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Abstract—Flash-based solid-state drives (SSDs) will become
key components in future storage systems. An accurate perfor-
mance model will not only help understand the state-of-the-art
of SSDs, but also provide the research tools for exploring the
design space of such storage systems. Although over the years
many performance models were developed for hard drives, the
architectural differences between two device families prevent
these models from being effective for SSDs. The hard drive
performance models cannot account for several unique charac-
teristics of SSDs, e.g., low latency, slow update, and expensive
block-level erase. In this paper, we utilize the black-box modeling
approach to analyze and evaluate SSD performance, including
latency, bandwidth, and throughput, as it requires minimal a
priori information about the storage devices. We construct the
black-box models, using both synthetic workloads and real-
world traces, on three SSDs, as well as an SSD RAID. We find
that, while the black-box approach may produce less desirable
performance predictions for hard disks, a black-box SSD model
with a comprehensive set of workload characteristics can produce
accurate predictions for latency, bandwidth, and throughput with
small errors.

I. INTRODUCTION

Today, flash-based solid-state drives (SSDs) have appeared
in a wide spectrum of computer systems, from mobile com-
puters where SSDs provide low power consumption and resist
rough handling, to enterprise class server and storage where
SSDs promise high data transfer rate and low access latency.
Because SSDs emulate the hard disk interfaces (SCSI and
SATA), they are treated as block-level storage devices by
host computers. In theory, one can simply replace every
disk drive with an SSD. However, this approach of hard
disk drive (HDD) replacement does not automatically provide
improved performance because traditional operating systems
and applications were optimized for spinning magnetic platters
[1] [2]. For SSDs, time-sensitive and I/O-intensive applications
are often considered as good candidates. For example, Online
Transaction Processing (OLTP) systems can benefit greatly
from caching a small portion of the databases on SSDs to
achieve high IOPS (I/O per second) to the ”hot data” (most
frequently accessed). As SSDs become key components in fu-
ture storage systems, we believe that an accurate performance
model will not only help understand the state-of-the-art of
SSDs, but also provide the research tools for exploring the
design space of such storage systems.
In this paper, we utilize the black-box modeling approach

to analyze and evaluate SSD performance, including latency,

bandwidth, and throughput, extending our prior work [3].
This approach is attractive because it requires limited a priori
information about a storage device. For SSDs, this is especially
beneficial, because SSD vendors are reluctant to reveal the
design details in order to protect intellectual properties. Prior
research showed that the black-box modeling can give a
reasonable performance prediction for hard disks [4] [5]. To
build a good performance model for SSDs, one needs to
recognize that vast architectural differences exist between hard
drives and solid-state drives, e.g., page-level reads and writes,
out-of-place updates, and block-level erase operations that can
lead to slow random writes in a solid-state drive [6] [7]. In this
work, we first build a basic black-box model with traditional
workload characteristics, e.g., read/write ratio and request size.
As we will demonstrate in this paper, although a basic model
works better for SSDs than hard drives, the prediction accuracy
remains unsatisfactory. To address this problem, we investigate
several additional aspects of the workloads in a systematic
manner. Specifically, we add the write stride (for the effect of
request alignments), split the request size into read and write
sizes (because of SSD asymmetric read/write performance),
and change the randomness into read and write randomness
(that have different impacts on the SSD performance). In
addition, we study eight workload-specific models for corner
cases (e.g., read only, random only, etc.). By doing this, we
believe that the models can further reveal the importance of
each individual workload characteristic in the context of the
SSD models.
To construct the black-box models, we collect a large

number of the training data on workload parameters and device
performance, where the value of the latter is predicated as
a function of the former. Our approach applies statistical
machine learning algorithms for model fitting. We evaluate
the models with one hard disk and threes SSDs using the
microbenchmarks, as well as four real-world I/O traces. The
results are encouraging - the mean relative errors of an SSD
model are as low as 9% for the latency prediction, 6% for
bandwidth and throughput, and less than 1% for the workload-
specific models.
Our main contributions in this work are two-fold:

• We analyze a number of different workload characteris-
tics for SSDs and demonstrate that the traditional models
designed for hard drives are ineffective in this case. We
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propose an extended model to properly correlate the SSD
performance and I/O requests, and further investigate the
models for each specific data access pattern.

• Although the black-box performance models are not new
for hard drives, they are known unsatisfactory. In this
paper, we show that this approach can work very well on
a variety of SSDs, that is, the model produces accurate
predictions under a collection of different workloads. To
the best of our knowledge, this work is the first attempt in
developing the black-box performance models that match
the real-world SSDs, which we believe will help design
and utilize flash based storage systems.

The remainder of this paper is organized as follows. Section
II presents the background on flash memory and SSDs. Section
III describes our approach for constructing the black-box
performance models for SSDs, and Section IV evaluates the
models through the microbenchmarks and real-world traces.
We present the related work in Section V and conclude in
Section VI.

II. BACKGROUND

A. Flash Memory

NAND flash memory is an increasingly popular choice for
the secondary storage, due to its low cost and high density.
Each NAND flash package contains a small number of dies
where digital logic gates (memory cells) are grouped into
blocks (e.g., 256KB). A block is further divided into a set
of uniform pages (e.g., 2KB and 4KB). NAND flash memory
supports three kinds of operations: read, write (program),
and erase. Data reads and writes are performed at the page
granularity, but erases are done at the block granularity. Page
writes can only be performed to an erased block, that is, a
page becomes available for writes only after the entire block
is erased. In a typical flash [8], a read operation completes in
25 microseconds and a write operation in 200 microseconds.
In contrast, erase operations take considerably longer time in
1.5 milliseconds.
Because the nature of NAND flash prevents in-place up-

dates, flash memory utilizes out-of-place writes, that is, an
update to an existing page is written to a new location and the
old page is marked invalid. If every page in a block becomes
invalid, then the block can be erased. This process is called
garbage collection. When needed, valid pages in a block can
be copied to new locations to make the block invalid and ready
for garbage collection. Flash wear-leveling that ages memory
cells evenly is crucial, because unlike hard disks, flash memory
wears out - each block can only be erased for a finite number
of cycles (e.g., 100,000 to 1 million). Wear-leveling can be
achieved by carefully selecting an obsolete block, copying
valid pages, updating map structure, and erasing the block.

