
Providing Reliability as an Elastic Service
in Cloud Computing

Nakharin Limrungsi, Juzi Zhao, Yu Xiang, Tian Lan, H. Howie Huang, Suresh Subramaniam
Department of Electrical and Computer Engineering, George Washington University, Washington, DC 20052

Email: {nakharin, juzizhao, yuxiang, tlan, howie, suresh}@gwu.edu

Abstract—Modern day data centers coordinate hundreds of
thousands of heterogeneous tasks and aim at delivering highly
reliable cloud computing services. Although offering equal relia-
bility to all users benefits everyone at the same time, users may
find such an approach either too inadequate or too expensive to
fit their individual requirements, which may vary dramatically.
In this paper, we propose a novel method for providing reliability
as an elastic and on-demand service. Our scheme makes use of
peer-to-peer checkpointing and allows user reliability levels to
be jointly optimized based on an assessment of their individual
requirements and total available resources in the data center.
We show that the joint optimization can be efficiently solved by
a distributed algorithm using dual decomposition. The solution
improves resource utilization and presents an additional source of
revenue to data center operators. Our validation results suggest
a significant improvement of reliability over existing schemes.

Index Terms—Cloud computing, data center, reliability, check-
point, optimization.

I. INTRODUCTION

In today’s public clouds, reliability is provided as a fixed
service parameter, e.g., Amazon published that its EC2 users
can expect 99.95% uptime in terms of reliability, which
corresponds to a once-a-week failure ratio [1]. It is up to the
users to harden the tasks running within Virtual Machine (VM)
instances to achieve better reliability if so desired.

Clearly, this all-or-nothing approach is unsatisfactory -
users may find it either too inadequate or too expensive
to fit their reliability requirements, which have been shown
to vary dramatically [2]. Current solutions to achieve high
reliability in data centers include VM replication [3], and
checkpointing [4], [5], [6]. In particular, several scheduling
algorithms for balancing checkpoint workload and reliability
have been proposed in [7], [8], [9], with an extension in [10]
by considering dynamic VM prices. Nevertheless, previous
work has only investigated how to derive optimal checkpoint
policies to minimize the execution time of a single task.

In this paper, we propose a novel utility-optimization ap-
proach to provide reliability as an elastic service, where
flexible service-level agreements (SLAs) are made available
to the users based on a joint assessment of their individual
reliability requirements and total resources available in the data
center. While providing reliability as a service is undoubtedly
appealing to data center operators, it also comes with great
technical challenges. To optimize reliability under network
resource constraints, data center operators not only have to
decide checkpoint scheduling, but also need to determine

where to place VM checkpoints, and how to route the check-
point traffic among peers with sufficient bandwidth. A global
checkpoint scheduling (i.e., jointly determining reliability lev-
els and checkpoint time sequences for all users) is preferred
because all users share the same pool of resources. Intuitively,
users with higher demands and budgets should be assigned
more resources, resulting in better reliability. Their checkpoint
events should also be coordinated to mitigate interference
among themselves and with existing tasks. In this paper,
we model different reliability requirements by user-specific
utilities, which are increasing functions of reliability (i.e.,
service uptime). Therefore, the problem of joint reliability
maximization can be formulated as an optimization, in which
data center operators need to find checkpoint scheduling and
make routing/placement decisions in order to maximize an
aggregate utility function of user reliabilities.

This paper harnesses checkpointing technique with utility
optimization to provide joint reliability maximization under
resource constraints in data centers. A main feature of our
approach is a peer-to-peer checkpointing mechanism, which
enables VM images to be transferred and saved among neigh-
boring peers, eliminating the need for any central storage
where network congestion gets magnified across all hosts
and VMs. It is demonstrated that such a distributed approach
is effective to make faster checkpoints [7]. For data center
operators, it also presents an additional source of revenue by
exploiting under-utilized resources. For example, at any time
only a few core switches are highly congested [11], which
leaves adequate bandwidth among local switches for peer-
to-peer traffic. Our approach can effectively convert under-
utilized network resources into an on-demand reliability ser-
vice, which can be purchased by users on demand.

