Automated Performance Control in a Virtual Distributed Storage System

H. Howie Huang, Andrew S. Grimshaw
Department of Computer Science
University of Virginia
huang@cs.virginia.edu

Abstract on the fact that large hard disks have been peallfi
distributed on PCs at the edge of the network,kban

Storage demand in large organizations has grown rapidly falling prices. We refer to storage on depk
rapidly in the last few decades. In this paper, we machines as desktop storage. The abundance of
describe Storage@desk, a new virtual distributed desktop storage, unfortunately, does not lead éatgr
storage system that utilizes a large number of utilization - a typical desktop machine in an exémp
distributed machines to provide storage serviceth wi Organization contains hundreds of gigabytes witlemo
qua“ty of service guarantees_ We present the than half left unused [1] FUrther, resources andd
Storage@desk architecture and core components. Theon desktop machines are in abundance: (1) dual-core
machines on which Storage@desk relies exist in anCPUs are appearing on desktop machines with their
environment that is unreliable and dynamic. Weiagil ~ CPUs having clock rates over 3 GHz; (2) RAM of 1GB
replication to provide high levels of availabilignd ~ OF 2GB is not unusual; (3) 1 Gigabit Ethernet has
reliability. Our evaluation reveals that Storage@te become a common network interface on new PCs,
achieves better read and write performance compared'eplacing fast Ethernet. In general, desktop usensot

to CIFS. As Storage@desk serves clients andfully utilize the computing power, disk space, and
applications on shared storage resources, it iscai ~ nNetwork bandwidth at all times [1-3], which presean

to ensure predictable storage access even when thé@Pportunity to take advantage of the abundantdlet i
workloads are unknown a priori. To this end, weetak =~ r€Sources.

control theoretic approach for automated performanc ~ Storage@desk will not only provide a useful storage
control in Storage@desk. Given a reference value, t Service, but one with quality of service (QoS)
feedback controller is able to effectively regulate guarantees in terms of capacity, life time, avalilgb
service requests to virtual storage resources under reliability, and performance. As the machines orictvh

various scenarios. Storage@desk relies exist in an environment that is
unreliable and dynamic, we utilize replication to
1. Introduction provide high levels of availability and reliability

Because Storage@desk utilizes shared storage
resources, predictable storage access even when the

Storage demand in large organizations has grown o7)
g 9 g g workloads are unknowm priori is challenging. We

rapidly in the last few decades. Over the years K | th . hof d
distributed storage — network-attached storage (INAS take ‘a control t eore_tlc approach for automate
and storage area network (SAN) — has emerged as gerformance control in Storage@desk. Feedback
standard practice to provide high performance,tfaul coqtrol has showtn succests on per.forlmg.nce contrlgl of
resilience, and data integrity. We refer to this as various — computer - systems, including repiica
managed storage. However, depending on the qua"ty’management_system [4]., email Server [5], web server
the vendor, discounts, and the target market, nehag [6], and real-time systems [7]. legn a referenaig,
storage remains expensive despite the hardwareotost '[[)he ;eggbhack (?ontrloller can effectively regulateess
storage falling every year. There has been a lot of a_r|1_hW| t to_w(;tua s]:[o;ﬁ_ge resourcr(:s. the followi
interest in researching new methods to relieve the € remainder o IS paper has the following
increasing storage demand. In this paper, we presenstructure. We introduce the background materials in

Storage@desk, a new virtual distributed storage Section 2t Sto(;age_@bdt(ajs_k Sarcthlte(;:[uc\e/ Sn(imcotre
system, which has the ability to harvest undenddi components areé described in Section 3. We dISTIEss

storage resources in the existing information evaluation results in Section 4. Finally, we pregsbe

infrastructure of large organizations. This idehased related_work and conclusion in Section 5 and 6,
respectively.