B. Solid-State Drives

Fig. 1 depicts a typical SSD architecture. From the outside,
a solid-state drive resembles the form factor (2.5 or 3.5 inches)

Fig. 1. SSD Architecture

and has the same interface as a hard drive. Internally, an SSD
is very different from a hard drive that consists of rotating
platters, associated disk heads, and arms. Simply put, an SSD
includes a recording mechanism that consists of several NAND
flash packages and a controller that implements the control
logic. Although SSDs eliminate moving mechanical parts, the
limited number of writes that can be done per cell casts doubt
on their life cycles. The read/write/erase behaviors of SSDs
require careful flash management and data placement in order
to provide high throughput and good lifetime. Compared with
hard drives whose performance is approximate to rotational
speeds, SSDs deliver asymmetric read/write performance that
is highly dependent on vendors and workloads [13] [14]. How
to model this behavior is one of questions that we aim to
answer in this paper.
Internally, the SSD controller contains a processor, a RAM

(cache buffer), and the host interface logic that becomes the
flash translation layer (FTL). The FTL mimics a hard disk and
manages the mappings from logical block addresses (LBA) to
physical flash locations. The FTL is essential to SSDs since
the nature of NAND flash prevents in-place updates. Basically,
the block map can be a direct map that contains the pointers
from a logical block to a physical page, an indirect map, or
a combination of both. For example, N. Agrawal et al. [6]
assumed that the indirect map is stored in the flash while the
direct map is reconstructed during the initialization and kept in
volatile memory during run time. As a widely used technique
designed for NAND flash memories, NFTL (NAND FTL) [15]
[16] utilizes map blocks for storing direct map within the flash.
In this paper, we analyze three SSDs, including Intel X-

25M (SSD I) [10], OCZ Apex (SSD A) [11] and Samsung
(SSD S) [12]. In comparison, we use a 5,400RPM hard disk,
Samsung Spinpoint M7 (HDD S) [9]. Table I lists the specifi-
cation numbers for all the devices. The hard disk specification
[9] does not give the specific read and write bandwidths, but
the numbers are expected to be lower than those of SSDs.
Note that SSD S is one of the early generation flash devices,
which may contribute to its lower performance.

III. BLACK-BOX PERFORMANCE MODELING FOR SSDS

The goal of our performance modeling for SSDs is to build
a black-box model that can be used to predict the perfor-
mance of a given SSD through its workload characteristics.



TABLE I
SPECIFICATION COMPARISON FOR SSDS AND HARD DRIVE

HDD S [9] SSD I [10] SSD A [11] SSD S [12]
Capacity 500GB 80GB 120GB 32GB
Buffer Size 8MB Unknown 64MB Unknown
Read Bandwidth - 250MB/s (seq) 250MB/s 100MB/s (seq)
Write Bandwidth - 70MB/s (seq) 100MB/s (sustained) 80MB/s (seq)
Latency 5.6ms (avg) 85µs (Read) < 100µs -

115µs (Write)

In our approach shown in Fig. 2, a black-box model can be
constructed in two steps: 1) benchmark an SSD and collect
the training data that consist of the model inputs (workloads
characteristics) and outputs (performance metrics); and 2)
utilize the statistical methods to quantify the correlations
between the inputs and outputs, construct and validate the
model. The rational is that the performance tends to be highly
correlated with the workload characteristics. For example, SSD
latency and throughput fluctuate when the percentage of write
requests, the number of random requests, and the outstanding
I/O requests vary.

Fig. 2. Black-box performance modeling for SSDs

In this section, we begin with a basic black-box model
that has been used for hard drives and build our extended
models to include additional workload characteristics that have
large influences on the SSD performance. Furthermore, we
introduce eight workload-specific models to help predict SSD
performance under the pre-defined scenarios.

A. Basic Model

A typical black-box model predicts the performance as a
function (F) of workload characteristics. This model takes the
workload characteristics (wc) as input parameters and outputs
the predicted performance metric (p), which can be formally
written as in equation 1:

p = F(wc). (1)

The workload is defined as a stream of I/O requests.
Typically when modeling a hard drive, the workload can
be characterized by read and write ratio (rw ratio) that is
defined as the percentage of writes in the request, request
size (req size) that represents the number of bytes transferred
to/from the storage device, queue depth (q dep) that represents
the number of outstanding I/Os, and request randomness

(rand) that is defined as the percentage of random accesses
in the I/O request stream. Thus, a single workload wc can be
represented as a vector of workload characteristics as shown
in equation 2:

wc =< wr ratio, q dep, req size, rand > . (2)

In this paper, we focus on three performance metrics:
latency (lat), bandwidth (bw), and throughput in IOs per
second (iops). Thus, the performance p can be represented
as either of three metrics shown in equation 3:

p = lat|bw|iops. (3)

