
 1

Automated Performance Control in a Virtual Distributed Storage System

H. Howie Huang1, Andrew S. Grimshaw
Department of Computer Science

University of Virginia
1huang@cs.virginia.edu

Abstract

Storage demand in large organizations has grown
rapidly in the last few decades. In this paper, we
describe Storage@desk, a new virtual distributed
storage system that utilizes a large number of
distributed machines to provide storage services with
quality of service guarantees. We present the
Storage@desk architecture and core components. The
machines on which Storage@desk relies exist in an
environment that is unreliable and dynamic. We utilize
replication to provide high levels of availability and
reliability. Our evaluation reveals that Storage@desk
achieves better read and write performance compared
to CIFS. As Storage@desk serves clients and
applications on shared storage resources, it is crucial
to ensure predictable storage access even when the
workloads are unknown a priori. To this end, we take a
control theoretic approach for automated performance
control in Storage@desk. Given a reference value, the
feedback controller is able to effectively regulate
service requests to virtual storage resources under
various scenarios.

1. Introduction

Storage demand in large organizations has grown
rapidly in the last few decades. Over the years
distributed storage – network-attached storage (NAS),
and storage area network (SAN) – has emerged as a
standard practice to provide high performance, fault
resilience, and data integrity. We refer to this as
managed storage. However, depending on the quality,
the vendor, discounts, and the target market, managed
storage remains expensive despite the hardware cost of
storage falling every year. There has been a lot of
interest in researching new methods to relieve the
increasing storage demand. In this paper, we present
Storage@desk, a new virtual distributed storage
system, which has the ability to harvest underutilized
storage resources in the existing information
infrastructure of large organizations. This idea is based

on the fact that large hard disks have been prolifically
distributed on PCs at the edge of the network, thanks to
rapidly falling prices. We refer to storage on desktop
machines as desktop storage. The abundance of
desktop storage, unfortunately, does not lead to great
utilization - a typical desktop machine in an exemplar
organization contains hundreds of gigabytes with more
than half left unused [1]. Further, resources available
on desktop machines are in abundance: (1) dual-core
CPUs are appearing on desktop machines with their
CPUs having clock rates over 3 GHz; (2) RAM of 1GB
or 2GB is not unusual; (3) 1 Gigabit Ethernet has
become a common network interface on new PCs,
replacing fast Ethernet. In general, desktop users do not
fully utilize the computing power, disk space, and
network bandwidth at all times [1-3], which presents an
opportunity to take advantage of the abundant yet idle
resources.

Storage@desk will not only provide a useful storage
service, but one with quality of service (QoS)
guarantees in terms of capacity, life time, availability,
reliability, and performance. As the machines on which
Storage@desk relies exist in an environment that is
unreliable and dynamic, we utilize replication to
provide high levels of availability and reliability.
Because Storage@desk utilizes shared storage
resources, predictable storage access even when the
workloads are unknown a priori is challenging. We
take a control theoretic approach for automated
performance control in Storage@desk. Feedback
control has shown success on performance control of
various computer systems, including replica
management system [4], email server [5], web server
[6], and real-time systems [7]. Given a reference value,
the feedback controller can effectively regulate access
bandwidth to virtual storage resources.

The remainder of this paper has the following
structure. We introduce the background materials in
Section 2. Storage@desk architecture and core
components are described in Section 3. We discuss the
evaluation results in Section 4. Finally, we present the
related work and conclusion in Section 5 and 6,
respectively.

 2

2. Background

Storage@desk is motivated by three key
observations: strong demand for disk storage, abundant
yet idle resources on desktop machines, and various
performance requirements for storage services.

2.1 Strong demand for disk storage

Data play a critical role in enterprise and scientific
computing. According to a study from Berkeley [8], the
amount of new information produced worldwide is
estimated to grow about 30% a year since 1999, with 5
million terabytes in 2002. More than 90% of that data
was estimated to be stored on magnetic media (e.g.,
hard disks, tapes), and hard disks accounted for most
storage, nearly 2 million terabytes. As data volumes
continue to explode, there is always a consistently
strong demand for cost effective, massive-scale disk
storage.

