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Abstract 

 
Storage demand in large organizations has grown 
rapidly in the last few decades. In this paper, we 
describe Storage@desk, a new virtual distributed 
storage system that utilizes a large number of 
distributed machines to provide storage services with 
quality of service guarantees. We present the 
Storage@desk architecture and core components. The 
machines on which Storage@desk relies exist in an 
environment that is unreliable and dynamic. We utilize 
replication to provide high levels of availability and 
reliability. Our evaluation reveals that Storage@desk 
achieves better read and write performance compared 
to CIFS. As Storage@desk serves clients and 
applications on shared storage resources, it is crucial 
to ensure predictable storage access even when the 
workloads are unknown a priori. To this end, we take a 
control theoretic approach for automated performance 
control in Storage@desk. Given a reference value, the 
feedback controller is able to effectively regulate 
service requests to virtual storage resources under 
various scenarios. 
 

1. Introduction 
 

Storage demand in large organizations has grown 
rapidly in the last few decades. Over the years 
distributed storage – network-attached storage (NAS), 
and storage area network (SAN) – has emerged as a 
standard practice to provide high performance, fault 
resilience, and data integrity. We refer to this as 
managed storage. However, depending on the quality, 
the vendor, discounts, and the target market, managed 
storage remains expensive despite the hardware cost of 
storage falling every year. There has been a lot of 
interest in researching new methods to relieve the 
increasing storage demand. In this paper, we present 
Storage@desk, a new virtual distributed storage 
system, which has the ability to harvest underutilized 
storage resources in the existing information 
infrastructure of large organizations. This idea is based 

on the fact that large hard disks have been prolifically 
distributed on PCs at the edge of the network, thanks to 
rapidly falling prices. We refer to storage on desktop 
machines as desktop storage. The abundance of 
desktop storage, unfortunately, does not lead to great 
utilization - a typical desktop machine in an exemplar 
organization contains hundreds of gigabytes with more 
than half left unused [1]. Further, resources available 
on desktop machines are in abundance: (1) dual-core 
CPUs are appearing on desktop machines with their 
CPUs having clock rates over 3 GHz; (2) RAM of 1GB 
or 2GB is not unusual; (3) 1 Gigabit Ethernet has 
become a common network interface on new PCs, 
replacing fast Ethernet. In general, desktop users do not 
fully utilize the computing power, disk space, and 
network bandwidth at all times [1-3], which presents an 
opportunity to take advantage of the abundant yet idle 
resources. 

Storage@desk will not only provide a useful storage 
service, but one with quality of service (QoS) 
guarantees in terms of capacity, life time, availability, 
reliability, and performance. As the machines on which 
Storage@desk relies exist in an environment that is 
unreliable and dynamic, we utilize replication to 
provide high levels of availability and reliability. 
Because Storage@desk utilizes shared storage 
resources, predictable storage access even when the 
workloads are unknown a priori is challenging. We 
take a control theoretic approach for automated 
performance control in Storage@desk. Feedback 
control has shown success on performance control of 
various computer systems, including replica 
management system [4], email server [5], web server 
[6], and real-time systems [7]. Given a reference value, 
the feedback controller can effectively regulate access 
bandwidth to virtual storage resources. 

The remainder of this paper has the following 
structure. We introduce the background materials in 
Section 2. Storage@desk architecture and core 
components are described in Section 3. We discuss the 
evaluation results in Section 4. Finally, we present the 
related work and conclusion in Section 5 and 6, 
respectively. 
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2. Background 
 

Storage@desk is motivated by three key 
observations: strong demand for disk storage, abundant 
yet idle resources on desktop machines, and various 
performance requirements for storage services. 

 
2.1 Strong demand for disk storage 
 

Data play a critical role in enterprise and scientific 
computing. According to a study from Berkeley [8], the 
amount of new information produced worldwide is 
estimated to grow about 30% a year since 1999, with 5 
million terabytes in 2002. More than 90% of that data 
was estimated to be stored on magnetic media (e.g., 
hard disks, tapes), and hard disks accounted for most 
storage, nearly 2 million terabytes. As data volumes 
continue to explode, there is always a consistently 
strong demand for cost effective, massive-scale disk 
storage.  

