each VM’s OS to the
hypervisor, which allows for higher-level decision making
as shown in the following sections.

6.8 Responding to Memory Pressure
Mortar’s goal is to opportunistically use all free memory, but
it must be ready to release memory for various situations:
when a new VM enters the system, when a VM in another
physical machine live migrates to this host, or when a VM’s
memory allocation needs to be adjusted.

In this experiment, we measure how much time it takes
to release the demanded amount of memory when the cache
is filled with 50KB objects. We compare the two cache re-
placement algorithms, SCRA (slow but accurate) and FCRA
(fast but random), discussed in Section 5.1. Figure 14(a)
shows the release time as the amount of memory requested
increases. As expected, both approaches take more time for
larger requests, but the FCRA approach can keep the release
time under 0.1 seconds even when releasing the full 8GB
cache (approximately 168 thousand objects), while SCRA
takes more than ten times as long.

Depending on the speed with which memory requests
must be handled, Mortar can be tuned to select which re-
placement algorithm is used for different size requests. In
many systems, a two second latency for memory requests
is acceptable, meaning that SCRA can be used exclusively,
increasing the likelihood that hot data will remain in cache.
Other systems may not be able to tolerate this latency, so, for
example, a 1GB threshold might be used to switch between

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500 600

H
it

 R
at

e
(%

)

Time (sec)

VM w/ Weight 600
VM w/ Weight 300
VM w/ Weight 200

Figure 15: Three VMs with weights 200, 300, and 600 run
web applications starting at times 0, 100, and 300, respec-
tively.

SCRA and FCRA. This would allow all memory reallocation
requests to be handled within only 0.1 seconds.

While FCRA is clearly faster at relinquishing memory,
this comes at a cost since it removes objects without con-
sidering cache locality. To study how the eviction algorithm
affects cache performance, we next test a scenario where the
cache is rapidly resized, and then the time it takes to rewarm
the cache is measured. We start the experiment with a hot
cache filled with 15GB of data. We then cut the cache size
by 8GB, causing more than half of the data to be evicted
by one of our two replacement algorithms. We then imme-
diately increase the Mortar memory pool back to 15GB and
observe the time required to recover the previous hit rate.

Figure 14(b) shows how the hit rate of the FCRA and
SCRA managed caches recover over time. During the mass
eviction, SCRA is able to preserve a larger amount of hot
data by using frequency and recency data, so its initial hit
rate is higher than FCRA which randomly removes data
from the cache. This gives SCRA a significant edge on
rebuilding its cache, allowing it to reach a 90% hit rate 39
percent faster than FCRA.

6.9 Weight-based Memory Fairness
Mortar supports weight-based proportional fair partitioning
to divide the cache between competing VMs. VM’s receive
cache space proportional to their weight, but if there is spare
capacity, even a lower weight VM can make use of it. Fig-
ure 15 shows hit rates of three VMs when they are assigned
different weights. Each VM uses web server-type applica-
tions with request arrival rates following Zipf distribution
(α = 0.8). Each VM starts at a different time, causing the rel-
ative weights to adjust over the course of the experiment. A
VM with weight 200 (VM 200) starts at time 0, and uses the
whole cache because no other VMs are active. At time 100, a
VM with weight 300 (VM 300) starts pushing data into the
cache, so VM 200 surrenders cache space to VM 300 ac-
cording to Equation (1). At time 300, a VM with weight 600
(VM 600) starts causing the cache to be rebalanced again.

While Mortar is able to correctly reallocate cache space
to each of the VMs based on their weights (e.g., VM 600
receives 6

11 of the cache), the same proportion does not
necessarily hold for the hit-rate or response time achieved

by each VM. This is because in a skewed distribution like
Zipf a smaller cache may still fit the most important hot
data. This illustrates one of the challenges in partitioning a
shared cache such as Mortar: weights can be used to control
resource shares, but they may not be directly proportional to
performance.