2.2 Abundant yet idle resources on desktop

machines

Today, the advent of hard drive technology is
capable of packing hundreds of gigabytes onto
inexpensive hard disks, and these large disks are
pervasive. The same Berkeley study estimated that
90% of 9.9 million terabytes of disk storage shipped in
2002, or 9 million terabytes, sits in PCs, workstations,
and laptops. Clearly, PCs are holding the greatest
amount of storage resources even though those
resources are distributed and managed individually.

Unfortunately, the utilization of desktop storage is
low. Our 2005 study [1] of 729 desktop machines
revealed that on average 62% of a machine’s raw disk
capacity was unused. Previous research studies [9, 10]
showed that the unused portion of disk space from
4800 desktop machines was 49%, 50%, and 58%
respectively in 1998, 1999, and 2000. These numbers
indicate a clear uptrend of unused disk space on an
average machine over the years. As this trend continues
in the future, we see Storage@desk is a good
complement to managed storage by making the best use
of unutilized desktop storage in large organizations.

2.3 Various performance requirements for

Storage Service

In an organization, different clients have theirs own
performance requirements. Furthermore, a single client
may have different performance requirements for
multiple applications at various times. Some

applications (e.g., video-on-demand) demand high
performance services of great urgency, while others
(e.g., text processing) may tolerate less perfect
performance. How to achieve predictable performance
is a challenging task for two reasons. First, in essence
Storage@desk is a virtual storage system shared by a
large number of clients and applications. It would be
preferable to isolate one client from others; otherwise
an I/O surge from one client would negatively affect
others sharing the same storage resource. Second, the
workloads are generally unknown a priori. Without
accurate information on access patterns, human
regulation is inherently slow in reaction to changes in
the workload. To address this problem, we will design
a feedback controller for automated performance
control in Storage@desk.

3 Storage@desk architecture

Storage@desk achieves storage virtualization by
utilizing the iSCSI protocol [11]. We choose iSCSI
because this IETF standard can transport the SCSI
commands and data over TCP/IP networks. From the
perspective of a client, Storage@desk storage appears
as a virtual volume that consists of an array of fixed-
size blocks. Therefore, the clients can transparently
access data in a uniform, standard-based fashion. A
client treats virtual volumes as locally-attached hard
drives, isolating from the distributed resource
management behind the scene. Once logging on to a
virtual volume, the client can make partitions, create
various file systems (e.g., NTFS, ext2, ext3), make
directories and subdirectories, and perform file
operations (e.g., create, copy, move, modify, delete).

In Storage@desk architecture presented in Fig. 1,
iSCSI servers (including controllers on them)
implement the iSCSI layer and serve the requests;
storage machines as resource providers save data on
local hard drives; and one or more databases maintain
all the metadata in the system.

Upon receiving a client request, the iSCSI server will
need to contact the databases for the necessary
metadata if they are not up to date. Otherwise, the
iSCSI server may directly forward the request to the
corresponding storage machines to read and write the
blocks.

In this section, we present databases and metadata
management in Section 3.1, storage machines in
Section 3.2, and iSCSI servers in Section 3.3. We
discuss the feedback controller in Section 3.4.

 3

Fig. 1. Storage@desk architecture. Arrows
indicate the iSCSI commands from clients and data
to clients; Arrows indicate data interactions
between iSCSI servers and machines; Arrows
indicate metadata path to the database. The
number in the brackets represents the section
where we introduce the component.

3.1 Metadata

Storage@desk relies on metadata to correctly service
clients’ requests. Everything from volume information,
block location, and machine characteristics end up in a
database. Without a loss of generality, we describe in
this paper a single, centralized database scheme (an
assumption we feel is justified by the observation that
most metadata operations are read rather than write
operations and can thus benefit from aggressive local
caching). The Storage@desk database stores three
types of metadata about the system – volumes,
mappings, and storage machines. The database contains
three tables with the pseudo-schemas and relationships
as shown in Fig. 2.