 
2.2 Abundant yet idle resources on desktop 

machines 
 

Today, the advent of hard drive technology is 
capable of packing hundreds of gigabytes onto 
inexpensive hard disks, and these large disks are 
pervasive. The same Berkeley study estimated that 
90% of 9.9 million terabytes of disk storage shipped in 
2002, or 9 million terabytes, sits in PCs, workstations, 
and laptops. Clearly, PCs are holding the greatest 
amount of storage resources even though those 
resources are distributed and managed individually. 

Unfortunately, the utilization of desktop storage is 
low. Our 2005 study [1] of 729 desktop machines 
revealed that on average 62% of a machine’s raw disk 
capacity was unused. Previous research studies [9, 10] 
showed that the unused portion of disk space from 
4800 desktop machines was 49%, 50%, and 58% 
respectively in 1998, 1999, and 2000. These numbers 
indicate a clear uptrend of unused disk space on an 
average machine over the years. As this trend continues 
in the future, we see Storage@desk is a good 
complement to managed storage by making the best use 
of unutilized desktop storage in large organizations. 

 
2.3 Various performance requirements for 

Storage Service  
 

In an organization, different clients have theirs own 
performance requirements. Furthermore, a single client 
may have different performance requirements for 
multiple applications at various times. Some 

applications (e.g., video-on-demand) demand high 
performance services of great urgency, while others 
(e.g., text processing) may tolerate less perfect 
performance. How to achieve predictable performance 
is a challenging task for two reasons. First, in essence 
Storage@desk is a virtual storage system shared by a 
large number of clients and applications. It would be 
preferable to isolate one client from others; otherwise 
an I/O surge from one client would negatively affect 
others sharing the same storage resource. Second, the 
workloads are generally unknown a priori. Without 
accurate information on access patterns, human 
regulation is inherently slow in reaction to changes in 
the workload. To address this problem, we will design 
a feedback controller for automated performance 
control in Storage@desk.  
 

3 Storage@desk architecture 
 

Storage@desk achieves storage virtualization by  
utilizing the iSCSI protocol [11]. We choose iSCSI 
because this IETF standard can transport the SCSI 
commands and data over TCP/IP networks.  From the 
perspective of a client, Storage@desk storage appears 
as a virtual volume that consists of an array of fixed-
size blocks. Therefore, the clients can transparently 
access data in a uniform, standard-based fashion. A 
client treats virtual volumes as locally-attached hard 
drives, isolating from the distributed resource 
management behind the scene. Once logging on to a 
virtual volume, the client can make partitions, create 
various file systems (e.g., NTFS, ext2, ext3), make 
directories and subdirectories, and perform file 
operations (e.g., create, copy, move, modify, delete). 

In Storage@desk architecture presented in Fig. 1, 
iSCSI servers (including controllers on them) 
implement the iSCSI layer and serve the requests; 
storage machines as resource providers save data on 
local hard drives; and one or more databases maintain 
all the metadata in the system.  

Upon receiving a client request, the iSCSI server will 
need to contact the databases for the necessary 
metadata if they are not up to date. Otherwise, the 
iSCSI server may directly forward the request to the 
corresponding storage machines to read and write the 
blocks.  

In this section, we present databases and metadata 
management in Section 3.1, storage machines in 
Section 3.2, and iSCSI servers in Section 3.3. We 
discuss the feedback controller in Section 3.4. 
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Fig. 1.  Storage@desk architecture.  Arrows 
indicate the iSCSI commands from clients and data 
to clients; Arrows indicate data interactions 
between iSCSI servers and machines; Arrows 
indicate metadata path to the database. The 
number in the brackets represents the section 
where we introduce the component. 

 
3.1 Metadata 
 

Storage@desk relies on metadata to correctly service 
clients’ requests.  Everything from volume information, 
block location, and machine characteristics end up in a 
database.  Without a loss of generality, we describe in 
this paper a single, centralized database scheme (an 
assumption we feel is justified by the observation that 
most metadata operations are read rather than write 
operations and can thus benefit from aggressive local 
caching). The Storage@desk database stores three 
types of metadata about the system – volumes, 
mappings, and storage machines. The database contains 
three tables with the pseudo-schemas and relationships 
as shown in Fig. 2. 