2. Background applications (e.g., video-on-demand) demand high

performance services of great urgency, while others

Storage@desk is motivated by three key (€.g., text processing) may tolerate less perfect

observations: strong demand for disk storage, amind Performance. How to achieve predictable performance
yet idle resources on desktop machines, and varioudS & challenging task for two reasons. First, iseese

performance requirements for storage services. Storage@desk is a virtual storage system sharea by
large number of clients and applications. It wobll
2.1 Strong demand for disk storage preferable to isolate one client from others; otlhss

an 1/0 surge from one client would negatively affec
Data play a critical role in enterprise and sciénti others sharing the same storage resource. Sedumnd, t

computing. According to a study from Berkeley [workloads are generally unknowa priori. Without
amount of new information produced worldwide is @ccurate information on access patterns, human
estimated to grow about 30% a year since 1999, Svith regulation is inherently slow_ln reaction to ch_amge _
million terabytes in 2002. More than 90% of thatada the workload. To address this problem, we will dasi
was estimated to be stored on magnetic media (e.g.2 feedpack controller for automated performance
hard disks, tapes), and hard disks accounted fat mo controlin Storage@desk.
storage, nearly 2 million terabytes. As data volsme)
continue to explode, there is always a consistently 3 Storage@desk architecture
strong demand for cost effective, massive-scal& dis
storage. Storage@desk achieves storage virtualization by
utilizing the iSCSI protocol [11]. We choose iSCSI
2.2 Abundant yet idle resources on desktop because this IETF standard can transport the SCSI
machines commands and data over TCP/IP networks. From the
perspective of a client, Storage@desk storage appea
Today, the advent of hard drive technology is @S @ virtual volume that consis_ts of an array »édi
capable of packing hundreds of gigabytes onto SiZ€ blocks. Therefore, the clients can transplyrent
inexpensive hard disks, and these large disks are?CCess data in a uniform, standard-based fashion. A
pervasive. The same Berkeley study estimated thatcliént treats virtual volumes as locally-attacheafch
90% of 9.9 million terabytes of disk storage shipjre drives, |solat|ng_ from the distributed _resource
2002, or 9 million terabytes, sits in PCs, workistag, management behind the scene. Once logging on to a
and laptops. Clearly, PCs are holding the greatestV'rtl_Jal vo_Iume, the client can make partitions, atee
amount of storage resources even though those’arious file systems (e.g., NTFS, ext2, ext3), make
resources are distributed and managed individually. ~ directories and subdirectories, and perform file
Unfortunately, the utilization of desktop storage i OPerations (e.g., create, copy, move, modify, eglet
low. Our 2005 study [1] of 729 desktop machines _ In Storage@des_k arcf_ntecture presented in Fig. 1,
revealed that on average 62% of a machine’s rakv dis ISCS! servers (including controllers on them)
capacity was unused. Previous research studiek0[9, mplement the iSCSI layer and serve the requests;
showed that the unused portion of disk space fromStorage machlnes as resource providers save _da_tta on
4800 desktop machines was 49%, 50%, and 5ggplocal hard dnves.; and one or more databases nminta
respectively in 1998, 1999, and 2000. These numbers2!! the metadata in the system. , _
indicate a clear uptrend of unused disk space on an UPOn receiving a client request, the iSCSI servér w
average machine over the years. As this trendmoesi ~ "€€d to contact the databases for the necessary
in the future, we see Storage@desk is a goodmetadata if they are not up to date. Otherwise, the

complement to managed storage by making the best us!SCSI server may directly fo_rward the request t(_a th
of unutilized desktop storage in large organization E?rrekspondmg storage machines to read and wréte th
ocks.

In this section, we present databases and metadata
management in Section 3.1, storage machines in
Section 3.2, and iSCSI servers in Section 3.3. We
discuss the feedback controller in Section 3.4.

2.3 Various performance requirements for
Storage Service

In an organization, different clients have theiveno
performance requirements. Furthermore, a singéntli
may have different performance requirements for
multiple applications at various times. Some

Client Service
P - ~ N
N

\

’

Storage
Machine (3.2

’
’

| iSCSI Server (3.3)

Controller (3.4~

7

-’
-
-,

Storage
Machine

E S

and many physical chunks. The mapping table reflect
this relationship by mapping a replica of a virtual
chunk to a physical chunk. The number of mappings
for a virtual volume is the multiplication of theimber

of virtual chunks and the replication degree. Witk
mapping from the mapping table, an iSCSI server can
locate physical chunks on one or many storage

