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Abstract—Flash-based Solid-State Drives (SSDs) have become
a promising alternative to magnetic Hard Disk Drives (HDDs)
thanks to the large improvements in performance, power con-
sumption, and shock resistance. An accurate SSD performance
model will provide the important research tools for exploring
the design space of flash-based storage systems. While many
HDD performance models have been developed, architectural
differences prevent these models from being effective for SSDs,
mostly because their designs cannot accurately account for many
unique SSD characteristics (e.g., low latencies, slow updates,
and expensive erases). In this paper, we utilize the black-box
modeling technique to analyze and evaluate SSD performance,
including latency, bandwidth, and throughput. Such an approach
is appealing because it requires minimal a priori information
about SSDs. We construct and evaluate our models on three
commercial SSDs. Although this approach may lead to less
accurate predictions for HDDs, we find that a black-box model
with a comprehensive set of workload characteristics can achieve
the mean relative errors of 20%, 13%, and 6% for latency,
bandwidth, and throughput predictions, respectively.

I. INTRODUCTION

Hard disk drives (HDDs) have been the choice of secondary
storage in computer systems for half a century. Unfortunately,
the I/O bottleneck remains, because disk access times lag
behind CPU and DRAM performance. The situation is poised
to change with recent advances of NAND flash-based solid-
state drives (SSDs). SSDs present an exciting opportunity to
close the I/O performance gap, because they sit in a sweet
spot in the middle, with densities comparable to HDDs and
I/O performance closer to DRAM. For hard disks and high-
performance storage systems, researchers and engineers have
utilized performance modeling techniques (e.g., analytical
modeling, simulation, and benchmarking) to analyze, develop,
and evaluate new algorithms and systems. Likewise for SSDs,
these models will help give a good understanding of the state-
of-the-art and provide the research tools for exploring the
design space for SSDs and developing new storage systems
that can better utilize them.

In this paper, we propose to leverage the black-box approach
to model the performance of SSDs, including latency, band-
width, and throughput. A black-box model can be constructed
in two steps: 1) benchmark a storage device and collect the
training data that consist of the model inputs (workloads char-
acteristics) and outputs (performance metrics); and 2) utilize
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the statistical methods to quantify the correlations between
the inputs and outputs. The rational is that the performance
tends to be highly correlated with the workload characteristics.
For example, SSD latency and throughput fluctuate when the
percentage of write requests, the number of random requests,
and the outstanding I/O requests vary. This approach is attrac-
tive as it requires no or limited a priori information about a
storage device. This is very beneficial in the case of SSDs,
because for intellectual property reasons, the SSD vendors
are reluctant to reveal the internal designs on wear-leveling,
caching, queueing, etc. Prior research showed that the black-
box modeling can give a reasonable performance prediction for
hard disks and arrays [1], [2]. However, accurate performance
prediction for a hard disk is challenging, especially for latency
[3]. This is not unexpected as a combined result of hardware
(moving heads and rotating plates) and software components
(e.g., caching and scheduling algorithms) inside a hard disk.
In order to develop a good performance model for SSDs,
one needs to recognize that vast architectural differences exist
between two device families [4]. For example, slow random
writes can happen in a solid-state drive due to expensive erases
at the block level.

To this end, we start with a basic black-box model with
traditional workload characteristics, e.g., read/write ratio and
request size. Intuitively, one can speculate that the difficulty
of the latency predication will be less severe for flash-based
SSDs because there is no longer moving mechanical parts.
Nevertheless, a good black-box performance model for an
SSD should be able to accommodate the effects that are
caused by the unique architectural features of SSDs, e.g.,
page-level reads and writes, out-of-place updates, and block-
level erase operations. Therefore, we take into account these
characteristics, specifically, we split the request size into read
and write sizes (because of SSD asymmetric read/write per-
formance), and add the access stride (for the effect of request
alignments). In our black-box approach, we first collect a large
amount of the training data on the workload characteristics and
device performance. Our approach then applies the statistical
machine learning algorithms for the model fitting, where the
performance is predicated as a function of the workload
characteristics. We evaluate the models using a wide variety
of micro-benchmark workloads on three real-world SSDs. The
results are promising - the mean relative errors of an SSD



model are as low as 20% for the latency prediction, 13% for
bandwidth, and 6% for throughput.

II. BLACK-BOX PERFORMANCE MODELING FOR SSDs

In this paper, we begin with a basic black-box model
that has been used for hard drives, and extend it to include
additional workload characteristics for SSDs. We utilize the
statistical machine learning algorithms to capture the cor-
relations between the workload characteristics and observed
performance values.

Basic Model: A typical black-box model predicts the
performance as a function (F) of various workload character-
istics. This model takes workload characteristics (wc) as input
parameters and predicts a performance metric (p), which can
be formally written as in Eq. 1:

p = F(we). (1)

The workload is defined as a stream of 1/O requests. Typically
when modeling a hard drive, the workload can be characterized
by read and write ratio (rw_ratio) that is defined as the
percentage of writes in the request, the request size (req_size)
that represents the number of bytes transferred to/from the
storage device, the number of outstanding 1/Os that represents
queue depth (g_dep), and request randomness (rand) that is
defined as the percentage of random reads and writes in the I/O
request stream. Thus, a single workload wc can be represented
as a vector of workload characteristics, shown in Eq. 2:

we =< rw_ratio, q_dep,req_size,rand > . 2)

In this paper, we focus on three performance metrics: latency
(lat), bandwidth (bw), and throughput in IO per second (iops).
Thus, the performance p can be represented as either of three
metrics shown in Eq. 3:

p =<lat,bw,iops > . 3)

Extended Model: We conduct a number of experiments on
various devices in order to examine how different workload
characteristics affect the SSD performance. The results show
that, for SSDs, the write ratio has a large impact on the
performance. In addition, while the size of a write request
greatly influences the latency for the SSDs, the read size
has a less noticeable impact. Thus, we divide the request
size into the read size (rd_size) and the write size (wr_size),
because SSD reads and writes have asymmetric performances.
Furthermore, we study different access patterns, including
sequential, random, and stride (write stride, wr_stride, and
read stride, rd_stride). We define that an I/O request is a
stride access pattern when there exists a fixed offset between
the consecutive accesses. The experiments demonstrate that
all the devices present different performance behaviors under
sequential and random access patterns. In the same time, while
the hard disk has the similar stride performance as random
access, it turns out that the stride access is very challenging
for SSDs. These observations inspire us to compose a model

with an extended set of the workload characteristics, which
eventually produce more accurate predictions.