Conceptually, a virtual volume is an array of blocks
that can be grouped in a number of virtual chunks.
Each virtual chunk is mapped to multiple physical
chunks on storage machines, depending on the
replication degree. The volume table includes the ID,
name, replication degree, and number of virtual
chunks. Correspondingly, a storage machine divides its
available storage into a number of physical chunks. The
machine table includes the ID, the IP address, data
directory (where the physical chunks reside), and
number of physical chunks. The physical chunk holds
the same number of blocks as the virtual chunk. There
is one-to-many relationship between one virtual chunk

and many physical chunks. The mapping table reflects
this relationship by mapping a replica of a virtual
chunk to a physical chunk. The number of mappings
for a virtual volume is the multiplication of the number
of virtual chunks and the replication degree. With the
mapping from the mapping table, an iSCSI server can
locate physical chunks on one or many storage
machines to read and write blocks in a virtual volume.

Fig. 2: Conceptual database schemas. Arrows
represent associations between the tables.

ISCSI servers and storage machines have sensors on

them to collect information that contain current
statistics of the running system. These consist of the
latest characteristics of storage machines and the
current performance of the iSCSI servers. This
information is used to organize and affect the physical
location of storage blocks and the allocation of
resources (e.g., storage machines) in order to meet the
quality of service (QoS) requirements specified with
each volume. We presented our QoS model and
market-based resource allocation in [12]. In this paper
we instead focus on performance control.

As some organizations may place a higher demand
on database access than others, we can partition
metadata across multiple databases, or employ a
master-slave replication scheme. In the latter, metadata
is stored in both the master and slave database. The
metadata first is sent to the master and then forwarded
to the slave. When the master fails, the slave will take
over the requests till the master recovers. These two
methods can be applied together if necessary.

3.2 Storage machine

Each machine that participates in a Storage@desk
system will run a single service daemon. This service is
responsible for servicing requests from iSCSI servers
and for keeping the database updated with their current
QoS statistical information. At their most basic level,
these requests are various versions of read, write,

iSCSI Server

iSCSI Server (3.3)

iSCSI Server

iSCSI Server

Client Services
iS

C
SI

Controller (3.4)

Client

Storage
Machine (3.2)

Storage
Machine

Storage
Machine

Storage
Machine

Client

Client

Controller

Controller

Controller
Volume
Database

(3.1)

Volume
Database

(3.1)

Volume

Machine

Mapping

Volume ID Name Replication Degree Virtual Chunks

Volume Replica Virtual Chunk Machine

IP address Machine ID Physical Chunks Data Directory

Physical Chunk

QoS

QoS

 4

allocate, and free. These servers are also responsible
for maintaining and enforcing data integrity and
privacy policies for both on-storage and on-wire data.

In addition to servicing client requests for blocks, the
storage machine also acts as a sensor and feeds current
QoS-related information back into the Storage@desk
system. Specifically, this information includes such
things as CPU load, memory load, disk availability,
network load, and bandwidth. All of this information
becomes metadata in the database.

3.3 ISCSI server

ISCSI servers act as the interface point between
clients and virtual storage resources (they implement
the iSCSI layer). They are responsible for translating
iSCSI requests into proper calls on the storage
machines. Furthermore, the iSCSI server is responsible
for maintaining all relevant caches of data and
metadata for the system. When clients connect to a
Storage@desk system via the iSCSI interface, they will
establish an iSCSI session with an iSCSI server. A
single iSCSI server can handle one or more clients and
a given client can interact with more than one iSCSI
servers. Storage@desk system supports dynamic
volume creation and removal.

ISCSI servers are also responsible for maintaining
and enforcing access-control security policies. While
the storage machines in the back-end manage data
integrity and privacy issues, the iSCSI servers
explicitly allow or deny requests based on user
credentials and configuration (as per the iSCSI
specification).