‘"" 2 Storage machines to read and write blocks in a virtual wou
.8 7 Machine
| Volume
‘\ St : : : L
al Vot e Volume ID [NamgReplication Degref/irtual Chunk$ QoS
k A
Mapping
— Database P A " " n -
3.1 Volume| Replicg Virtual Chunk] Machine [Physical Chunk
Fig. 1. Storage@desk architecture. Arrows --» Machine
indicate the iSCSI commands from clients and data - - -
to dlients. Arrows --> indicate data interactions Machine IQIP addresata DirectoryPhysical Chunks QoS

between iSCSI servers and machines; Arrows —
indicate metadata path to the database. The
number in the brackets represents the section
where we introduce the component.

3.1 Metadata

Storage@desk relies on metadata to correctly servic
clients’ requests. Everything from volume inforioat
block location, and machine characteristics endhugp
database. Without a loss of generality, we desdrb

this paper a single, centralized database scheme (a

assumption we feel is justified by the observatiost
most metadata operations are read rather than writ
operations and can thus benefit from aggressival loc

caching). The Storage@desk database stores thre

types of metadata about the system — volumes
mappings, and storage machines. The databaserontai
three tables with the pseudo-schemas and relatsish
as shown in Fig. 2.

Conceptually, a virtual volume is an array of bleck
that can be grouped in a number of virtual chunks.
Each virtual chunk is mapped to multiple physical
chunks on storage machines,
replication degree. The volume table includes e |
name, replication degree, and number of virtual
chunks. Correspondingly, a storage machine diviides
available storage into a number of physical chuike

machine table includes the ID, the IP address, data

directory (where the physical chunks reside), and

number of physical chunks. The physical chunk holds

the same number of blocks as the virtual chunkr& he
is one-to-many relationship between one virtualnghu

e

depending on the

Fig. 2. Conceptual database schemas. Arrows
represent associations between the tables.

ISCSI servers and storage machines have sensors on
them to collect information that contain current
statistics of the running system. These consisthef
latest characteristics of storage machines and the
current performance of the iSCSI servers. This
information is used to organize and affect the iays
location of storage blocks and the allocation of
resources (e.g., storage machines) in order to theet
quality of service (QoS) requirements specifiedhwit
each volume. We presented our QoS model and
market-based resource allocation in [12]. In thaper
gve instead focus on performance control.

As some organizations may place a higher demand
‘on database access than others, we can partition
metadata across multiple databases, or employ a
master-slave replication scheme. In the latter adega
is stored in both the master and slave database. Th
metadata first is sent to the master and then foleea
to the slave. When the master fails, the slave take
over the requests till the master recovers. Thege t
methods can be applied together if necessary.

3.2 Storage machine

Each machine that participates in a Storage@desk
system will run a single service daemon. This seng
responsible for servicing requests from iSCSI s&rve
and for keeping the database updated with thereatir
QoS statistical information. At their most basiedk
these requests are various versions of read, write,

allocate, and free. These servers are also redpensi storage service during run-time, and dynamically
for maintaining and enforcing data integrity and throttles the requests based on the monitored salne
privacy policies for both on-storage and on-wiréada other words, upon receiving the requests fromengli

In addition to servicing client requests for blockee the controller may hold them in the queue for daier
storage machine also acts as a sensor and fegdatcur amount of time and release at a rate that meets the
QoS-related information back into the Storage@desktarget bandwidth.
system. Specifically, this information includes Isuc For a client, the performance control comes witf so
things as CPU load, memory load, disk availability, guarantee, which means the service is providetieat t
network load, and bandwidth. All of this informatio desirable level when the controller is in work. For

becomes metadata in the database. example, the service needs to have a bandwidth at 3
MB/s from 8 AM to 8:30 AM.