Conceptually, a virtual volume is an array of blocks 
that can be grouped in a number of virtual chunks. 
Each virtual chunk is mapped to multiple physical 
chunks on storage machines, depending on the 
replication degree. The volume table includes the ID, 
name, replication degree, and number of virtual 
chunks. Correspondingly, a storage machine divides its 
available storage into a number of physical chunks. The 
machine table includes the ID, the IP address, data 
directory (where the physical chunks reside), and 
number of physical chunks. The physical chunk holds 
the same number of blocks as the virtual chunk. There 
is one-to-many relationship between one virtual chunk 

and many physical chunks. The mapping table reflects 
this relationship by mapping a replica of a virtual 
chunk to a physical chunk. The number of mappings 
for a virtual volume is the multiplication of the number 
of virtual chunks and the replication degree. With the 
mapping from the mapping table, an iSCSI server can 
locate physical chunks on one or many storage 
machines to read and write blocks in a virtual volume. 

 

 
Fig. 2: Conceptual database schemas. Arrows 
represent associations between the tables. 

 
ISCSI servers and storage machines have sensors on 

them to collect information that contain current 
statistics of the running system. These consist of the 
latest characteristics of storage machines and the 
current performance of the iSCSI servers. This 
information is used to organize and affect the physical 
location of storage blocks and the allocation of 
resources (e.g., storage machines) in order to meet the 
quality of service (QoS) requirements specified with 
each volume. We presented our QoS model and 
market-based resource allocation in [12]. In this paper 
we instead focus on performance control. 

As some organizations may place a higher demand 
on database access than others, we can partition 
metadata across multiple databases, or employ a 
master-slave replication scheme. In the latter, metadata 
is stored in both the master and slave database. The 
metadata first is sent to the master and then forwarded 
to the slave. When the master fails, the slave will take 
over the requests till the master recovers. These two 
methods can be applied together if necessary. 
 
3.2 Storage machine 
 

Each machine that participates in a Storage@desk 
system will run a single service daemon. This service is 
responsible for servicing requests from iSCSI servers 
and for keeping the database updated with their current 
QoS statistical information. At their most basic level, 
these requests are various versions of read, write, 
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allocate, and free. These servers are also responsible 
for maintaining and enforcing data integrity and 
privacy policies for both on-storage and on-wire data. 

In addition to servicing client requests for blocks, the 
storage machine also acts as a sensor and feeds current 
QoS-related information back into the Storage@desk 
system. Specifically, this information includes such 
things as CPU load, memory load, disk availability, 
network load, and bandwidth. All of this information 
becomes metadata in the database.  
 
3.3  ISCSI server 
 

ISCSI servers act as the interface point between 
clients and virtual storage resources (they implement 
the iSCSI layer). They are responsible for translating 
iSCSI requests into proper calls on the storage 
machines. Furthermore, the iSCSI server is responsible 
for maintaining all relevant caches of data and 
metadata for the system. When clients connect to a 
Storage@desk system via the iSCSI interface, they will 
establish an iSCSI session with an iSCSI server. A 
single iSCSI server can handle one or more clients and 
a given client can interact with more than one iSCSI 
servers. Storage@desk system supports dynamic 
volume creation and removal.  

ISCSI servers are also responsible for maintaining 
and enforcing access-control security policies.  While 
the storage machines in the back-end manage data 
integrity and privacy issues, the iSCSI servers 
explicitly allow or deny requests based on user 
credentials and configuration (as per the iSCSI 
specification). 

Storage@desk tolerates failures from the storage 
machines through replication. The replicas on multiple 
storage machines improve reliability and availability of 
virtual volumes, and offer possibilities for load 
balancing. We may choose from a number of 
replication strategies, e.g., RAID 1, RAID 5, and 
erasure code. For simplicity, we implement RAID 1 in 
our prototype, and plan to add erasure code as a future 
feature.  