Storage@desk tolerates failures from the storage
machines through replication. The replicas on multiple
storage machines improve reliability and availability of
virtual volumes, and offer possibilities for load
balancing. We may choose from a number of
replication strategies, e.g., RAID 1, RAID 5, and
erasure code. For simplicity, we implement RAID 1 in
our prototype, and plan to add erasure code as a future
feature.

3.4 Performance controller

In this paper, we focus on bandwidth in MB/s as the
key performance metric. Bandwidth reveals the amount
of data that can be transferred in a certain time between
a client and the Storage@desk system. The amount of
bandwidth directly affects the performance that a client
may experience. We achieve bandwidth control with
the help of a feedback controller. Running on an iSCSI
server, the controller evaluates the bandwidth of

storage service during run-time, and dynamically
throttles the requests based on the monitored values. In
other words, upon receiving the requests from a client,
the controller may hold them in the queue for a certain
amount of time and release at a rate that meets the
target bandwidth.

For a client, the performance control comes with soft
guarantee, which means the service is provided at the
desirable level when the controller is in work. For
example, the service needs to have a bandwidth at 3
MB/s from 8 AM to 8:30 AM.

Fig. 4. The control loop is consisted of a sensor, a
controller, and an actuator that work together to
actively regulate the performance.

We take a control-theoretic approach to design the
controller. In our approach, the target system is an
iSCSI server and the storage machines which are
treated as a “black-box” system. The goal of the control
loop is to regulate performance of storage services
close to the reference value. The loop consists of a
sensor that collects performance data, a controller that
identifies any abnormality on the performance of
storage services and computes the control output, and
an actuator that configures the running system as
needed. Figure 4 illustrates the feedback control of
Storage@desk. The inputs and outputs are handled as
discrete signals at regular time intervals. For each time
interval k, the sensor records the bandwidth y(k) of the
service. The difference between the measured
bandwidth y(k) and the reference bandwidth r becomes
the control input e(k) = r – y(k), which is fed to the
controller. The controller follows a control law to
generate a control output u(k). The actuator throttles
the requests based on u(k). That is, before dispatching a
request from the queue, the actuator will enforces a
delay function Delay(u(k)) on the iSCSI server. The
function Delay with an input of u(k) means the requests
will be withheld for u(k) milliseconds. Ideally, a
smaller error e(k+1) = r – y(k+1) will be observed at
the next time interval (k+1). Guided by the control law,
the sensor, controller, and actuator will work together
to bring the iSCSI server to a steady state where the

Performance

Measurement y(k)

Control
Output u(k)

Service
Responses

Throttling

Service
Requests

ISCSI
Server

Reference

Value r

Control
Input e(k)

Controller

Sensor

+

–

Actuator

 5

reference value is reached, and maintain the system at
this state.

We design the controller using a proportional,
integral (PI) control law. The PI controller is a
combination of a proportional controller, which can
quickly reduce the error, and an integral controller,
which can potentially eliminate the error.

The proportional controller generates the control
output proportional to the error e(k). Formally, it can
be written as follows:

)()(keKku PP = (1),

where KP is the control gain of the proportional
controller, and)(kuP represents the control output

from the proportional controller.
The integral control generates the controller output

proportional to the integral of the control error.
Formally, it can be written as follows:

)()1()(keKkuku III +−= (2),

where KI is the control gain of the integral controller,
)1(−kuI represents the control output at the time (k-1),

and)(kuI the output at the time k.

 The PI controller is obtained by adding (1) and (2).

)1()()()1(

)()()(

−−++−=
+=

keKkeKKku

kukuku

PIP

IP (3),

where KP + KI is the overall gain of the PI controller.
Note that the actuator needs to determine whether the
control output u(k) falls into the working range
determined by system administrators. This is necessary
to prevent undesirable or unrealistic delays.

Before we can determine the control gains, KP and
KI, we need a mathematical model of the target system.
Many previous works [5, 6] adopted a first-order line
difference equation for its simplicity. It can be written:

)1(*)1(*)(−+−= kubkyaky (4),

where a and b are coefficients. Here the measured
bandwidth y(k) at the time interval k is determined by
the previous bandwidth y(k-1) and the control output
u(k-1) at the time interval k. Now we need to estimate
the values of a and b. We first collect a data set of 300
pairs of y(k) and u(k) by running our prototype with a
predetermined set of inputs for 50 minutes and
collecting the corresponding outputs. The complete
setup can be found in Section 4. Next we use least-
squares regression [13] on the data set to compute the
coefficients a = 0.21 and b = –0.23.