The function F in equation 1 will be different for each metric
and is expected to vary for different SSDs. Also, F can
be represented in various forms. In this paper, we utilize a
regression tree which will be introduced shortly.
First, we want to study whether the four workload pa-

rameters in the basic model are effective for predicting the
SSD performance. To this end, we conduct a number of
experiments to study the effectiveness of this model (the
experiment setup is described in detail in Section IV). We start
with the impacts of the write ratio and queue depth on the
latency, bandwidth, and throughput of the solid-state drives.
Fig. 3 and 4 plot the results for three drives, SSD I, SSD S,
and HDD S. In the tests, we change one parameter each time
while using the default values for the others. When a parameter
is not being analyzed, the default values for write ratio, queue
depth, read size and write size are 0% for read (or 100% for
write), 1, 256KB, and 256KB, respectively. All tests use 100%
randomness for both writes and reads, which attributes to large
latencies in the figures.
As shown in Fig. 3, it is not surprising to find that two solid-

state drives outperform the hard drive, especially when dealing
with a lot of read requests. For example, when 90% of requests
are reads, the latency on SSDs are about 2 milliseconds and
the bandwidth is 100 - 150MBs. In this case, the latency on the
hard drive is five times as much and the bandwidth is around
20MB/s. From the figure, one can clearly see that the write
ratio has a large influence on all three performance metrics for
SSD I and SSD S. As there are more writes in the workload,
the latency increases and both the bandwidth and throughput
decrease. As we mentioned before, SSDs have asymmetric
performance for reads and writes, that is, fast read and slow
write. In contrast, the hard drive HDD S shows small changes
on three performance metrics. For all three categories, SSD I
outperforms the other two devices, i.e., achieves low latency,
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(a) Write Ratio vs. Latency
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(b) Write Ratio vs. Bandwidth
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(c) Write Ratio vs. Throughput

Fig. 3. Impacts of write ratio on latency, bandwidth, and throughput
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(a) Queue Depth vs. Latency
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(b) Queue Depth vs. Bandwidth
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(c) Queue Depth vs. Throughput

Fig. 4. Impacts of queue depth on latency, bandwidth, and throughput

high bandwidth and throughput in most cases. One can suspect
that the higher performance of SSD I comes from a good
design of control logic and possibly a larger internal buffer.
Note that an SSD is not necessarily better than a hard drive.
When there are more writes, HDD S actually outperforms
SSD S, indicating an inferior design of this early generation
SSD. In Fig. 4, we can see that the queue depth significantly
affects the latency for the three devices, with SSD I being the
best and SSD S the worst. The impact of the queue depth on
the bandwidth and throughput are minimal, once both reach
the saturation state.

B. Extended Model

Clearly, the four parameters in the basic model, wr ratio,
q dep, req size, and rand, remain critical in capturing the
correlation between the workloads and SSD performance. Now
given the architectural differences between hard drives and
solid-state drives, we want to further examine the following
questions:

1) Are the four basic workload characteristics sufficient to
characterize the I/O workloads in a statistically signif-
icant matter? Is there a need for additional workload
characteristics?

2) Is the relationship between workload characteristics and
SSD performance predictable? How accurate will the
predictions be?

To answer these questions, we take into consideration sev-
eral new parameters: read and write stride for the effect of
request alignments, read and write size because of SSD asym-

metric read/write performance, and read and write randomness
that can also have varied impacts on the SSD performance.

In Fig. 5, we divide the request size into read size (rd size)
and write size (wr size), since reads and writes are asymmetric
in SSDs. As the write size varies from 1K to 256K, one can see
that the latency increases for all three devices, where one can
clearly observe a linear trend. It is worthy to note that SSD S
has slower writes than HDD S, which again suggests that a
better FTL is needed to improve the write performance for
this device. When the read size changes from 1K to 256K, the
latency and bandwidth also increase linearly, albeit at a slower
rate, and the throughput decreases. Both SSDs have clear
performance advantages for reads. The changes from read size
are device-dependent - two SSDs read in a similar speed but
differ greatly on write speed. Note that while for bandwidth
and throughput, two SSDs (especially SSD I) present some
degrees of nonlinearity, the evaluation results will show that
they can be reasonably captured by the extended models.

It is well known that hard disks have much better sequential
performance than random access. In contrast, SSDs are gen-
erally considered having comparable performance, including
latency, for sequential and random access. To examine how
different access patterns influence the SSD performance, here
we evaluate three different access patterns, including sequen-
tial, random, and stride (write stride, wr stride, and read
stride, rd stride) that defines the number of bytes between two
consecutive reads and writes, respectively. We say that an I/O
request is a stride access when there exists a common distance
between the end and start of successive accesses. We examine
all three devices and the experiment results are collected when
write or read size changes from 1KB to 256KB under each
access pattern. Fig. 6 shows the impacts of the access patterns
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(a) Write Size vs. Latency
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(b) Write Size vs. Bandwidth
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(c) Write Size vs. Throughput
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(d) Read Size vs. Latency
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(e) Read Size vs. Bandwidth
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(f) Read Size vs. Throughput

Fig. 5. Impacts of request size on latency, bandwidth, and throughput
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(a) Writes on HDD S
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(b) Writes on SSD I
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(c) Writes on SSD S
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(d) Reads on HDD S
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(e) Reads on SSD I
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(f) Reads on SSD S

Fig. 6. Impacts of access patterns on latency

on the latency. All three devices present different performance
under sequential and random access, even for two SSDs that
are believed to have a similar performance. In particular, when
the write size changes under random access pattern, both SSDs
especially SSD S suffers performance degradation, which can
be caused by expensive erases and out-of-place writes. At the
same time, stride access shows a unique performance for all
three devices. For writes, stride access on both SSD I and
SSD S performs close to sequential writes, and for reads the
difference between stride and random reads is small. For the
hard drive, the performance of stride access is clearly between
sequential and random access. The impacts of various access
patterns on throughput are shown in Fig. 7. While we expect
that sequential access on the hard drive is order of magnitude

better, it is very interesting to see that even on SSDs sequential
access tends to outperform random access to some extent.