3.3 |SCSI %rver Service
Reference Requests

Valuer Control

Ouiput u(k Throttling
ISCSI
Server
Control

Inpute(k) Performance

ISCSI servers act as the interface point betwee
clients and virtual storage resources (they impleme
the iSCSI layer). They are responsible for transjat
iISCSI requests into proper calls on the storage
machines. Furthermore, the iSCSI server is resphnsi Measuremeny(K)
for maintaining all relevant caches of data and <
metadata for the system. When clients connect to a Service‘}
Storage@desk system via the iSCSI interface, thity w Respons¢
establish an iSCSI session with an iSCSI server. AFig. 4. The control loop is consisted of a sensor, a
single iSCSI server can handle one or more cliants ~ controller, and an actuator that work together to
a given client can interact with more than one iBCS actively regulate the performance.
servers. Storage@desk system supports dynamic
volume creation and removal. _ S We take a control-theoretic approach to design the

ISCSI servers are also responsible for maintaining controller. In our approach, the target systemris a
and enforcing access-control security policies. il®h iscs| server and the storage machines which are
the storage machines in the back-end manage datgeated as a “black-box” system. The goal of thatrcd
integrity and privacy issues, the iSCSI servers |oo; js to regulate performance of storage services
explicitly allow or deny requests based on User cose to the reference value. The loop consista of
credentials and configuration (as per the iSCSI gengorthat collects performance data, a controller that
specification). . identifies any abnormality on the performance of

Storage@desk tolerates failures from the Storagestorage services and computes the control outpat, a
machines through replication. The replicas on pléti 5, actuator that configures the running system as
storage machines improve reliability and avail&pidif needed. Figure 4 illustrates the feedback contfol o
virtual volumes, and offer possibiliies for load giorage@desk. The inputs and outputs are handled as
balancing. We may choose from a number of giscrete signals at regular time intervals. Fohetiroe
replication strategies, e.g., RAID 1, RAID 5, and jnervalk, the sensor records the bandwigl(k) of the
erasure code. For simplicity, we implement RAIDNL i ¢opice. The difference between the measured
our prototype, and plan to add erasure code agieefu panqgwidthy(k) and the reference bandwidttbecomes
feature. the control inpute(k) = r — y(k), which is fed to the

controller. The controller follows a control law to
3.4 Performance controller generate a control outpui(k). The actuator throttles
) o the requests based afk). That is, before dispatching a

In this paper, we focus on bandwidth in MB/s as the request from the queue, the actuator will enforaes
key performance metric. Bandvx_/idth reve_als_the armoun gelay functionDelay(u(k)) on the iSCSI server. The
of data that can be transferred in a certain tietevben function Delaywith an input ofu(k) means the requests
a client and the Storage@desk system. The amount ofij| pe withheld for u(k) milliseconds. Ideally, a
bandwidth _directly affects 'Fhe performgnce thatient smaller errore(k+1) = r — y(k+1) will be observed at
may experience. We achieve bandwidth control with (e next time intervalké-1). Guided by the control law,
the help of a feedback controller. Running on 8036 the sensor, controller, and actuator will work thge
server, the controller evaluates the bandwidth of 4 bring the iSCSI server to a steady state wheee t

reference value is reached, and maintain the syatem system model (4) in time domain can be rewrittem-in

this state. domain as follows:
We design the controller using a proportional, b -023
integral (PI) control law. The Pl controller is a G(Z):§22—021 (5).

combination of a proportional controller, which can
quickly reduce the error, and an integral contrplle
which can potentially eliminate the error.

The proportional controller generates the contrc sslfjg'(‘;} PI Controlle K(z)

output proportional to the erra(k). Formally, it can »

be written as follows: ; P @
up (k) = Kpe(k) 1), 7/Error g . Delayr\

. . . A Ez L > — iu .
where Ky is the control gain of the proportional E@ K z-1 @ Throttling
controller, and up(k) represents the control output v Service
from the proportional controller. ISCSI Server | Reauest

The integral control generates the controller outpu ,\Pﬂzr;(;ru”::;git G@) <
proportional to the integral of the control error. Y(z Service
Formally, it can be written as follows: ; Sensor)4 y Responses

up (k) =uy (k=1 + K, ek) (@), Fig. 6. The control loop with Pl controller. In the
whereK, is the control gain of the integral controller, dotted rectangle, thetop part isthe P controller and

u, (k —1) represents the control output at the tirkel), the bottom part isthe | controller.

and u, (k) the output at the timle
The PI controller is obtained by adding (1) ang (2 After the z-transform, we can draw a block diagram