Z-transform [14] is widely used to convert time-series
equations to equivalent forms in z-domain or frequency
domain that are easier to analyze and manipulate. The

system model (4) in time domain can be rewritten in z-
domain as follows:

21.0

23.0
)(

−
−=

−
=

zaz

b
zG (5).

Fig. 6. The control loop with PI controller. In the
dotted rectangle, the top part is the P controller and
the bottom part is the I controller.

 After the z-transform, we can draw a block diagram
of the control loop in Fig. 6. We take the z-transform
on (3) and obtain the transfer function of the PI
controller as follows:

1

)(

1)(

)(
)(

−
−+

=

−
+==

z

KzKK

z

zK
K

zE

zU
zK

PIP

I
p

 (6).

The transfer function for the closed loop is

)()(1

)()(

)(

)(
)(

zGzK

zGzK

zR

zY
zFR +

== (7).

Replacing K(z) and G(z) with (5) and (6), the transfer
function (7) becomes

)()]1()([

)(

)(])[()1(

)(])[(

)()(1

)()(

)(

)(
)(

2
PIP

PIP

PIP

PIP

R

bKazaKKbz

bKzKKb

zGKzKKz

zGKzKK

zGzK

zGzK

zR

zY
zF

−++−++
−+

=

−++−
−+

=

+
==

 (8),

where the denominator of (8) is called the characteristic
polynomial. If we set the characteristic polynomial to
zero, we get the characteristic equation whose roots are
called poles. The poles are very important because they
determine the stability and settling time of the control
loop. The roots of the nominator of (8) are called zeros,
i.e. KP /(KP + KI).

Service
Responses

Delay
U(z) Throttling

ISCSI Server
G(z)

Reference
Value R(z)

Error
E(z)

Performance
Measurement
Y(z)

Sensor

+

–

Actuator

KI 1−z

z

KP

PI Controller K(z)

Service
Requests

 6

We use root locus [14] to obtain KP and KI by
plotting the roots of the characteristic polynomial as the
overall gain (KP + KI) varies from zero to infinity. The
key properties to observe are the overshoot that is the
maximum difference between the measured output and
the reference value, and the settling time that the
system takes to reach the reference value. After plotting
the expected settling time and overshoot against the
possible zeros and gains, we choose to a zero KP /(KP +
KI,) of -0.01 and a small gain (KP + KI) of -1.3. Such a
choice has an effect of no control overshoot and a
settling time of about five intervals. From the zero and
gain value, we can obtain the values of Kp and KI as -
0.01 and -1.29, respectively. Thus, the PI controller (3)
can be written as (9), which we will use in our
evaluations in the following section.

)1(*01.0)(*3.1)1()(−+−−= kekekuku (9).

4 Evaluation

We have developed a prototype of Storage@desk
that implements all the core components. The prototype
is written in Java. We use MySQL to host the database.
We install the database server and iSCSI server on two
Windows Server 2003 machines, and storage machine
on three Linux machines with Fedora 7 using kernel
2.6.23. All servers have the same hardware
configuration: 8x Xeon CPUs at 2.33 GHz, 16 GB
RAM, and one 250 SATA GB hard drive at 7200 rpm.
Our evaluations reveal that the iSCSI server uses only
around 5% of CPU and works well with a JVM of
maximum 512 MB heap size. The clients run on
Windows XP machines with a P4 CPU at 2.4 GHz, 512
MB RAM, and a 100 Mb/s network connection. The
clients create an NTFS file system on a virtual volume
of 50 GB with the replica degree of two. The clients
use IOzone [15] to generate various workloads, e.g.,
reads, writes, and a mix of both. The IOzone process
will issue the requests to the virtual volume with a
record size of 1 MB. The clients use a Microsoft iSCSI
initiator [16]. Our main effort has been focused on the
functionality, thus there is a lot of room available for
future improvements. Currently we have yet to
implement access control or security, which will be
added shortly.