II. PROVIDING RELIABILITY THROUGH CHECKPOINTING

A. VM Checkpointing in Data Centers

The checkpointing method is a typical fault tolerant tech-
nique in distributed systems and high-performance computing.
In current data centers, Virtual Machine Monitors (VMMs)
are capable of checkpointing the states of its VMs. VMMs
can take local and uncoordinated checkpoints independently
from each other. However, this runs the risk of cascaded
rollbacks if causality is not respected. To avoid this, when
a task comprises multiple VMs, taking a checkpoint of this
task shall synchronously checkpoint all the VMs so that they
can be rolled back to the same point of execution. Scheduling



2

Symbol Meaning

n Number of tasks, indexed by i = 1, . . . ,n

mi Number of VMs for task i

Ri Reliability of task i

Ui(Ri) Unility of task i as a function of Ri

Tv,i,ηi Checkpoint interval and initial offset of task i

Ts,i Checkpoint overhead of task i

Tr VM rollback and recovery time

Xi Checkpoint routing vector of task i

P The set of feasible checkpoint routing vectors

Ii(Tv,i) VM delta image size as a function of Tv,i

G Background traffic vector

C Data center link capacity vector

Bi Checkpointing bandwidth assigned for task i

λ Node failure rate

V(t) Lagrangian multiplier for capacity constraints

TABLE I
MAIN NOTATION.

algorithms for taking coordinated checkpointing of a single
task have been proposed in [7], [8], [9], [10]. To amortize high
overhead, checkpoint intervals are often chosen to be large as
long as rollback costs are acceptable.

In this paper, we assume that VMMs support a coordinated
checkpointing mechanism, shown in Figure 1. For a task i
with mi VMs, checkpointing the task means synchronously
checkpointing all its mi VMs. We treat the individual VM
checkpoints as a single checkpoint event with overhead Ts,i =
Tn +Tb,i, where Tn is a constant time overhead to save local
VM images and Tb,i denotes the time to transfer the images
to remote destinations. In practice, we can take Tn to be the
average overhead of multiple local checkpoints [9], and Tb,i
is determined by VM image sizes to transfer and available
bandwidth for checkpointing task i.

We consider a failure model that assumes independent
and identical failure probabilities on all nodes (e.g., hosts).
After each node failure, tasks can be recovered from the last
checkpoints. All tasks using the failed node must be rolled
back and restarted. We assume that failures are modeled by
a Poisson process with known rate λ . Therefore, the mean
time between failures is 1/λ . As large-scale data centers are
typically well-managed and tracked for any critical events,

Fig. 1. Task checkpoint and recovery model. Checkpointing all VMs
belonging to a task is synchronized..

the event logs can be used to provide important historical
information for estimating failure rate λ .

Let Tv,i denote the scheduled checkpoint interval for task i,
and Tr be the time overhead to retrieve a checkpoint image and
rollback to the last state, as shown in Figure 1. Through the rest
of the paper, we will consider constant rollback time Tr for all
jobs; an extension to variable rollback time is straightforward.
System failures can be detected by a monitoring mechanism,
and failed nodes are replaced by spare ones as soon as failures
are detected. Further, we consider periodic checkpointing
with equal intervals Tv,i, which is optimal for exponentially
distributed failure intervals [9]. The checkpoint time sequence
of task i can be described by Tv,i and initial time offset ηi, i.e.,

ηi, ηi +Tv,i, ηi +2Tv,i, . . . (1)

which continues throughout the duration of task i.

Fig. 2. Illustrations of peer-to-peer checkpointing with fat-tree topology,
where traffics are distributed over the entire network and never reach top-
level core switches.