7. Related Work
Our system draws inspiration from the Transcendent Mem-
ory (tmem) system [16]. Tmem is made up of a set of pools
in the hypervisor that can be used to store the disk cache
pages of each VM. Tmem provides an efficient way to man-
age the cache by providing functions such as compression
and remote cache access. Mortar provides a general purpose
data store, while tmem focuses on swapping the ownership
of full memory pages between the guest and hypervisor to
facilitate disk cache management.

Dynamic memory management systems automatically
control memory allocations for multiple VMs, typically by
using a “ballooning” mechanism to add and subtract pages
from the guest [25, 28]. Waldspurger [25] tracks individ-
ual VM memory usage by monitoring page access rates.
This allows it to grow and shrink VM allocations as needed.
Zhao et al. [28] look at multiple VMs at once and decide
how to divide up memory. Perfectly allocating memory is
impossible since workloads may change over time, so even
when using these systems system admins often leave spare
memory to handle new or rising workloads. The Overdriver
system proposes using network based RAM in times of high
load [27]. In contrast, Mortar focuses on opportunistically
using memory during periods of light load.

Page sharing schemes such as transparent page sharing
(TPS) [10, 25] have been proposed to maximize memory ef-
ficiency. TPS provides a level of abstraction over physical
memory and is able to share pages by identifying identical
content. TPS is another way of freeing up a moderate amount
of memory, but this memory often does not last for long pe-
riods of time, as shown by the Satori [18] system. We be-
lieve that Mortar can be used very effectively in conjunction
with TPS systems by allowing even small numbers of briefly
shared pages to be put to an effective purpose.

Data prefetching has been extensively studied on CPU
cache [22], hard drives [7, 9], and most recently, solid-state
drives [14]. Another very related topic, disk caching, also
draws a great amount of interests for improved performance,
as well as energy efficiency, and here we cannot possibly
present a complete list. To name a few, [2, 5] propose a gray-
box approach to infer and utilize OS and file caches, and [6]
present work combining the study of both.

Smart caching mechanisms in the hypervisor have also
been proposed, for example, [26] combines all persistent
storage in a virtualized cluster and uses local persistent stor-
age as cache to VMs, [13] infers disk block liveness to man-
age VMM memory cache, and [15] describes a caching pol-

icy split between the hypervisor and guest VMs. While [1]
argues lack of disk locality for certain workloads, it suggests
to use memory as a cache in data centers based on the ob-
servation of memory locality. MortarLoad focuses on data
prefetching for file-level accesses within each guest VM, and
is able to leverage the free memory pool managed by Mortar,
which is otherwise unavailable to the guest VMs.

8. Discussion
Performance Unpredictability: To be effective, Mortar
needs to have some amount of spare memory available
throughout the data center. While the traces from our IT
department and anecdotal discussions with system admin-
istrators indicate that this is commonly the case, a valid
concern is that Mortar will lead to deceptively high per-
formance when workloads are light, and poor performance
when workloads rise and there is less spare capacity. Of
course one solution is to use Mortar as a supplemental cache
in addition to a set of regular memached nodes. In practice
however, if Mortar is deployed in a cloud-scale data center
we do not expect this to be a major concern since different
applications will see workload spikes at different times.
Security: Memory and cache-induced side channel attacks
are a concern in shared environments [20]. To increase se-
curity guarantees, Mortar allows to choose whether to put
objects in shared memory (potentially reducing redundancy
among trusting VMs) or private memory. This separation
does not affect how memory is managed, but allows Mortar
to control permission for each data access. While this pre-
vents data leakage, Mortar does potentially expose informa-
tion about the amount of spare capacity on the host, and in
turn the memory utilization level of co-located VMs. Still,
the random behavior of VMs and unknown memory parti-
tions make hard to infer the real metrics.
Private Clouds: Within a private data center, system admin-
istrators can use Mortar both for exploiting spare capacity
and as a way to gain finer control over memory allocations.
Mortar moves memory management from within each VM’s
operating system down into the hypervisor, which may have
more information about the relative priority of different vir-
tual machines. If an important application is known to re-
quire a memcached size ranging from 100MB to 1GB de-
pending on its workload, then the administrator can assign
1GB of memory to Mortar, and mark the application with a
high priority so that it will be able to get the cache space it
needs when its workload is high, but allow another VM to
use the spare memory (perhaps for disk prefetching), when
the workload is low. This kind of flexible, fine grained mem-
ory management is impractical with existing memory bal-
looning techniques.
Public Clouds: We envision that a public cloud may use
Mortar to pool together its spare memory resources and
sell them at a discounted price. For example, Amazon’s
spot-instance market auctions off spare resource capacity in
the form of VMs which may be instantly shutdown if the