 
3.4 Performance controller 
 

In this paper, we focus on bandwidth in MB/s as the 
key performance metric. Bandwidth reveals the amount 
of data that can be transferred in a certain time between 
a client and the Storage@desk system. The amount of 
bandwidth directly affects the performance that a client 
may experience. We achieve bandwidth control with 
the help of a feedback controller. Running on an iSCSI 
server, the controller evaluates the bandwidth of 

storage service during run-time, and dynamically 
throttles the requests based on the monitored values. In 
other words, upon receiving the requests from a client, 
the controller may hold them in the queue for a certain 
amount of time and release at a rate that meets the 
target bandwidth. 

For a client, the performance control comes with soft 
guarantee, which means the service is provided at the 
desirable level when the controller is in work. For 
example, the service needs to have a bandwidth at 3 
MB/s from 8 AM to 8:30 AM. 

 
Fig. 4. The control loop is consisted of a sensor, a 
controller, and an actuator that work together to 
actively regulate the performance. 

 

We take a control-theoretic approach to design the 
controller. In our approach, the target system is an 
iSCSI server and the storage machines which are 
treated as a “black-box” system. The goal of the control 
loop is to regulate performance of storage services 
close to the reference value. The loop consists of a 
sensor that collects performance data, a controller that 
identifies any abnormality on the performance of 
storage services and computes the control output, and 
an actuator that configures the running system as 
needed. Figure 4 illustrates the feedback control of 
Storage@desk. The inputs and outputs are handled as 
discrete signals at regular time intervals. For each time 
interval k, the sensor records the bandwidth y(k) of the 
service. The difference between the measured 
bandwidth y(k) and the reference bandwidth r becomes 
the control input e(k) = r – y(k), which is fed to the 
controller. The controller follows a control law to 
generate a control output u(k). The actuator throttles 
the requests based on u(k). That is, before dispatching a 
request from the queue, the actuator will enforces a 
delay function Delay(u(k)) on the iSCSI server. The 
function Delay with an input of u(k) means the requests 
will be withheld for u(k) milliseconds. Ideally, a 
smaller error e(k+1) = r – y(k+1) will be observed at 
the next time interval (k+1). Guided by the control law, 
the sensor, controller, and actuator will work together 
to bring the iSCSI server to a steady state where the 
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reference value is reached, and maintain the system at 
this state. 

We design the controller using a proportional, 
integral (PI) control law. The PI controller is a 
combination of a proportional controller, which can 
quickly reduce the error, and an integral controller, 
which can potentially eliminate the error.  

The proportional controller generates the control 
output proportional to the error e(k). Formally, it can 
be written as follows: 

)()( keKku PP =    (1), 

where KP is the control gain of the proportional 
controller, and )(kuP  represents the control output 

from the proportional controller. 
The integral control generates the controller output 

proportional to the integral of the control error. 
Formally, it can be written as follows: 

)()1()( keKkuku III +−=   (2), 

where KI is the control gain of the integral controller,  
)1( −kuI represents the control output at the time (k-1), 

and )(kuI  the output at the time k. 

 The PI controller is obtained by adding (1) and (2). 

)1()()()1(

)()()(

−−++−=
+=

keKkeKKku

kukuku

PIP

IP  (3), 

where KP + KI  is the overall gain of the PI controller. 
Note that the actuator needs to determine whether the 
control output u(k) falls into the working range 
determined by system administrators. This is necessary 
to prevent undesirable or unrealistic delays. 

Before we can determine the control gains, KP and 
KI, we need a mathematical model of the target system. 
Many previous works [5, 6] adopted a first-order line 
difference equation for its simplicity. It can be written: 

)1(*)1(*)( −+−= kubkyaky   (4), 

where a and b are coefficients. Here the measured 
bandwidth y(k) at the time interval k is determined by 
the previous bandwidth y(k-1) and the control output 
u(k-1) at the time interval k. Now we need to estimate 
the values of a and b. We first collect a data set of 300 
pairs of y(k) and u(k) by running our prototype with a 
predetermined set of inputs for 50 minutes and 
collecting the corresponding outputs. The complete 
setup can be found in Section 4. Next we use least-
squares regression [13] on the data set to compute the 
coefficients a = 0.21 and b = –0.23.  