4.1 Read and write performance

We first compare the performance of Storage@desk
against that of Windows CIFS (Common Internet File
System). In this test, the client writes files, from 1MB
to 2GB, to the Storage@desk volume, and reads them

back. We intentionally log out and on to the volume
between the writes and reads to flush the memory
caches on the client. Similarly, the client writes and
reads the same set of files to a network drive using the
CIFS protocol.

Fig. 7 demonstrates performance from both
Storage@desk and CIFS. Storage@desk is able to read
at over 14 MB/s for files smaller than 512 MB with the
except of 1 and 4 MB files where the bandwidth is
close to 8 MB/s. Because Storage@desk provides an
abstraction of local hard drive, the operating system is
able to apply local cache to improve the performance,
which subsequently allows the bandwidth to exceed the
theoretical maximum value allowed by the 100 Mb/s
network. For these small files, CIFS has a read
bandwidth of 8 MB/s. For files of 1 GB and 2 GB, both
have a read bandwidth of around 7.3 MB/s.
Storage@desk writes faster than CIFS for small files,
too. For files smaller than 64 MB, Storage@desk
achieves a read bandwidth above 10 MB/s, compared
to 8MB/s for CIFS. Although Storage@desk lags
behind CIFS for 128 MB to 512 MB files, it has a
slight better write bandwidth for large files like 1 and 2
GB files. In short, Storage@desk holds advantages
over CIFS when reading and writing small files, and
has a similar performance as CIFS for large files.

Fig. 7. Bandwidth comparison between
Storage@desk and CIFS.

4.2 Performance control

In this section, we evaluate the effectiveness of the
controller under three settings: when a client
sequentially writes a 20 GB file, when a client
sequentially reads a 20 GB file, and when a client reads
and writes to random locations in a 2 GB file. Fig. 8, 9,
and 10 present the changes in bandwidth for every ten
seconds for the three settings, respectively. The total
runtime is 1,800 seconds for each setting and is divided
into three regions of 600 seconds. For the first 600
seconds (region I), there is no control over client

 7

requests. The controller comes in effect for the rest of
the time, where the reference bandwidth is 3 MB/s for
the second 600 seconds (region II) and 4 MB/s for the
third and last 600 seconds (region III). For each time
interval of ten seconds, the sensor measures the service,
and the controller computes a new output and feeds to
the actuator.

The client presents a very bursty behaviour when
writing a file. This can be seen as the frequent, wide
oscillations in bandwidth from 2 to 9 MB/s in region I
of Fig. 8. In region II, the controller brings the
bandwidth close to 3 MB/s in five time intervals. When
the reference value changes to 4 MB/s in region III, the
controller is able to lift the service performance to a
higher range. Due to dynamics in workloads, the
controlled bandwidth swings but with a much smaller
window of 1 MB/s compared to 7 MB/s for
uncontrolled service in region I.

When reading a file, the client seems to place a
rather consistent workload on the server. In Fig. 9, this
appears as a stable bandwidth that moving around 7.3
MB/s in region I. This access pattern of reads makes
possible for the controller to do a better job here. In
region II and III, once the reference value is reached in
four time intervals, the controller is able to maintain the
bandwidth at the desired level with small oscillations.

Fig. 8. Bandwidth changes for every ten seconds
when a client writes a file.

Fig. 9. Bandwidth changes for every ten seconds
when a client reads a file.