_ of the control loop in Fig. 6. We take the z-tramsi

uk) =up (k) +u; (k) (3), on (3) and obtain the transfer function of the PI
=u(k -1 +(Kp + K,)e(k) -Kpe(k -1) controller as follows:

whereKp + K, is the overall gain of the PI controller. U@ _ K, z

Note that the actuator needs to determine whetieer t K(z) = E(2) =Rpt 7-1

control output u(k) falls into the working range (6).
determined by system administrators. This is neggss = (Kp +K,)Z2=Kp
to prevent undesirable or unrealistic delays. z-1

Before we can determine the control gais,and The transfer function for the closed loop is

K, we need a mathematical model of the target system Y@ _ K(2G()

Many previous works [5, 6] adopted a first-ordereli Fr(2) (7).
difference equation for its simplicity. It can beiteen: R(z) 1+K(9G(2)
y(k) =a* y(k 1) +b* u(k - 1) (4), Replacing K(z) and G(z) with (5) and (6), the tfans
. function (7) becomes
where a and b are coefficients. Here the measured
bandwidthy(K) at the time intervak is determined by F_(z)=Y(2 - _K(2G(2)
the previous bandwidtly(k-1) and the control output R(z2) 1+K(2G(2)
u(k-1) at the time intervak. Now we need to estimate B [(Kp +K,)z=-Kp1G(2) ®)
the values of andb. We first collect a data set of 300 (-1 +[(Kp +K,)2-Kp]G(2) ,

pairs ofy(k) andu(k) by running our prototype with a
predetermined set of inputs for 50 minutes and — b(Kp +K,;)z-bKp
collecting the corresponding outputs. The complete z? +[b(K, +K,)-(a+1)]z+(a-bKp)

setup can be fo_und in Section 4. Next we use IeaSt'where the denominator of (8) is called the charestie
squares regression [13] on the data set to contpate

L olynomial. If we set the characteristic polynomntal
coefficientsa = 0.21 ancd = -0.23. Poly g SUC poly
S L zero, we get the characteristic equation whoses raie
Z-transform [14] is widely used to convert timeisesr ;
. ; ; : called poles. The poles are very important becthese
equations to equivalent forms in z-domain or fretmye

domain that are easier to analvze and maniouldte. T determine the stability and settling time of thentcol
Y P ' loop. The roots of the nominator of (8) are caltedos,

i.e. Kp /(Kp+ K|)

We use root locus [14] to obtaidr and K, by
plotting the roots of the characteristic polynongalthe
overall gain Kp + K)) varies from zero to infinity. The
key properties to observe are the overshoot thtteis

back. We intentionally log out and on to the volume
between the writes and reads to flush the memory
caches on the client. Similarly, the client writasd
reads the same set of files to a network driveguie

maximum difference between the measured output andCIFS protocol.

the reference value, and the settling time that the
system takes to reach the reference value. Aftetiipd

the expected settling time and overshoot agairst th
possible zeros and gains, we choose to ake/(Ky +

Ki,) of -0.01 and a small gaitg+ K|) of -1.3. Such a
choice has an effect of no control overshoot and a
settling time of about five intervals. From thezand
gain value, we can obtain the valueKpfandK; as -
0.01 and -1.29, respectively. Thus, the PI corgrd[B)

can be written as (9), which we will use in our
evaluations in the following section.

u(k) = u(k-1) - 13*e(k) + 001* e(k-1) (9).

4 Evaluation

Fig. 7 demonstrates performance from both
Storage@desk and CIFS. Storage@desk is able to read
at over 14 MB/s for files smaller than 512 MB wilie
except of 1 and 4 MB files where the bandwidth is
close to 8 MB/s. Because Storage@desk provides an
abstraction of local hard drive, the operating exysts
able to apply local cache to improve the performeanc
which subsequently allows the bandwidth to exceed t
theoretical maximum value allowed by the 100 Mb/s
network. For these small files, CIFS has a read
bandwidth of 8 MB/s. For files of 1 GB and 2 GBtlbo
have a read bandwidth of around 7.3 MB/s.
Storage@desk writes faster than CIFS for smals file
too. For files smaller than 64 MB, Storage@desk
achieves a read bandwidth above 10 MB/s, compared
to 8MB/s for CIFS. Although Storage@desk lags