B. Peer-to-Peer Checkpointing and Reliability

Mechanisms for checkpointing on central storage servers
have been provided in [4], [5], [6]. Since huge amounts of
VM images must be transfered periodically, as the number of
tasks and VMs increase in a data center, the link that connects
the central storage server and core switches easily becomes
congested. To avoid such a bottleneck, we propose a peer-to-
peer checkpointing mechanism, which enables VM images to
be transferred and saved among neighboring peers. Figure 2
shows a schematic diagram of peer-to-peer checkpointing.
In comparison, in a centralized checkpointing scheme where



3

networked storage servers are connected to top-level switches,
all checkpointing traffic is routed through core switches.

To characterize the benefits of peer-to-peer checkpointing,
we first derive a quantification of reliability as a function of
failure rate λ , and checkpoint parameters, including check-
point overhead Ts,i = Tn + Tb,i, checkpoint interval Tv,i, and
rollback time Tr. We define reliability by the percentage of
service uptime. This yields the following Lemma 1 on the
expected reliability with periodic checkpointing.

Lemma 1: If VMs of task i reside on hi different hosts,
the expected reliability of task i with periodic checkpointing
interval Tv,i is

Ri = 1−
∞

∑
k=1

∫ Ts,i

0

t + kTo +Tr +Tv,i

kTv,i
fk(t)dt

−
∞

∑
k=1

∫ Tv,i

Ts,i

t + kTo +Tr

kTv,i
fk(t)dt (2)

where fk(t) = hiλe−hiλ [t+(k−1)Tv,i] is the probability that a VM
failure for task i occurs t seconds after the kth checkpoint
interval.

Proof: Since task i uses hi hosts, its VM failure
is a Poisson process with rate hiλ . Therefore, fk(t) =
hiλe−hiλ [t+(k−1)Tv,i] is the p.d.f. that a VM failure occurs at
time t +(k−1)Tv,i.

Now if the failure occurs during [Ts,i,Tv,i] of the kth check-
point interval, the total service downtime in kTv,i seconds is
t + kTo +Tr, where the checkpointing overhead To is experi-
enced in all checkpoint intervals. In contrast, if the failure
occurs during [0,Ts,i] of the k-th checkpoint interval, the total
service downtime becomes t + kTo +Tr +Tv,i, because the k-
th checkpoint has not been completed yet, and task i must
roll-back to the (k−1)-th checkpoint. Therefore, reliability is
obtained as the mean percentage of service uptime as in (2).
This completes the proof of Lemma 1.

If we further assume that checkpoint interval Tv,i is much
smaller than the mean time between failures, i.e., Tv,i ≪
1/(hiλ ), then reliability can be approximated by the following
lemma:

Lemma 2: When Tv,i ≪ 1/(hiλ ), reliability Ri can be ap-
proximated by

Ri = 1− To

Tv,i
−hiλ

(
Tv,i

2
+Tr +Ts,i

)
. (3)

Proof: This result is straightforward by applying the
approximation e−hiλ t = 1 to fk(t) on the right hand side of
(2), since t ≤ Tv,i≪ 1/(hiλ ).

To illustrate limitations of the centralized checkpointing
method, we consider a scenario where the link connecting
central storage servers and top-level core switches is the only
traffic bottleneck. This analysis provides an upper bound for
the centralized checkpointing method because possible local
bottlenecks are ignored. Suppose that there are n tasks with
the same checkpoint interval Tv,i and VM image size Ii. The
aggregate checkpoint traffic from all tasks can not exceed the

total capacity C over a checkpoint interval, i.e.,
n

∑
i=1

miIi ≤CTv,i (4)

According to (3), it implies that, for centralized checkpointing,

Ri ≤ 1−hiλ
Tv,i

2
≤ 1− hiλ Ii

2C

n

∑
i=1

mi. (5)

Reliability Ri tends to zero as the number of VMs ∑n
i=1 mi

grows large. The centralized checkpointing method leads to
very poor performance for large-scale data centers, where a
finite bandwidth toward central storage servers is shared by a
large number of VM checkpoints. This does not pose a prob-
lem for peer-to-peer checkpointing, because checkpoint traffics
are distributed over local links at low-level switches, which
also scales up when data center size increases. Therefore, this
approach is much more scalable.