These observations inspire us to compose a model with an
extended set of workload characteristics. Now, a workload wc
can be formally written as a vector of workload characteristics
shown in equation 4:

wc =< wr ratio, q dep, wr size, rd size, (4)

wr rand, rd rand, wr stride, rd stride > .
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(a) Writes on HDD S
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(b) Writes on SSD I
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(c) Writes on SSD S
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(d) Reads on HDD S
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(e) Reads on SSD I
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(f) Reads on SSD S

Fig. 7. Impacts of access patterns on throughput

C. Workload Specific Model

In the above tests, the SSDs have showed the similarity
in I/O performance, e.g., read throughput that is orders of
magnitude better than HDDs, as well as several interesting
differences, e.g., slower writes on SSD S. To understand the
problem further, we feel that it is important to study each SSD
under a specific workload. In this work, we explore the SSD
performance models for eight special cases: read only, write
only, random access, sequential access, random read, random
write, sequential read, and sequential write. Here we continue
to use the extended black-box model. The only difference
is that the workload reflects only one type of access pattern
each time. These models can help study SSD performance for
each unique request type, as well as the overall performance
when given a mix of various requests. For example, if one
wants to upgrade a storage system for a new application, one
shall first profile which kind of workloads are most popular,
and examine whether a flash-based storage system will likely
provide performance benefits. Prior work [4] [5] [17] did not
consider these types of special cases.

D. Regression Tree

To construct a black-box model, we need to collect the
training data that consist of workloads characteristics and the
corresponding performance of a storage device. The training
data shall be representative (to span a wide spectrum) and
sufficient (to have an adequate number of the tests). The
next challenge for our black-box approach is to use sta-
tistical machine learning algorithms to capture the mapping
between workload characteristics (independent variables) and
performance metrics (dependent variables). In our approach,
given the training data as the input, the regression algorithm
is applied to calculate a predictive function that maps the
input to the desired output. The linear regression represents

the relationship between independent variables and dependent
variables with a linear model. After using the least-squares
approach to fit the performance model, the linear regression
can make a performance prediction based on a given set of
workload characteristics.

Specifically, we construct a regression tree from the regres-
sion function, which is generated by recursively splitting the
input independent variables into leaf nodes using a binary
sequence. The leaf nodes of the tree provide the predicted
values for dependent variables as a constant function of
independent variables. We follow three steps to build the
regression tree: 1) select an algorithm to split an intermediate
node; 2) determine when we should terminate a tree node;
and 3) generate a value for each leaf node. The node-splitting
process is applied iteratively. The best split for a linear
regression tree is to minimize the mean square error among
all training data at the leaf nodes. That is, the split results in
the smallest difference between each data point and the mean
of all training data that are represented by the leaf nodes. Two
splitting strategies can produce two different regression trees
for the same data. An example of a regression tree is shown in
Fig. 8. The tree splits at wr rand at the first level, and q dep
at the second level, and so forth, till it terminates to make
a prediction of the bandwidth as a function of the workload
characteristics that are listed on the path. In this research, we
employ the least-squares multilinear regression [18] to build
our performance models. The models are trained and tested
using both synthetic workloads and real-world traces, and all
the observations from the training data are used for fitting and
validation. In addition to the least-squares approach, we also
test the quantile regression technique [19] for model fitting
and get similar performance for our models.



Fig. 8. An example of regression tree for bandwidth prediction. Note that here a negative prediction at a leaf node shall be considered as invalid.

IV. EVALUATION

A. Experiment Methodology

The experiments are run on the desktop machines with Intel
Core 2 Duo 2.93 GHz, 4GB memory, and Linux kernel 2.6.
Our training data are collected from five storage devices shown
in Table I, three SSDs and one HDD. For each device, three
types of black-box models are trained and tested: basic models,
extended models, and workload specific models. We also
test with the Amdahl cluster [20] at the George Washington
University, where each node has dual-core 1.6GHz Intel Atom
processor and 2GB memory. Our modeling technique performs
closely on two platforms. We will use the numbers from the
desktop machines by default. In addition, we train and test
these three models on a RAID-0 that consists of two SSD I
devices (namely Array I).
The training data is generated by a synthetic I/O workload

generator [21], which takes the workload characteristics as
input parameters and generates a series of I/O requests that
are sent to the storage devices. We create the I/O workloads
under three types of access patterns, sequential, random, and
stride. In our experiments, for the basic and extended models,
the workloads use one access pattern at each time. The values
for workload characteristics are selected as follows. The write
ratio is from 0% to 25%, 50%, 75%, and 100%, where 0%
means read only and 100% write only. The read and write size
is selected from 1KB to 256KB (times of 4), queue depth from
1 to 64 (times of 4), read and write randomness in the value
of 0%, 50%, and 100%, and stride size in the range of 1KB,
64KB, 128KB to 256KB. The workloads for the workload-
specific models are collected in the same way as the basic
and extended models, but they have different values for the
workload characteristics. Specifically, the write ratio is read
only or write only, queue depth of 1 means no outstanding
I/Os, read/write size increases from 1KB to 256KB, read and
write randomness from 0% to 100%, and stride size for write
and read in the range of 1KB to 256KB.

Each I/O request is run for one minute by the workload
generator. To remove the cache effects, we use direct I/Os,
clear OS cache between the tests, and start each test at a ran-
dom offset. Three performance metrics, latency in millisecond,
bandwidth in MB/s, and throughput in IO/s are measured.
For each I/O request, we collect a pair of the input and
output, where each input consists of the values of workload
characteristics and each output those of performance metrics.
For each device, we run 12,000 one-minute workloads that in
total take about 200 hours (about 8 days) to complete.
To construct a model, we feed the data points into an

open source statistical software [22] and construct a linear
regression tree. Given the training data, we apply a logarithmic
transform to the performance values before the model building,
which is a commonly used technique to squeeze in data
values with a large spread. In our case, this will decrease the
variance of performance values, especially for the latency that
tends to have larger values with a small probability. Once a
model is built, we evaluate its accuracy with two types of
benchmarks, I/O requests from the synthetic generator, and
four real-world I/O traces from OLTP (Online Transaction
Processing) applications and a web search engine [23].
In this research, we measure the accuracy of the model with

three statistical metrics:

• Mean Absolute Error (MAE) is defined as |p − p̂|, and
equivalent to the difference between the observed and
predicated performance;

• Mean Relative Error (MRE) is defined as |p−p̂
p |, and

equivalent to the ratio between the absolute error and
the observed performance;

• R2 is defined as 1− SSE
SST which determines how well the

performance is likely to be predicted by the model, where
error sum of squares SSE =

∑
(pi − p̂i)

2 and total sum
of squares SST =

∑
(pi − p̄)2 =

∑
(p2i )− (

∑
(pi))

2/n.