We have developed a prototype of Storage@deskbehind CIFS for 128 MB to 512 MB files, it has a

that implements all the core components. The pyptot
is written in Java. We use MySQL to host the dagaba
We install the database server and iSCSI servéwon

slight better write bandwidth for large files likeand 2
GB files. In short, Storage@desk holds advantages
over CIFS when reading and writing small files, and

Windows Server 2003 machines, and storage machinénas a similar performance as CIFS for large files.

on three Linux machines with Fedora 7 using kernel
2.6.23. All servers have the same hardware
configuration: 8x Xeon CPUs at 2.33 GHz, 16 GB
RAM, and one 250 SATA GB hard drive at 7200 rpm.
Our evaluations reveal that the iSCSI server usés o
around 5% of CPU and works well with a JVM of
maximum 512 MB heap size. The clients run on
Windows XP machines with a P4 CPU at 2.4 GHz, 512
MB RAM, and a 100 Mb/s network connection. The
clients create an NTFS file system on a virtuauwo

of 50 GB with the replica degree of two. The cl&ent
use IOzone [15] to generate various workloads, e.g.
reads, writes, and a mix of both. The 10zone preces
will issue the requests to the virtual volume wih
record size of 1 MB. The clients use a Microso£ &
initiator [16]. Our main effort has been focusedtba
functionality, thus there is a lot of room avaikaldor
future improvements. Currently we have yet to
implement access control or security, which will be
added shortly.

4.1 Read and write performance

18

16

Bancwidth (MB/s)

2 4 8 16 32 64 128 256 512 1024 2048

Fig. 7. Bandwidth comparison
Storage@desk and CIFS.

between

4.2 Performance control

In this section, we evaluate the effectivenesshef t
controller under three settings: when a client
sequentially writes a 20 GB file, when a client
sequentially reads a 20 GB file, and when a clieats
and writes to random locations in a 2 GB file. g9,
and 10 present the changes in bandwidth for ewary t

We first compare the performance of Storage@deskseconds for the three settings, respectively. Dial t

against that of Windows CIFS (Common Internet File
System). In this test, the client writes files,nfrd MB

runtime is 1,800 seconds for each setting andvidelil
into three regions of 600 seconds. For the firdd 60

to 2GB, to the Storage@desk volume, and reads thenseconds (region I), there is no control over client

requests. The controller comes in effect for tret o
the time, where the reference bandwidth is 3 MBfs f
the second 600 seconds (region Il) and 4 MB/sHer t
third and last 600 seconds (region lll). For edofet
interval of ten seconds, the sensor measures ihieese
and the controller computes a new output and fézds
the actuator.

oscillations in bandwidth from 2 to 9 MB/s in regib

bandwidth close to 3 MB/s in five time intervalshéh
the reference value changes to 4 MB/s in regigrthg
controller is able to lift the service performartcea

window of 1 MB/s compared to 7 MB/s for
uncontrolled service in region I.

rather consistent workload on the server. In Figh®

possible for the controller to do a better job hdre
region Il and Ill, once the reference value is hestin
four time intervals, the controller is able to nain the
bandwidth at the desired level with small oscidas.

(MB/s)
—_—
=
by

Bandwidth
g
P
=
B
=t
—

0

0 200 400 £00 800 1000

Time (seconds)

1200 1400 1600 1800

Fig. 8. Bandwidth changes for every ten seconds
when aclient writesafile.

10

Measurement ——
Reference

oty
'3 i |

Bancwidth (MB/s)

Pl
1

0

0 200 400 600 800 1000

Time (seconds)

Fig. 9. Bandwidth changes for every ten seconds
when aclient readsafile.