C. Problem Formulation for Optimizing Reliability

In this paper, we focus on how to determine optimal
checkpoint scheduling and routing under network capacity
constraints. In our model, checkpoint scheduling is decided
by periodic checkpoint intervals Tv,i and initial time offset ηi,
while checkpoint routing is determined by the selection of
checkpoint destination nodes and traffic routing among peers,
collectively denoted by P .

We use a utility function Ui(·) to model the reliability
requirement of task i. A survey [2] showed that 45% of
cloud users are satisfied with a 99.9% reliability guarantee
(i.e., 45 minutes unplanned downtime per month), while 14%
would pay at least 25% more to get a 99.99% reliability
guarantee (i.e., approximately 4 minutes unplanned downtime
per month), and only 6% would pay at least 50% more
to go beyond 99.99%. Therefore, Ui(Ri) is assumed to be
an increasing function of Ri. For instance, we can choose
Ui(Ri) =−wi log10(1−Ri), where wi are user-specific weights.

For VM checkpointing, it is easy to see that task i generates
periodic traffic for all

t ∈ [ηi + kTv,i +To,ηi + kTv,i +Ts,i], ∀k ∈ Z+. (6)

Therefore, increasing checkpoint frequency (i.e., reducing Tv,i)
generates more checkpoint traffic proportionally. Consider a
data center with L links, indexed by l = 1, . . . ,L, each with a
fixed capacity Cl . We define a checkpoint routing vector Xi of
length L for task i by

Xi,l =

{
x, if x VM images of task i transverse link l,
0, otherwise.

We assume that this checkpoint routing vector Xi remains
unchanged for the entire duration of task i.

Let Bi be the checkpoint bandwidth assigned to each VM of
task i. Combining (6) and the definition of checkpoint routing
vector Xi, we can formulate a network capacity constraint as



4

follows:

G+
n

∑
i=1

BiXi1i(t)≤ C, ∀t (7)

where C = [C1, . . . ,CL] is a set of link capacity constraints,
and 1i(t) is an indicator function defined by

1i(t) = 1{t∈[ηi+kTv,i+To,ηi+kTv,i+Ts,i],∀k} (8)

Here G = [G1, . . . ,GL] is a background traffic vector, repre-
senting the link capacities set aside for normal task traffic.
An empirical measurement study in [11] shows that average
traffic per VM is stable at large timescales. Thus, we treat G
as a time-invariant vector, where Gl denotes the aggregate task
traffic on link l.

In order to create a checkpoint, only a delta disk [7] that
contains incremental VM changes after the last checkpoint has
to be saved and transferred, once the first checkpoint is done.
This process considerably reduces the time needed to make
the checkpoint. Therefore, we consider variable VM image
sizes, as a non-decreasing function of checkpoint interval,
e.g., a logarithm function Ii(Tv,i) = a log(Tv,i)+ b where a,b
are appropriate constants. The time to transfer VM images,
Tb,i, can be computed by delta disk size Ii(Tv,i) and available
bandwidth Bi:

Tb,i =
Ii(Tv,i)

Bi
. (9)

Combining (3), (7), (8) and (9), we then formulate the joint
checkpoint scheduling and routing problem under network
capacity constraints:

maximize
n

∑
i=1

Ui(Ri) (10)

subject to Ri = 1− To

Tv,i
−hiλ

(
Tv,i

2
+Tr +Ts,i

)
(11)

G+
n

∑
i=1

BiXi1i(t)≤ C, ∀t (12)

Ts,i = To +
Ii(Tv,i)

Bi
(13)

variables ηi,Tv,i ∈T ,Bi,Xi ∈P (14)

Here we only allow users to choose Tv,i from a finite set of
checkpoint intervals, T = {T1,T2, . . . ,Tz}. Similarly, we use
P to denote the set of all feasible checkpoint routing vectors.
Constraint (12) ensures that the required checkpoint and task
traffic can be supported.