TABLE II
PREDICTION ACCURACY OF BASIC MODELS

(a) Latency

Device R2 MAE(Mean) MRE
HDD S 0.808 28.94(94.61) 90%
SSD I 0.627 6.90 (15.97) 63%
SSD A 0.926 5.61 (36.31) 23%
SSD S 0.693 14.21 (34.90) 55%

(b) Bandwidth

Device R2 MAE(Mean) MRE
HDD S 0.281 7.29(14.63) 110%
SSD I 0.515 21.87(68.61) 40%
SSD A 0.570 15.72(38.17) 86%
SSD S 0.548 13.66(36.33) 63%

(c) Throughput

Device R2 MAE(Mean) MRE
HDD S 0.080 467(664) 50%
SSD I 0.500 1,547(3,967) 53%
SSD A 0.765 246(1,054) 19%
SSD S 0.459 749(1,702) 48%

The smaller the MAE and the MRE are, the better the model
is. R2 is a statistical measure of how well the regression line
approximates the real data points and varies from 0 to 1. A
R2 value of 1 indicates that the regression line perfectly fits
the observed data. In this paper, we evaluate the models by
computing the means of the R2, MAE, and MRE values.

B. Microbenchmarks

Basic Models: Table II lists the average values of R2,
MAE, and MRE of the latency, bandwidth, and throughput
predictions for the basic model from all devices. This model
does not work very well for the hard drive - the MRE for
latency, bandwidth, and throughput is 90%, 110%, and 50%.
In particular, the throughput prediction for the hard drive has
low accuracy with the R2 value of 0.08, while the bandwidth
prediction with R2 of 0.28. For the SSDs, one can see that
all three metrics, latency, bandwidth and throughput, remain
difficult to model, with R2 values as low as 0.459 and MRE as
high as 86%. The reason for high MRE is that four workload
characteristics in the basic black-box model can not cover
sufficient details to produce accurate predictions for both the
hard drive and SSDs. For example, for SSD I, the performance
predictions have more than 50% MRE for throughput, even
worse than HDD S. Clearly, the basic model with a limited
number of workload characteristics does not fit well for SSDs.

Extended Models: Using the workload characteristics de-
fined in equation 4, we construct the extended models for all
four devices. As shown in Table III, all the MRE values are
greatly improved, i.e., 9% to 26% for latency, 6% to 35% for
bandwidth, and 6% to 18% for throughput, with SSDs on the
lower side. The improvements on R2 are significant too - for
SSDs, R2 improves by more than 50% in some cases, and most
of R2 values are around 0.95. While the basic models have
the mixed performance for SSDs, the extended models for all
three SSDs have significantly better accuracy when compared

TABLE III
PREDICTION ACCURACY OF EXTENDED MODELS

(a) Latency

Device R2 MAE(Mean) MRE
HDD S 0.866 17.96(94.61) 26%
SSD I 0.986 1.42 (15.97) 12%
SSD A 0.976 3.16(36.31) 9%
SSD S 0.911 6.22(34.90) 20%

(b) Bandwidth

Device R2 MAE(Mean) MRE
HDD S 0.768 3.67(14.63) 35%
SSD I 0.981 3.91(68.61) 6%
SSD A 0.882 6.29(38.17) 18%
SSD S 0.917 5.21(36.33) 19%

(c) Throughput

Device R2 MAE(Mean) MRE
HDD S 0.870 152(664) 18%
SSD I 0.970 254(3,967) 6%
SSD A 0.971 74(1,054) 8%
SSD S 0.951 212(1,702) 15%

to the hard drive model, that is, the SSD models have largerR2

and smaller MRE values. In particular, the model for SSD I
has the best performance, 6% MRE for throughput, 6% for
bandwidth, and 12% for latency.
For the extended models, latency remains most difficult to

predict, consistent with the results from prior research [5]
[4] [17]. The latency tends to increase dramatically when
dealing with random writes, regardless of the type of the
storage device. In our experiments, it helps that we apply the
log transformation to our training data, which decreases the
variance of data points and leads to the improved accuracy for
the latency model.
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Fig. 9. MRE improvements between basic and extended models
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Fig. 10. R2 improvements between basic and extended models

Fig. 9 and 10 show the improvements (in percentage) of
MRE and R2 of the extended models when compared with
the basic models. For MRE, all the devices have close to or
higher than 60% improvements for three performance models;
for SSD I there is 80% improvement. The most noticeable im-
provements for the latency models are the dramatic decreases



in MRE and large increases in R2 values for SSD I and
SSD S. While SSD A has a small improvement on R2, the
MRE is greatly reduced. In summary, using a comprehensive
set of workload characteristics, our black-box models are able
to provide accurate predictions for various SSDs.

Workload-specific Models: In this test, we construct
eight workload-specific models for HDD S, SSD I, and
SSD A: read-only (rd only), write-only (wr only), random-
only (rand only), sequential-only (seq only), random-
read (rand rd), random-write (rand wr), sequential-read
(seq read), and sequential-write (seq wr). Table IV lists the
R2 and MRE values of three performance models HDD S,
SSD I, and SSD A. Clearly, the workloads with one access
pattern will train our model better. For two SSDs, these
models show similar patterns in the prediction accuracy for
latency, bandwidth, and throughput. For example, the MRE
values of two SSD models are between 0.4% and 7% for
rd only and wr only model. For the other six workloads,
most MRE values are less than 10%, which represents a good
improvement compared to the extended models. The hard
drive models are less accurate with much larger MRE.