We create a mix of workloads by repeatedly writing
and reading a file. There are two clients, client A and B,
in this case. Instead of sequentially reading and writing,
each client will read and write to random locations of a
file in its volume. In region I where there is no control,
client A and B are free to compete for the available
bandwidth that is about 6 or 7 MB/s in total. As a
result, in the first region, their bandwidth numbers are
more or less random and very unpredictable. Say in
region II, client A is running more important tasks than
client B. We set a reference value of 4 MB/s for client
A and 2 MB/s for client B. As a result, compared to the
first region where for most of times client A gets a
bandwidth lower than 4 MB/s, it is getting a better
bandwidth in the second region. On the other hand,
client B is getting a smaller bandwidth now. Say in
region III, client A finishes the tasks and client B’s
computation becomes more important. We can reset the
reference values, and the situation is reversed. Here
client B obtains the performance of around 4 MB/s,
where the oscillating numbers can be attributed to the
dominant write requests.

 0

 2

 4

 6

 8

 10

 0 200 400 600 800 1000 1200 1400 1600 1800

B
a
n
d
w
id
th
 (
M
B
/s
)

Time (s)

Measurement

Reference

(a) Client A

 0

 2

 4

 6

 8

 10

 0 200 400 600 800 1000 1200 1400 1600 1800

B
a
n
d
w
id
th
 (
M
B
/s
)

Time (s)

Measurement

Reference

(b) Client B

Fig. 10. Bandwidth changes for every ten seconds
for two clients.

In conclusion, the controller performs well in three
different workloads. It can quickly bring the bandwidth
close to the reference value, and maintain it within the
desired range. The controller can make appropriate
adjustments when the reference is changed.

5 Related work

Extensive research has been conducted in the areas
of distributed/parallel file storage systems, notably

 8

FARSITE [3, 10] and FreeLoader [17]. Storage@desk
complements those systems with a specific focus on
fault tolerance and performance control. Both
FARSITE and FreeLoader utilize free available storage
on desktop machines to provide a best-effort storage
service. Because FARSITE provides an NTFS-like file
interface, it has to employ a number of different access
leases in order to deal with directory namespace and
file data. FreeLoader focuses on remote data caching,
but neither fault tolerance nor data consistency.

Previous work on storage QoS focuses primarily on
disk arrays. Minerva [18] and Hippodrome [19] are
resource provision tools that are able to design the
storage system automatically, avoiding over-
provisioning and under-performing. The iterative
design process takes into account a QoS specification
from users, workload descriptions, and hardware
characteristics. Façade [20] and Stonehenge [21] create
a layer of storage virtualization above the physical
storage devices that can satisfy QoS guarantees with
real-time disk scheduling algorithms. Stonehenge
proposes a multi-dimension QoS model, focusing
especially on bandwidth and delay. In contrast,
Storage@desk handles the workload on the software
level and employs a feedback controller for bandwidth
control.

6 Conclusion

In this paper, we present a new virtual distributed
storage system called Storage@desk that aggregates
available storage resources on distributed machines to
create an extremely large storage pool. Storage@desk
provides high available and reliable data access
through the use of replication. In particular, we
incorporate the support of performance control into
Storage@desk to provide predictable storage services.
We have experimentally demonstrated that the
feedback control can automatically throttle workload
based on reference bandwidth values. As a future
research topic, we plan to add additional parameters to
system models, e.g. latency and throughput.

References
[1] H. H. Huang, J. F. Karpovich, and A. S. Grimshaw, "Analyzing
the Feasibility of Building a New Mass Storage System on
Distributed Resources," Journal of Concurrency and Computation:
Practice and Experience, vol. 20, pp. 1131-1150, July 2008.
[2] M. Litzkow, M. Livny, and M. Mutka, "Condor - A Hunter of
Idle Workstations," in Proceedings of the 8th International
Conference of Distributed Computing Systems, San Jose, California,
1988, pp. 104-111.
[3] W. J. Bolosky, J. R. Douceur, D. Ely, and M. Theimer,
"Feasibility of a Serverless Distributed File System Deployed on an
Existing Set of Desktop PCs," in Proceedings of the International