III. SOLVING THE JOINT CHECKPOINT SCHEDULING AND
ROUTING PROBLEM

A. Our Solution Using Dual Decomposition

The problem (10) is a non-convex and combinatorial op-
timization and there is no computationally-efficient solution
even in a centralized manner. In this paper, we leverage the
technique of dual-decomposition in [12] to obtain a sub-
optimal solution. Among many choices of heuristic methods,
the one we develop below has the advantage of allowing a

distributed implementation without cooperation of different
tasks.

Let M be the least common multiple of all feasible check-
point intervals in T = {T1,T2, . . . ,Tz}. Due to our model
of periodic checkpointing, it is sufficient to consider the
network capacity constraint in (12) over [0,M]. Let V(t)
be a Lagrangian multiplier vector for the network capacity
constraint, which is time-dependent. We derive the Lagrangian
for the joint checkpoint scheduling and routing problem:

L =
n

∑
i=1

Ui(Ri)−
∫ M

0
V(t)T

[
G+

n

∑
i=1

BiXi1i(t)−C

]
dt

The other two constraints (11) and (13) can be easily substi-
tuted in the Lagrangian above and are suppressed for a simple
presentation.

Since M is an integer multiple of Tv,i, we have∫ M

0
V(t)T

[
n

∑
i=1

BiXi1ηi,Tv,i,Ts,i(t)

]
dt

=
n

∑
i=1

MBi

Tv,i

∫ ηi+Ts,i

ηi+To

V(t)T Xidt

=
n

∑
i=1

MIi(Tv,i)

Tv,i
· 1

Tb,i

∫ ηi+Ts,i

ηi+To

V(t)T Xidt (15)

where the second step uses the definition of indicator function
1i(t) in (8), and the last step uses Ii(Tv,i) = BiTb,i in (9).
Plugging (15) into the Lagrangian, we obtain

L =
n

∑
i=1

[
Ui(Ri)−

MIi(Tv,i)

Tv,i
V̄T

i Xi

]
−
∫ M

0
V(t)T [G−C]dt

where V̄i is an average price vector over [ηi + To,ηi + Ts,i],
defined by

V̄i =
1

Tb,i

∫ ηi+Ts,i

ηi+To

V(t)dt. (16)

Now, for given Lagrangian multiplier V(t), the optimization
of L over checkpoint scheduling and routing is decoupled into
n individual sub-problems:

max
ηi,Tv,i,Bi,Xi

Ui(Ri)−
MIi(Tv,i)

Tv,i
V̄T

i Xi, ∀i. (17)

Here, the checkpoint sequence offset ηi only affects average
price V̄i, while Bi and Xi are fully determined by checkpoint
routing/placement decisions. Thus, to solve (17) suboptimally,
we can iteratively optimize it over three sets of variables: Bi
and Xi, ηi, and Tv,i, respectively. This results in the design of
a heuristic and distributed algorithm for solving problem (10),
if the Lagrangian multiplier V(t) is updated by a gradient
method:

V j+1(t) =

[
V j(t)+µ j

(
G+

n

∑
i=1

BiXi1i(t)−C

)]+
∀t, (18)

where j is the interation number and µ j is a proper stepsize.



5

B. Algorithm Solution for Reliability Optimization

We next present a heuristic algorithm that finds a subopti-
mal solution for the joint checkpoint scheduling and routing
problem, leveraging the dual decomposition method presented
above. The key idea is to iteratively compute the individual-
user optimization problem in (17) and the price vector update
in (18). To reduce search complexity, we further break down
the individual-user optimization problem in (17) into three
sub-problems, over ηi, Tv,i, and {Bi,Xi}, respectively. The
Dijkstra algorithm is used to find the optimal routing vector
Xi with link cost V̄i. For a chosen tolerance λ , the proposed
algorithm is summarized in Figure 3.