provider needs those resources for a higher paying customer.
Mortar allows a similar approach to be used for memory at
a very fine grain. The popularity of the spot market illus-
trates that developers will eagerly make use of even highly
transient resource capacity if the price is right.

9. Conclusion
Mortar represents the start of our vision for new techniques
that opportunistically consume idle resources in a data cen-
ter without imposing overheads on other active applications.
It does this by taking the unallocated memory on each server
and exposing it as a volatile data store that can be rapidly re-
claimed by the hypervisor if needed. Our prototype modifies
the Xen hypervisor to expose this interface to a memcached
server and a disk prefetcher. This allows existing web appli-
cations and the OS to immediately make use of memory that
currently is left idle as a buffer for rising workloads. Mortar
moves the control of memory from within each VM’s op-
erating system to the hypervisor level, and allows it to be
managed at finer granularity than existing approaches that
rely on resizing VM memory allocations. In our future work
we will investigate further uses of the Mortar framework, as
well as how shifting the control of resources from inside a
VM’s operating system to the hypervisor can allow cloud
platforms to make smarter management decisions.

Acknowledgments
We thank the reviewers for their help improving this pa-
per. This work was supported in part by NSF grants CNS-
1253575, CNS-1350766, and OCI-0937875.

References
[1] G. Ananthanarayanan, A. Ghodsi, S. Shenker, and I. Stoica. Disk-

locality in datacenter computing considered irrelevant. In Proceedings
of the 13th USENIX conference on Hot topics in operating systems,
HotOS’13, pages 12–12, Berkeley, CA, USA, 2011. USENIX Associ-
ation.

[2] A. C. Arpaci-Dusseau and R. H. Arpaci-Dusseau. Information and
control in gray-box systems. In Proceedings of the eighteenth ACM
symposium on Operating systems principles, pages 43–56, Banff, Al-
berta, Canada, 2001. ACM.

[3] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield. Xen and the art of virtual-
ization. In Proceedings of the ACM Symposium on Operating Systems
Principles, 2003.

[4] L. A. Barroso and U. Holzle. The Datacenter as a Computer: An
Introduction to the Design of Warehouse-Scale Machines. 2009.

[5] N. C. Burnett, J. Bent, A. C. Arpaci-Dusseau, and R. H. Arpaci-
Dusseau. Exploiting Gray-Box knowledge of Buffer-Cache manage-
ment. In Proceedings of the annual conference on USENIX Annual
Technical Conference, pages 29–44, 2002.

[6] A. R. Butt, C. Gniady, and Y. C. Hu. The performance impact
of kernel prefetching on buffer cache replacement algorithms. In
Proceedings of the 2005 ACM SIGMETRICS international conference
on Measurement and modeling of computer systems, SIGMETRICS
’05, pages 157–168, New York, NY, USA, 2005.

[7] X. Ding, S. Jiang, F. Chen, K. Davis, and X. Zhang. Diskseen:
exploiting disk layout and access history to enhance i/o prefetch. In
USENIX Annual Technical Conference, pages 20:1–20:14, 2007.

[8] FileBench. http://sourceforge.net/projects/filebench/.

[9] B. S. Gill and D. S. Modha. SARC: sequential prefetching in adaptive
replacement cache. In Proceedings of the USENIX Annual Technical
Conference. Berkeley, CA, USA, 2005.