1200 1400 1600 1800

We create a mix of workloads by repeatedly writing
and reading a file. There are two clients, clig@ndB,
in this case. Instead of sequentially reading ariting,
each client will read and write to random locatiohs
file in its volume. In region | where there is nontrol,

client A and B are

free to compete for the available

bandwidth that is about 6 or 7 MB/s in total. As a
The client presents a very bursty behaviour whenresult, in the first region, their bandwidth nunmbare
writing a file. This can be seen as the frequeritiew more or less random and very unpredictable. Say in
region I, clientA is running more important tasks than
of Fig. 8. In region I, the controller brings the client B. We set a reference value of 4 MB/s for client
A and 2 MBY/s for clienB. As a result, compared to the

first region where for most of times clieAt gets a
bandwidth lower than 4 MBY/s, it is getting a better
higher range. Due to dynamics in workloads, the bandwidth in the second region. On the other hand,
controlled bandwidth swings but with a much smaller client B is getting a smaller bandwidth now. Say in
region lll, client A finishes the tasks and clieBs
computation becomes more important. We can reset th
When reading a file, the client seems to place areference values, and the situation is reverseére H
client B obtains the performance of around 4 MB/s,
appears as a stable bandwidth that moving aroufd 7. where the oscillating numbers can be attributethéo
MB/s in region |. This access pattern of reads make dominant write requests.

Measurement —o—

Reference —

Bandwidth (MB/s)

N
FIRRSRRETY § el
Rt) 20 Saaaat Y od
0 200 400 600 800 1000 1200 1400 1600 1800
Time (s)
(a) ClientA

> 1o Measurement —o—
= 8 Reference —
Z 1 ¢

; T
g LI g 1] 2] ez 29,20
I b . e
5 82 l T — T

0 L L L L L L
0 200 400 600 800 1000 1200 1400 1600 1800

Fig. 10. Bandwidth
for two clients.

Time (s)
(b) ClientB
changes for every ten seconds

In conclusion, the controller performs well in tare

different workloads.

It can quickly bring the baridth

close to the reference value, and maintain it withie
desired range. The controller can make appropriate
adjustments when the reference is changed.

5 Rdated work

Extensive research has been conducted in the areas
of distributed/parallel file storage systems, nbtab

FARSITE [3, 10] and FreeLoader [17]. Storage@desk Conference on Measurement and Modeling of Comystems

complements those systems with a specific focus on

fault tolerance and performance control. Both
FARSITE and FreeLoader utilize free available gera
on desktop machines to provide a best-effort storag
service. Because FARSITE provides an NTFS-like file
interface, it has to employ a number of differettess
leases in order to deal with directory namespaak an
file data. FreeLoader focuses on remote data cgchin
but neither fault tolerance nor data consistency.
Previous work on storage QoS focuses primarily on
disk arrays. Minerva [18] and Hippodrome [19] are
resource provision tools that are able to design th
storage system automatically, avoiding over-
provisioning and under-performing. The iterative
design process takes into account a QoS spedificati
from users, workload descriptions, and hardware
characteristics. Fagade [20] and Stonehenge [2Bter
a layer of storage virtualization above the physica

Santa Clara, California, 2000.

[4] J. Wozniak, P. Brenner, D. Thain, A. Striegehd J. Izaguirre,
"Applying Feedback Control to a Replica Managenteygtem," in
Southeastern Symposium on System Theory, IEEE dC@ystems
Society March 2006.

[5] N. G. Sujay Parekh, Joe Hellerstein, Dawn Tilpd'. S. Jayram,
"Using Control Theory to Achieve Service Level Qfijees In
Performance Management,Real-Time Systems Journakol.

23:127-141, 2002.

[6] N. G. Y. Diao, S. Parekh, J. Hellerstein, andTibury, "Using
mimo feedback control to enforce policies for indéated metrics
with application to the apache web server,'Nietwork Operations
and Management Symposiu2002.

[7] J. A. S. Chenyang Lu, Gang Tao, Sang H. Soreetdback

Control Real-Time Scheduling: Framework, Modelingnd
Algorithms," Journal of Real Time Systen2901.
[8] P. Lyman and H. R. Varian, How Much Informatjon

http://www.sims.berkeley.edu/research/projects/maweh-info-

2003/

[9] J. R. Douceur and W. J. Bolosky, "A Large-Scatedy of File-
System Contents," iRroceedings of the 1999 ACM SIGMETRICS
International Conference on Measurement and Modeliof
Computer SystemAtlanta, Georgia, 1999.

storage devices that can satisfy QoS guaranteds wit [10] A. Adya, W. J. Bolosky, M. Castro, G. Cermdk, Chaiken, J.

real-time disk scheduling algorithms. Stonehenge
proposes a multi-dimension QoS model, focusing
especially on bandwidth and delay. In contrast

level and employs a feedback controller for bandwid
control.