Initialize random interval Tv,i and offset ηi
Intialize random routing vector Xi and feasible bandwidth Bi

// (a) Update price vector V(t):
V(t)← Vs+1(t) according to (18).

// (b) Solve individual-user optimization problem in (17) :
for i = 0 to n

// (b.1) Search for optimal ηi:
for ηi ∈ [0,Tv,i]

Find ηi,opt to minimize V̄i in (16)
end for
ηi← ηi,opt

// (b.2) Solve optimal Bi and Xi:
Treat V̄i as link costs
Xi← Di jkstra(V̄i) for all VMs
Assign maximum feasible Bi

// (b.3) Search for optimal Tv,i:
for Tv,i ∈T

Find Tc,i,opt to minimize Ui(Ri)−
MIi(Tv,i)

Tv,i
V̄T

i Xi,

end for
Tv,i← Tc,i,opt

end for
Record current reliability R0

i ← Ri
Compute new Ri according to (11)
if ∑i

∣∣Ri−R0
i

∣∣> ε
Goto (a)

end if

Fig. 3. Algorithm for joint checkpoint scheduling and routing to maximize
reliability.

IV. SIMULATIONS

A. Simulation Setup

In this section, we evaluate our design for joint checkpoint
scheduling and routing on a Fat-tree topology [13], which con-
sists of a collection of edge and aggregation switches that form
a complete bipartite graph (see Figure. 2). While data center
traffic traces are generally proprietary and unavailable, recent
studies [14], [15], [16] provide us a good characterization of
traffic patterns inside data centers. The major objective of our
evaluation is to move a step further than analysis and obtain
empirically-validated insights about the feasibility/efficiency
of providing reliability as a service in practical settings.

We construct a 1024-node Fat-tree topology. The nodes are
connected by 16-port high speed switches, offer a link capacity

of Cl = 1Gbps for l = 1, . . . ,L. Each node represents a quad-
core machine and can host up to 4 VMs. We consider a time-
slotted model, so that a system snapshot is taken every ∆t = 10
seconds.

To incorporate task heterogeneity, we define two types of
tasks: elephant tasks that comprise mi = 30 VMs and generate
large peer-wise flows uniformly distributed in [100,200]Mbps,
and mice tasks that comprise mi = 5 VMs and generate
small peer-wise flows uniformly distributed in [0,50]Mbps.
We randomly generate n = 300 tasks, each being an elephant
task with probability 20% and a mice task with probability
80%. Background traffic vector G is constructed by randomly
placing all VMs in the data center and employing a shortest-
path algorithm to determine their traffic routing.

Each task is associated with a utility function, given by

Ui(Ri) =−wi log10(1−Ri), (19)

where wi is a user-specific weight uniformly distributed in
[0,1]. A larger weight implies a higher reliability demand and
budget. We assume that checkpoint overhead To is negligible
and the time to take checkpoints Ts,i = To +Tb,i is primarily
determined by the time Tb,i to transfer checkpoint images.
We model checkpoint image size Ii(Tv,i) as an increasing and
convex functions of checkpoint interval Tv,i, i.e., Ii(Tv,i) =
(143 · log10 Tv,i− 254)MB. Further, we choose rollback time
Tr = 20 seconds, and checkpoint interval Tv,i is selected from
T = {300,600,1000,1500} seconds.

B. Numerical Results
To provide benchmarks for our evaluations, we consider

two heuristic algorithms with random selection of checkpoint
intervals and destinations. A modified Dijkstra algorithm is
employed to find maximum flow with bandwidth Bi [17]. If
Bi=0, a scheduled checkpoint event is cancelled.

1) A centralized checkpointing scheme where offset ηi is
uniformly distributed in [0,Tv,i]. The link connecting
central storage servers and core switches has a capacity
of Cs = 10Gbps.