Conference on Measurement and Modeling of Computer Systems,
Santa Clara, California, 2000.
[4] J. Wozniak, P. Brenner, D. Thain, A. Striegel, and J. Izaguirre,
"Applying Feedback Control to a Replica Management System," in
Southeastern Symposium on System Theory, IEEE Control Systems
Society, March 2006.
[5] N. G. Sujay Parekh, Joe Hellerstein, Dawn Tilbury, T. S. Jayram,
"Using Control Theory to Achieve Service Level Objectives In
Performance Management," Real-Time Systems Journal, vol.
23:127-141, 2002.
[6] N. G. Y. Diao, S. Parekh, J. Hellerstein, and D. Tilbury, "Using
mimo feedback control to enforce policies for interrelated metrics
with application to the apache web server," in Network Operations
and Management Symposium, 2002.
[7] J. A. S. Chenyang Lu, Gang Tao, Sang H. Son, "Feedback
Control Real-Time Scheduling: Framework, Modeling, and
Algorithms," Journal of Real Time Systems, 2001.
[8] P. Lyman and H. R. Varian, How Much Information,
http://www.sims.berkeley.edu/research/projects/how-much-info-
2003/.
[9] J. R. Douceur and W. J. Bolosky, "A Large-Scale Study of File-
System Contents," in Proceedings of the 1999 ACM SIGMETRICS
International Conference on Measurement and Modeling of
Computer Systems, Atlanta, Georgia, 1999.
[10] A. Adya, W. J. Bolosky, M. Castro, G. Cermak, R. Chaiken, J.
R. Douceur, J. Howell, J. R. Lorch, M. Theimer, and R. P.
Wattenhofer, "FARSITE: Federated, Available, and Reliable Storage
for an Incompletely Trusted Environment," in Proceedings of the
Figth symposium on Operating Systems Design and
Implementation, Boston, Massachusetts, 2002.
[11] IETF, Internet Small Computer Systems Interface (iSCSI),
http://www.ietf.org/rfc/rfc3720.txt.
[12] H. H. Huang, A. S. Grimshaw, and J. F. Karpovich, "You Can't
Always Get What You Want: Achieving Differentiated Service
Levels with Pricing Agents in a Storage Grid," in IEEE/WIC/ACM
International Conference on Web Intelligence, Fremont, California,
2007, pp. 123- 131.
[13] K. J. Astrom and B. Wittenmark, Adaptive Control: Prentice
Hall, 2nd edition, 1995.
[14] J. L. Hellerstein, Y. Diao, S. Parekh, and D. M. Tilbury,
Feedback Control of Computing Systems: Wiley-IEEE Press, 2004.
[15] IOzone Filesystem Benchmark, http://www.iozone.org.
[16] Microsoft, Microsoft iSCSI Software Initiator,
http://www.microsoft.com/downloads/details.aspx?FamilyID=12cb3
c1a-15d6-4585-b385-befd1319f825&DisplayLang=en.
[17] S. S. Vazhkudai, X. Ma, V. W. Freeh, J. W. Strickland, N.
Tammineedi, and S. L. Scott, "FreeLoader: Scavenging Desktop
Storage Resources for Scientific Data," in Supercomputing 2005
(SC'05): International Conference on High Performance
Computing, Networking and Storage, Seattle, Washington, 2005.
[18] G. A. Alvarez, E. Borowsky, S. Go, T. H. Romer, R. Becker-
Szendy, R. Golding, A. Merchant, M. Spasojevic, A. Veitch, and J.
Wilkes, "Minerva: An automated resource provisioning tool for
large-scale storage systems," ACM Transactions on Computer
Systems, vol. 19, pp. 483-518, November 2001 2001.
[19] E. Anderson, M. Hobbs, K. Keeton, S. Spence, M. Uysal, and
A. Veitch, "Hippodrome: running circles around storage
administration," in Conference on File and Storage Technologies,
Monterey, California, 2002, pp. 175-188.
[20] C. Lumb, A. Merchant, and G. Alvarez, "Facade: Virtual
Storage Devices with Performance Guarantees," in Conference on
File and Storage Technology, San Francisco, California, 2003, pp.
131-144.
[21] L. Huang, G. Peng, and T. Chiueh, "Multi-dimensional storage
virtualization," in SIGMETRICS/Performance New York, New
York, 2004.