6 Conclusion

In this paper, we present a new virtual distributed
storage system called Storage@desk that aggregat
available storage resources on distributed machimes

' Figth
Storage@desk handles the workload on the softwarqmmememaﬂonBoston, Massachusetts, 2002.

R. Douceur, J. Howell, J. R. Lorch, M. Theimer, aRd P.
Wattenhofer, "FARSITE: Federated, Available, andiddde Storage
for an Incompletely Trusted Environment," Rroceedings of the
symposium on Operating Systems Design and

[11] IETF, Internet Small Computer Systems Inteefa@SCSI),

http://www.ietf.org/rfc/rfc3720.txt

[12] H. H. Huang, A. S. Grimshaw, and J. F. Karpbyi"You Can't

Always Get What You Want: Achieving DifferentiateBervice

Levels with Pricing Agents in a Storage Grid,"|IEEEE/WIC/ACM

International Conference on Web Intelligenégemont, California,

2007, pp. 123- 131.

13] K. J. Astrom and B. Wittenmarldaptive Contral Prentice
all, 2nd edition, 1995.

[14] J. L. Hellerstein, Y. Diao, S. Parekh, and H. Tilbury,

create an extremely large storage pool. Storagek@desFeedback Control of Computing Systeviley-IEEE Press, 2004.

provides high available and
through the use of replication. In particular, we
incorporate the support of performance control into
Storage@desk to provide predictable storage sexvice
We have experimentally demonstrated that the
feedback control can automatically throttle workloa

reliable data access[15] 10zone Filesystem Benchmaiktp://www.iozone.org

[16] Microsoft, Microsoft iISCSI Software Initiator,
http://www.microsoft.com/downloads/details.aspx?fgib=12cb3
cla-15d6-4585-b385-befd1319f825&DisplayLang=en

[17] S. S. Vazhkudai, X. Ma, V. W. Freeh, J. W.i&tand, N.
Tammineedi, and S. L. Scott, "FreeLoader: Scavenddesktop
Storage Resources for Scientific Data," Smpercomputing 2005
(SC'05): International Conference on High Perforroan

based on reference bandwidth values. As a futurecomputing, Networking and Storaggeattle, Washington, 2005.

research topic, we plan to add additional pararseter
system models, e.g. latency and throughput.

References

[1] H. H. Huang, J. F. Karpovich, and A. S. GrimshdAnalyzing
the Feasibility of Building a New Mass Storage 8gston
Distributed ResourcesJournal of Concurrency and Computation:
Practice and Experiencepl. 20, pp. 1131-1150, July 2008.

[2] M. Litzkow, M. Livny, and M. Mutka, "Condor - Aunter of
Idle Workstations," in Proceedings of the 8th International
Conference of Distributed Computing SysteSan Jose, California,
1988, pp. 104-111.

[3] W. J. Bolosky, J. R. Douceur, D. Ely, and M. €ltner,
"Feasibility of a Serverless Distributed File SystBeployed on an
Existing Set of Desktop PCs," iroceedings of the International

[18] G. A. Alvarez, E. Borowsky, S. Go, T. H. Rom&. Becker-
Szendy, R. Golding, A. Merchant, M. Spasojevic,\&itch, and J.
Wilkes, "Minerva: An automated resource provisi@nitool for
large-scale storage systemsfCM Transactions on Computer
Systemsyol. 19, pp. 483-518, November 2001 2001.

[19] E. Anderson, M. Hobbs, K. Keeton, S. Spence,Wysal, and
A. Veitch, "Hippodrome: running circles around stge
administration," inConference on File and Storage Technologies
Monterey, California, 2002, pp. 175-188.

[20] C. Lumb, A. Merchant, and G. Alvarez, "Facadértual
Storage Devices with Performance GuaranteesCadnference on
File and Storage Technolog$an Francisco, California, 2003, pp.
131-144.

[21] L. Huang, G. Peng, and T. Chiueh, "Multi-dirs@mal storage
virtualization," in SIGMETRICS/PerformancéNew York, New
York, 2004.