2) A peer-to-peer checkpointing scheme where offset ηi is
uniformly distributed in [0,Tv,i]. All links have capacity
Cl = 1Gbps.

Figure 4 show the p.d.f. of reliability, measured by the
number-of-nines1, for the two baseline schemes and our
proposed reliability optimization algorithm. The peer-to-peer
checkpointing scheme with random parameters improves reli-
ability by roughly one order of magnitude over the centralized
scheme, from 99% (i.e., two nines) to 99.9% (i.e., three nines).
This is because peer-to-peer checkpointing utilizes higher
bandwidth by distributing checkpoint traffic over all links.
Further, our joint checkpoint scheduling and routing improves
reliability by one more order of magnitude to 99.99% (i.e.,
four nines). Such an improvement is due to the coordination
of checkpoint traffics, which becomes nearly orthogonal in
temporal or spatial domain.

1Reliability Ri can be equivalently measured by the number-of-nines, i.e.,
− log10(1−Ri). For instance, three nines correspond to a reliability of 99.9%.



6

0 

20 

40 

60 

80 

100 

120 

140 

160 

180 

200 

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4 4.2 4.4 

R
el

ia
b

il
it

y
 D

is
tr

ib
u

ti
o

n
 

Number of Nines 

Centralized, Random 

Peer-to-peer, Random 

Peer-to-peer, Optimized 

Fig. 4. Comparision of reliability on Fat-tree topology. Our proposed
algorithm with peer-to-peer checkpointing shows significant reliability im-
provement.

Figure 5 studies the impact of changing link capacity. In
our proposed peer-to-peer checkpointing scheme, scaling down
all link capacities to β = 70% expectedly reduces reliability,
because it causes higher congestion in the network. However,
the resulting performance is still better than increasing the bot-
tleneck link capacity from Cs = 10Gbps to Cs = 40Gbps in the
centralized checkpointing scheme. Peer-to-peer checkpointing
and our algorithm for joint checkpoint scheduling and routing
provide a cost-effective solution for achieving reliability. It
alleviates the cost of deploying high capacity links.

0 

20 

40 

60 

80 

100 

120 

140 

160 

180 

200 

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4 4.2 

R
el

ia
b

il
it

y
 D

is
tr

ib
u

ti
o

n
 

Number of Nines 

Centralized, Cs=10 Gbps 

Centralized, Cs=140 Gbps 

Peer-to-peer, β = 100% 

Peer-to-peer, β = 70% 

Fig. 5. Impact of changing link capacity. Our proposed algorithm with
peer-to-peer checkpointing outperforms the centralized scheme even if the
bottleneck link capacity is increased to Cs = 40Gbps.

V. CONCLUSION AND FUTURE WORK

This paper proposes a novel approach to providing relia-
bility as an elastic service in cloud computing. Relying on
peer-to-peer checkpointing, the problem of joint reliability
maximization is formulated as an optimization problem, in
which data center operators need to find optimal checkpoint
scheduling and make routing/placement decisions in order to
maximize an aggregate utility of reliability. The optimization
problem, shown to be non-convex and combinatorial in nature,
is efficiently solved using a distributed algorithm based on dual
decomposition. Numerical examples with synthesized traffic

traces show that our solution significantly improves reliability
by an order of magnitude over both random peer-to-peer and
centralized checkpointing mechanisms.

In ongoing work we are looking at providing reliability
as a service under dynamic job arrivals and departures, as
well as for non-Poisson failure models. We are also working
on reliability optimization algorithms which not only allow
time-varying checkpoint scheduling (e.g., non-deterministic
checkpoint intervals), but also incorporate dynamic rout-
ing/placement algorithms. We hope that the results presented
in this paper provide fuel to understanding and prototyping
reliability services in cloud computing.