TABLE IV
PREDICTION ACCURACY OF WORKLOAD-SPECIFIC MODELS

(a) Latency

R2 MRE
Workloads HDD S SSD I SSD A HDD S SSD I SSD A
rd only 0.953 0.999 0.999 18% 4% 1%
wr only 0.942 0.996 0.990 17% 4% 7%
rand only 0.910 0.975 0.991 29% 15% 5%
seq only 0.933 0.954 0.989 16% 12% 6%
rand rd 0.965 0.999 0.968 46% 2% 8%
rand wr 0.984 0.993 0.993 9% 9% 5%
seq read 0.964 0.999 0.999 8% 2% 6%
seq wr 0.961 0.999 0.998 7% 7% 3%

(b) Bandwidth

R2 MRE
Workloads HDD S SSD I SSD A HDD S SSD I SSD A
rd only 0.923 0.994 1 15% 4% 0.4%
wr only 0.911 0.978 0.990 15% 4% 4%
rand only 0.879 0.980 0.960 15% 7% 12%
seq only 0.915 0.996 0.977 16% 3% 11%
rand rd 0.891 0.999 1 11% 1% 0.3%
rand wr 0.963 0.946 0.993 9% 7% 4%
seq read 0.920 0.999 1 9% 2% 0.4%
seq wr 0.909 0.995 0.998 9% 2% 1%

(c) Throughput

R2 MRE
Workloads HDD S SSD I SSD A HDD S SSD I SSD A
rd only 0.970 0.979 1 14% 4% 0.4%
wr only 0.975 0.996 0.816 16% 4% 7%
rand only 0.049 0.987 0.999 11% 6% 4%
seq only 0.987 0.996 0.998 13% 4% 3%
rand rd 0 0.998 1 9% 3% 0.3%
rand wr 0.946 0.989 0.255 9% 6% 5%
seq read 0.990 0.996 1 10% 1% 0.4%
seq wr 0.993 0.996 0.999 9% 2% 2%

C. SSD Array

In this case, we apply both the basic and extended black-
box models on an SSD array (Array I) on the Amdahl cluster,
which provides the aggregate bandwidth and throughput by
accessing two SSDs in parallel. For the basic model as
shown in Table V, the disk array model achieves similar
prediction accuracy to a single SSD I on all three performance
metrics, while for the extended model in Table VI, the model
performance is somewhat worse where the extended models
have the MRE value of 23% for latency, 25% for bandwidth,
and 17% for throughput. Overall, the improvements for three
performance metrics are about 30% compared to the basic
models.

TABLE V
PREDICTION ACCURACY OF THE BASIC MODEL FOR SSD ARRAY

R2 MAE(Mean) MRE
Latency 0.763 3.21(8.78) 59%
Bandwidth 0.446 41.87(98.82) 60%
Throughput 0.399 1,980(4,346) 52%

TABLE VI
PREDICTION ACCURACY OF THE EXTENDED MODEL FOR SSD ARRAY

R2 MAE(Mean) MRE
Latency 0.939 1.43(8.15) 23%
Bandwidth 0.885 18.45(101.70) 25%
Throughput 0.860 934(4,875) 17%

D. Traces

In this section, we evaluate our extended black-box models
using real world I/O workloads. We replay four block-level I/O
traces [23] on the cluster with four devices (including HDD S,
SSD I, SSD S and Array I). There are four traces, Financial1
and Financial2 from OLTP, and WebSearch1 and WebSearch2
from a web search engine. Eight workload characteristics and
three performance metrics are measured at one-minute interval
during trace replay. For each trace, our extended black-box
models are trained with the first two hours of the trace. Then
the models make the performance predictions for the third
hour.
Table VII shows the MRE values of the models. Overall, our

black-box models are able to achieve high accuracy for four
traces. Two search engine traces produce much better accuracy
than the financial traces for all devices - the MRE values of
two web search engines traces are in the range of 1% to 5%
on latency, bandwidth, and throughput predictions, while for
two financial applications, the MRE values lie between a large
range, from 7% to 38%. This can be attributed to the fact
that two web search engine traces are read intensive with a
very high read to write ratio, while two financial traces are
write heavy. These prediction performances are consistent with
the earlier results of the workload specific models - a read
workload is easier to predict than write.



TABLE VII
PREDICTION PERFORMANCE OF I/O TRACES BY EXTENDED MODELS

(a) Latency (s)

Device Financial1 Financial2 WebSearch1 WebSearch2
HDD S 16% 12% 1% 3%
SSD I 7% 19% 1% 1%
SSD S 18% 15% 2% 1%
Array I 19% 11% 1% 1%

(b) Bandwidth (MB/s)

Device Financial1 Financial2 WebSearch1 WebSearch2
HDD S 18% 30% 5% 5%
SSD I 11% 38% 1% 1%
SSD S 17% 14% 2% 1%
Array I 26% 25% 2% 2%

(c) Throughput (IO/s)

Device Financial1 Financial2 WebSearch1 WebSearch2
HDD S 15% 26% 5% 5%
SSD I 9% 37% 1% 1%
SSD S 15% 14% 2% 1%
Array I 25% 12% 1% 1%