[10] D. Gupta, S. Lee, M. Vrable, S. Savage, A. C. Snoeren, G. Varghese,
G. M. Voelker, and A. Vahdat. Difference engine: Harnessing memory
redundancy in virtual machines. USENIX, 2008.

[11] J. Hwang and T. Wood. Adaptive performance-aware distributed
memory caching. USENIX Internation Conference on Autonomic
Computing, 2013.

[12] P. R. Jelenkovic and A. Radovanovic. Optimizing lru caching for
variable document sizes. Combinatorics, Probability & Computing,
13(4-5):627–643, 2004.

[13] S. T. Jones, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau. Geiger:
monitoring the buffer cache in a virtual machine environment. In Pro-
ceedings of the 12th international conference on architectural sup-
port for programming languages and operating systems, pages 14–24,
2006.

[14] Y. Joo, J. Ryu, S. Park, and K. Shin. FAST: quick application launch
on solid-state drives. In Proceedings of the 9th USENIX conference
on File and stroage technologies, pages 19–19. USENIX Association,
2011.

[15] P. Lu and K. Shen. Virtual machine memory access tracing with
hypervisor exclusive cache. In Proceedings of the USENIX Annual
Technical Conference, ATC’07, pages 3:1–3:15, Berkeley, CA, USA,
2007.

[16] D. Magenheimer, C. Mason, D. McCracken, and K. Hackel. Transcen-
dent memory and linux. Oracle Corp., 2009.

[17] M. Masmano, I. Ripoll, A. Crespo, and J. Real. Tlsf: A new dynamic
memory allocator for real-time systems. ECRTS, 2004.

[18] G. Milos, D. G. Murray, S. Hand, and M. A. Fetterman. Satori:
Enlightened page sharing. USENIX, 2009.

[19] R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski, H. Lee, H. C. Li,
R. McElroy, M. Paleczny, D. Peek, P. Saab, D. Stafford, T. Tung,
and V. Venkataramani. Scaling memcache at facebook. USENIX
Symposium on Networked Systems Design and Implementation, 2013.

[20] R. Owens and W. Wang. Non-interactive os fingerprinting through
memory de-duplication technique in virtual machines. In Proceedings
of the 30th IEEE International Performance Computing and Commu-
nications Conference, PCCC ’11, pages 1–8. IEEE Computer Society,
2011.

[21] W. Sobel, S. Subramanyam, A. Sucharitakul, J. Nguyen, H. Wong,
A. Klepchukov, S. Patil, O. Fox, and D. Patterson. Cloudstone: Multi-
platform, multi-language benchmark and measurement tools for web
2.0, 2008.

[22] S. Srinath, O. Mutlu, H. Kim, and Y. N. Patt. Feedback directed
prefetching: Improving the performance and bandwidth-efficiency of
hardware prefetchers. In Proceedings of the 2007 IEEE 13th Interna-
tional Symposium on High Performance Computer Architecture, pages
63–74, 2007.

[23] C. Stewart, A. Chakrabarti, and R. Griffith. Zoolander: Efficiently
meeting very strict, low-latency slos. USENIX ICAC, 2013.

[24] VMware. Resource management with vmware drs. Technical Re-
source Center, 2006.

[25] C. A. Waldspurger. Memory resource management in vmware esx
server. OSDI, 2002.

[26] A. Warfield, R. Ross, K. Fraser, C. Limpach, and S. Hand. Parallax:
managing storage for a million machines. In Proceedings of the
10th conference on Hot Topics in Operating Systems - Volume 10,
HOTOS’05, pages 4–4, Berkeley, CA, USA, 2005.

[27] D. Williams, H. Jamjoom, Y.-H. Liu, and H. Weatherspoon. Over-
driver: handling memory overload in an oversubscribed cloud. In 7th
International Conference on Virtual Execution Environments, pages
205–216. ACM, 2011.

[28] W. Zhao and Z. Wang. Dynamic memory balancing for virtual ma-
chines. VEE, 2009.

[29] T. Zhu, A. Gandhi, M. Harchol-Balter, and M. A. Kozuch. Saving
cache by using less cache. HotCloud, 2012.