REFERENCES

[1] Amazon, “ We Promise Our EC2 Cloud Will Only Crash Once A
Week,” Amazon Online Technical Report, October 2008.

[2] RackSpace, “Software as a Service Perceptions Sur-
vey”, RackSpace Technical Report, available online at
www.rackspace.com/downloads/surveys/SaaSSurvey.pdf, March
2007.

[3] VMware, “Protecting Mission-Critical Workloads with VMware
Fault Tolerance,” Technical Report, available online at
www.vmware.com/files/pdf/resources/ft virtualization wp.pdf,
February 2009.

[4] P. Ta-Shma, G. Laden, M. Ben-Yehuda, and M. Factor, “Virtual ma-
chine time travel using continuous data protection and checkpointing,
ACM SIGOPS Operating Systems Review, vol. 42, pp. 127-134, 2008.

[5] A. Warfield, R. Ross, K. Fraser, C. Limpach, and S. Hand, “Parallax:
Managing storage for a million machines, in Proceedings of 10th
Workshop on Hot Topics in Operating Systems (HotOS), June 2005.

[6] R. Badrinath, R. Krishnakumar, and R. Rajan, “Virtualization aware
job schedulers for checkpoint-restart, in Proceedings of 13th Interna-
tional Conference on Parallel and Distributed Systems (ICPADS07),
December 2007.

[7] I. Goiri and F. Juli‘a and J. Guitart and J. Torres,“Checkpoint-
based Fault-tolerant Infrastructure for Virtualized Service Providers,”
in Proceedings of IEEE/IFIP Network Operations and Management
Symposium, Aug 2010.

[8] M. Zhang, H. Jin, X. Shi, and S. Wu, “VirtCFT: A Transparent VM-
Level Fault-Tolerant System for Virtual Clusters” in Proceedings of
Parallel and Distributed Systems (ICPADS), Dec 2010.

[9] Y. Liu, R. Nassar, C. Leangsuksun, N. Naksinehaboon, M. Paun, and
S. L. Scott, “An Optimal Checkpoint/Restart Model for a Large Scale
High Performance Computing System” in Proceedings of Parallel and
Distributed Processing (IPDPS), April 2008.

[10] S. Yi, D. Kondo, and A. Andrzejak, “Reducing Costs of Spot Instances
via Checkpointing in the Amazon Elastic Compute Cloud” in Pro-
ceedings of IEEE 3rd International Conference on Cloud Computing
(CLOUD), July 2010.

[11] J. P. Srikanth and P. Bahl, “Flyways to De-congest Data Center
Networks, IEEE 3rd International Conference on SIGCOMM Workshop
on Hot Topics in Networking, 2009.

[12] S. Boyd and L. Vandenberghe, “Convex Optimization”, Cambridge
University Press, 2005.

[13] R. Mysore, A. Pamboris, and A. Vahdat, “Portland: A Scalable Fault-
Tolerant Layer 2 Data Center Network Fabric,” in Proceedings of ACM
SIGCOMM, 2009.

[14] D. Ersoz, M. S. Yousif, and C. R. Das, “Characterizing Network Traffic
in a Cluster-based, Multi-tier Data Center,” in Proceedings of the 27th
International Conference on Distributed Computing Systems, ICDCS
07, pp. 59- 69, 2007.

[15] A. K. Mishra, J. L. Hellerstein, W. Cirne, and C. R. Das, “Towards
Characterizing Cloud Backend Workloads: Insights from Google Com-
pute Clusters,” SIGMETRICS Perform. Eval. Rev., vol. 37, pp. 34-41,
March 2010.

[16] T. Benson, A. Anand, A. Akella, and M. Zhang, “Understanding Data
Center Traffic Characteristics,” ACM SIGCOMM Computer Communi-
cation Review, vol. 40, pp. 92-99, January 2010.

[17] V. Kaibel and M. A. F. Peinhardt. “On the Bottleneck Shortest Path
Problem,” ZIB-Report 06-22, May 2006.