V. RELATED WORK

Storage system performance modeling is of interest for
many reasons, including architectural design, analysis and
evaluation [24]–[26], power efficient storage [27], automatic
resource control [28], and database management [29]. Prior
research [30], [31] demonstrate large performance improve-
ments from SSDs in database applications. Considering costs,
however, [32] finds that replacing hard disks with SSDs in
enterprise data centers is not economical based on workload
trace analysis. We believe that accurate performance modeling
of SSDs will facilitate the design, development, and evaluation
of high performance flash-based storage systems, which is the
motivation of this work.
Common performance modeling studies have targeted hard

drives using analytical modeling [33]–[35], simulation [25],
[36], benchmarking [37], [38], and black-box approach [4],
[5], [39], [40]. Many analytical models have been developed
for studying different disk characteristics, e.g., write caching
[41], [42], cache hit and miss ratio [34], scheduling (FCFS
and SSTF [43]), and LOOK and SCAN [44]). These analytic
models are constructed in a white-box manner by developing
an understanding of the internal organization of hard disks.
Prior research studied performance modeling and simulation
of SSDs [6], [45], [46], and all these SSD simulators rely on
a deep understanding of the SSD internal architectures and
control algorithms. However, as Gal and Toledo [47] point
out, the internal design employed by SSDs are often trade
secrets and regarded as closely-held intellectual property. In
this paper, we extend our previous work [3] and conduct a
comprehensive study of the SSD performance models. Prior
research [4], [5] has constructed hard drive models in a black-
box manner that is closely related to our work. Although
the hard disk models are helpful when we study the SSD
performance, we can not simply apply them directly to SSDs.
Our work is different from the above work because we focus

on workload characteristics that are most correlated to the SSD
performance. To this end, we design an extended black-box
model and investigate several workload-specific models.

VI. CONCLUSIONS

Flash-based solid-state drives will play an important role
in future storage systems. An accurate performance model
will provide important research tools for exploring the design
spaces for such systems. In this paper, we study the black-box
modeling for the analysis and evaluation of SSD performance.
We construct the black-box models, using both synthetic
workloads and real-world traces, on three SSDs, as well as an
SSD RAID. We find that, while the black-box approach may
produce less desirable performance predictions for hard disks,
a black-box SSD model with a comprehensive set of workload
characteristics can produce accurate predictions for latency,
bandwidth, and throughput with small errors. In the future we
plan to explore two directions: 1) evaluate our models against
existing simulators, e.g., SSDSim [6] and FlashSim [46]; and
2) apply our black-box models, preferably in an autonomic
manner, to help design and configure heterogeneous storage
systems that consist of a large number of hard drives and
flash-based devices.

VII. ACKNOWLEDGMENTS

We thank the anonymous reviewers for their helpful sug-
gestions. This work was in part supported by the NSF grants
OCI-0937875 and OCI-0937947.

REFERENCES

[1] M. CREEGER, “CTO Storage Roundtable,” Communications of the
ACM, vol. 51, no. 8, 2008.

[2] J. Gray and B. Fitzgerald, “Flash disk opportunity for server applica-
tions,” Queue, vol. 6, no. 4, pp. 18–23, 2008.

[3] S. Li and H. Huang, “Black-Box Performance Modeling for Solid-
State Drives,” in The 18th Annual Meeting of the IEEE International
Symposium on Modeling, Analysis and Simulation of Computer and
Telecommunication Systems (MASCOTS), short paper, 2010.

[4] M. Wang, K. Au, A. Ailamaki, A. Brockwell, C. Faloutsos, and
G. Ganger, “Storage device performance prediction with CART models,”
in Proceedings of the joint international conference on Measurement and
modeling of computer systems. ACM New York, NY, USA, 2004, pp.
412–413.

[5] L. Yin, S. Uttamchandani, and R. Katz, “An empirical exploration
of black-box performance models for storage systems,” in 14th IEEE
International Symposium on Modeling, Analysis, and Simulation of
Computer and Telecommunication Systems, 2006. MASCOTS 2006,
2006, pp. 433–440.

[6] N. Agrawal, V. Prabhakaran, T. Wobber, J. Davis, M. Manasse, and
R. Panigrahy, “Design tradeoffs for SSD performance,” in USENIX
Annual Technical Conference, 2008, pp. 57–70.

[7] F. Chen, D. Koufaty, and X. Zhang, “Understanding intrinsic charac-
teristics and system implications of flash memory based solid state
drives,” in Proceedings of the eleventh international joint conference
on Measurement and modeling of computer systems. ACM New York,
NY, USA, 2009, pp. 181–192.

[8] Samsung, “K9XXG08UXM Flash Memory Specification,” http:
//www.samsung.com/global/system/business/semiconductor/product/
2007/6/11/NANDFlash/SLC LargeBlock/8Gbit/K9F8G08U0M/ds
k9f8g08x0m rev10.pdf, 2007.

[9] ——, “Spinpoint m7 hard disk specification,” http://www.samsung.
com/global/system/business/hdd/prdmodel/2009/1/13/728799m7 sheet
0.5.pdf, 2009.



[10] Intel, “Intel X-25M SSD Specification,” http://download.intel.com/
design/flash/nand/mainstream/mainstream-sata-ssd-datasheet.pdf, 2009.

[11] OCZ, “OCZ Apex SSD Specification,” http://www.ocztechnology.com/
products/memory/ocz apex series sata ii 2 5-ssd-eol, 2009.

[12] Samsung, “Samsung SSD Specification,” http://www.samsung.com/
global/system/business/semiconductor/product/2008/10/29/21970225
SATA 30Gbps SLC.pdf, 2009.

[13] D. Ajwani, I. Malinger, U. Meyer, and S. Toledo, “Characterizing
the performance of flash memory storage devices and its impact on
algorithm design,” MPI-I-2008-1-001, Tech. Rep., 2008.

[14] M. Moshayedi and P. Wilkison, “Enterprise ssds,” Queue, vol. 6, no. 4,
pp. 32–39, 2008.

[15] “Intel Corporation. Understanding the Flash Translation Layer (FTL)
Specification,” 1998.

[16] A. Ban, “Flash file system optimized for page-mode flash technologies,”
Aug. 10 1999, uS Patent 5,937,425.

[17] M. Mesnier, M. Wachs, R. Sambasivan, A. Zheng, and G. Ganger, “Mod-
eling the relative fitness of storage,” ACM SIGMETRICS Performance
Evaluation Review, vol. 35, no. 1, p. 48, 2007.

[18] W. Loh, “Regression trees with unbiased variable selection and interac-
tion detection,” Statistica Sinica, vol. 12, no. 2, pp. 361–386, 2002.