In the extended model, a workload wc can be written as a
vector of workload characteristics shown in Eq. 4:

we =< rw_ratio, q_dep, wr_size, rd_size, 4)

wr_rand, rd_rand, wr_stride, rd_stride > .

Regression Tree: To construct a black-box model, we first
need to collect the training data that consist of the workloads
characteristics and the corresponding performance of a storage
device. In our approach, given the training data as the input,
the regression algorithm is applied to calculate a prediction
function that maps the workload characteristics (independent
variables) to the performance metrics (dependent variables).
Specifically, we construct a tree from the regression function,
which is generated by recursively splitting the independent
variables into the leaf nodes. A leaf node of the tree provides
a prediction of the dependent variables as a function of the
independent variables. In this research, we employ the least-
square multilinear regression to build our performance model.

III. EVALUATION

The experiments are run on the machines with an Intel
Atom dual-core 1.6GHz processor, 2GB memory, and Linux
kernel 2.6. The training data are collected from four different
storage devices: three SSDs including OCZ-Apex (SSD_A),
Intel X-25M (SSD_I), Samsung (SSD_S), and one hard drive,
Samsung Spinpoint M7 (HDD_S). We use Intel Open Storage
Toolkit (OST) [5] as the I/O workload generator. The values
for the workload characteristics are selected as follows. The
write ratio is from 0%, 25%, 50%, 75%, to 100%, where 0%
means read only and 100% write only. The read/write size is
from 1KB to 256KB (times of 4), the queue depth from 1
to 64 (times of 4), the randomness for read and write from
0%, 50%, to 100%, and the stride size in the range of 1KB to
256KB. The workloads include three types of access patterns,
sequential, random, and stride. Each I/O request is run for one
minute. Three performance metrics, latency in millisecond,
bandwidth in MB/s, and throughput in 10/s, are measured. To
construct a model, we randomly select 2,000 data points out
of 12,000 requests and generate a linear regression tree using
an open source statistical software GUIDE [6]. In this paper,
we evaluate the models with Mean Relative Error (MRE),
and R? that is a statistical measurement on how well the
regression line approximates the real data points. A R? value
of 1 indicates that the regression line perfectly fits the observed
data.

Basic Model: Table I lists the values of R? and MRE for the
basic models of the four devices. In this model, for all four
devices, the bandwidth remains the most difficult to model,
e.g., 0.08 for R? and 96% for MRE, while both latency and
throughput have mean relative errors of smaller than 70% in
most cases. The main reason for the high MREs is that four
inputs in the basic black-box model cannot completely capture



(a) Latency

Device | R? MRE
SSD_A 0.974 12%
SSD_I 0.466 2%
SSD_S 0.775 48%
HDD_S | 0.848 55%
(b) Bandwidth
Device | R? MRE
SSD_A 0.619 76%
SSD_I 0.394 79%
SSD_S 0.536 77%
HDD_S | 0.335 96%
(c) Throughput
Device | RZ MRE
SSD_A 0.936 12%
SSD_1I 0.435 72%
SSD_S 0.499 41%
HDD_S | 0.075 36%
TABLE 1

PREDICTION ACCURACY OF THE BASIC MODELS

the workload to produce an accurate model. In this model,
performance predictions of SSD_I have more than 70% MRE
values for latency and throughput, which are even worse than
HDD_S.

Extended Model: Using the workload characteristics de-
fined in Eq. 4, we construct the extended models for four
disk devices, shown in Table II. In the new models, the MRE
values have been reduced, that is, 20% to 29% for latency,
13% to 30% for bandwidth, and 6% to 20% for throughput.
In particular, SSD_A has the smallest mean relative errors -
6% for throughput, 13% for bandwidth, and 20% for latency.
In summary, compared to the basic models, the extended
models for four devices have about 50% improvements in the
performance accuracy.

IV. RELATED WORK

Extensive research has been done for hard disks in analytical
modeling [7], [8], simulation [9], and benchmarking [10]. The
analytic models and simulators are constructed in a white-
box manner by developing an understanding of the internal
organization of hard disks. Prior work [1], [2] proposed various
black-box performance models for hard drives with minimal
knowledge of device specific properties, and [3] designed a
relative fitness model to predict the performance difference
between two devices. In this work, we focus on severals
workload characteristics (e.g., stride pattern, and write size)
that are crucial to SSD performance.

V. CONCLUSIONS

An accurate performance model for solid-state drives will
provide the important research tools for exploring the design
space for the flash-based storage systems. In this paper, we
study the black-box performance modeling for SSDs and find
that a model with an extended set of workload characteristics
has the low errors when applied to three commercial SSDs.
As part of the future work, we plan to study several additional
workload parameters. One interesting thing to consider is the
ratio between the computation and I/O time. In addition, we
will explore the possibility of applying our black-box models
to help design and configure a storage system, preferably in
an autonomic manner.
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