[19] R. Koenker, Quantile regression. Cambridge Univ Pr, 2005.
[20] A. Szalay, G. Bell, H. Huang, A. Terzis, and A. White, “Low-Power

Amdahl-Balanced Blades for Data Intensive Computing,” in USENIX
HotPower, 2009.

[21] Intel, “Intel-ISCSI open storage toolkit.”
[22] W.-Y. Loh, “Guide regression tree version 7.9,” 2009.
[23] UMass, “Umass trace repository,” http://traces.cs.umass.edu/index.php/

Storage/Storage, 2007.
[24] C. Wilkes and C. Ruemmler, “An introduction to disk drive modeling,”

IEEE Computer, vol. 27, no. 3, pp. 17–29, 1994.
[25] J. Bucy, J. Schindler, S. Schlosser, and G. Ganger, “The DiskSim

simulation environment version 4.0 reference manual,” Technical Report
CMU-PDL-08-101, Carnegie Mellon University, Tech. Rep., 2008.

[26] G. Haring, C. Lindemann, and M. Reiser, Performance evaluation:
Origins and directions. Springer, 2000.

[27] G. Da Costa, J. Gelas, Y. Georgiou, L. Lefevre, A. Orgerie, J. Pierson,
O. Richard, and K. Sharma, “The GREEN-NET framework: Energy
efficiency in large scale distributed systems,” 2009.

[28] G. Alvarez, E. Borowsky, S. Go, T. Romer, R. Becker-Szendy, R. Gold-
ing, A. Merchant, M. Spasojevic, A. Veitch, and J. Wilkes, “Minerva: An
automated resource provisioning tool for large-scale storage systems,”
ACM Transactions on Computer Systems (TOCS), vol. 19, no. 4, pp.
483–518, 2001.

[29] O. Ozmen, K. Salem, M. Uysal, and M. Attar, “Storage Workload
Estimation for Database Management Systems,” in Proceedings of the
2007 ACM SIGMOD international conference on Management of data.
ACM, 2007, p. 388.

[30] S. Lee, B. Moon, C. Park, J. Kim, and S. Kim, “A case for flash memory
SSD in enterprise database applications,” in Proceedings of the 2008
ACM SIGMOD international conference on Management of data. ACM,
2008, pp. 1075–1086.

[31] S. Lee, B. Moon, and C. Park, “Advances in flash memory ssd tech-
nology for enterprise database applications,” in Proceedings of the 35th
SIGMOD international conference on Management of data. ACM,
2009, pp. 863–870.

[32] D. Narayanan, E. Thereska, A. Donnelly, S. Elnikety, and A. Rowstron,
“Migrating server storage to SSDs: analysis of tradeoffs,” in Proceedings
of the 4th ACM European conference on Computer systems. ACM,
2009, pp. 145–158.

[33] C. Ruemmler and J. Wilkes, “An introduction to disk drive modeling,”
Computer, vol. 27, no. 3, pp. 17–28, 1994.

[34] E. Shriver, A. Merchant, and J. Wilkes, “An analytic behavior model
for disk drives with readahead caches and request reordering,” in Pro-
ceedings of the 1998 ACM SIGMETRICS joint international conference
on Measurement and modeling of computer systems. ACM New York,
NY, USA, 1998, pp. 182–191.

[35] M. Uysal, G. Alvarez, and A. Merchant, “A modular, analytical through-
put model for modern disk arrays,” in 9th International Symposium on
Modeling, Analysis and Simulation on Computer and Telecommunica-
tions Systems (MASCOTS 2001).

[36] J. Wilkes, “The Pantheon storage-system simulator,” HP Laboratories
technical report HPL–SSP–95–14 (rev. 1, May 1996), available from
http://www. hpl. hp. com/SSP/papers.

[37] A. Traeger, E. Zadok, N. Joukov, and C. Wright, “A nine year study of
file system and storage benchmarking,” ACM Transactions on Storage
(TOS), vol. 4, no. 2, p. 5, 2008.

[38] N. Agrawal, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau, “Towards
realistic file-system benchmarks with codemri,” SIGMETRICS Perform.
Eval. Rev., vol. 36, no. 2, pp. 52–57, 2008.

[39] E. Anderson, “Simple table-based modeling of storage devices. Tech-
nical note,” HPL-SSP-2001-4, HP Labs, July 2001. http://www.hpl.hp.
com/research/itc/scl/ssp/papers, Tech. Rep.

[40] T. Kelly, I. Cohen, M. Goldszmidt, and K. Keeton, “Inducing models
of black-box storage arrays,” Citeseer, Tech. Rep.

[41] S. Carson and S. Setia, “Analysis of the periodic update write policy
for disk cache,” IEEE Transactions on Software Engineering, vol. 18,
no. 1, pp. 44–54, 1992.

[42] J. Solworth and C. Orji, “Write-only disk caches,” ACM SIGMOD
Record, vol. 19, no. 2, pp. 123–132, 1990.

[43] M. Hofri, “Disk scheduling: Fcfs vs.sstf revisited,” Commun. ACM,
vol. 23, no. 11, pp. 645–653, 1980.

[44] E. Coffman Jr and M. Hofri, “On the expected performance of scanning
disks,” SIAM Journal on Computing, vol. 11, p. 60, 1982.

[45] J. Lee, E. Byun, H. Park, J. Choi, D. Lee, and S. H. Noh, “Cps-sim:
configurable and accurate clock precision solid state drive simulator,”
in SAC ’09: Proceedings of the 2009 ACM symposium on Applied
Computing. New York, NY, USA: ACM, 2009, pp. 318–325.

[46] Y. Kim, B. Tauras, and B. Gupta, A.and Urgaonkar, “FlashSim: A
Simulator for NAND Flashbased Solid-State Drives,” CSE 09-008, Penn
State University, 2009., Tech. Rep.

[47] E. Gal and S. Toledo, “Algorithms and data structures for flash memo-
ries,” ACM Computing Surveys (CSUR), vol. 37, no. 2, p. 163, 2005.