Z-transform [14] is widely used to convert time-series 
equations to equivalent forms in z-domain or frequency 
domain that are easier to analyze and manipulate. The 

system model (4) in time domain can be rewritten in z-
domain as follows: 

21.0

23.0
)(

−
−=

−
=

zaz

b
zG    (5). 

 

 
Fig. 6. The control loop with PI controller. In the 
dotted rectangle, the top part is the P controller and 
the bottom part is the I controller. 

 

 After the z-transform, we can draw a block diagram 
of the control loop in Fig. 6. We take the z-transform 
on (3) and obtain the transfer function of the PI 
controller as follows: 
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The transfer function for the closed loop is 
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Replacing K(z) and G(z) with (5) and (6), the transfer 
function (7) becomes 
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where the denominator of (8) is called the characteristic 
polynomial. If we set the characteristic polynomial to 
zero, we get the characteristic equation whose roots are 
called poles. The poles are very important because they 
determine the stability and settling time of the control 
loop. The roots of the nominator of (8) are called zeros, 
i.e. KP /(KP + KI).  
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We use root locus [14] to obtain KP and KI by 
plotting the roots of the characteristic polynomial as the 
overall gain (KP + KI) varies from zero to infinity. The 
key properties to observe are the overshoot that is the 
maximum difference between the measured output and 
the reference value, and the settling time that the 
system takes to reach the reference value. After plotting 
the expected settling time and overshoot against the 
possible zeros and gains, we choose to a zero KP /(KP + 
KI,) of -0.01 and a small gain (KP + KI) of -1.3. Such a 
choice has an effect of no control overshoot and a 
settling time of about five intervals. From the zero and 
gain value, we can obtain the values of Kp and KI as -
0.01 and -1.29, respectively. Thus, the PI controller (3) 
can be written as (9), which we will use in our 
evaluations in the following section. 

)1(*01.0)(*3.1)1()( −+−−= kekekuku       (9). 

 

4 Evaluation 
 

We have developed a prototype of Storage@desk 
that implements all the core components. The prototype 
is written in Java. We use MySQL to host the database. 
We install the database server and iSCSI server on two 
Windows Server 2003 machines, and storage machine 
on three Linux machines with Fedora 7 using kernel 
2.6.23. All servers have the same hardware 
configuration: 8x Xeon CPUs at 2.33 GHz, 16 GB 
RAM, and one 250 SATA GB hard drive at 7200 rpm. 
Our evaluations reveal that the iSCSI server uses only 
around 5% of CPU and works well with a JVM of 
maximum 512 MB heap size. The clients run on 
Windows XP machines with a P4 CPU at 2.4 GHz, 512 
MB RAM, and a 100 Mb/s network connection. The 
clients create an NTFS file system on a virtual volume 
of 50 GB with the replica degree of two. The clients 
use IOzone [15] to generate various workloads, e.g., 
reads, writes, and a mix of both. The IOzone process 
will issue the requests to the virtual volume with a 
record size of 1 MB. The clients use a Microsoft iSCSI 
initiator [16]. Our main effort has been focused on the 
functionality, thus there is a lot of room available for 
future improvements. Currently we have yet to 
implement access control or security, which will be 
added shortly. 

 
4.1 Read and write performance  
 

We first compare the performance of Storage@desk 
against that of Windows CIFS (Common Internet File 
System). In this test, the client writes files, from 1MB 
to 2GB, to the Storage@desk volume, and reads them 

back. We intentionally log out and on to the volume 
between the writes and reads to flush the memory 
caches on the client. Similarly, the client writes and 
reads the same set of files to a network drive using the 
CIFS protocol. 

Fig. 7 demonstrates performance from both 
Storage@desk and CIFS. Storage@desk is able to read 
at over 14 MB/s for files smaller than 512 MB with the 
except of 1 and 4 MB files where the bandwidth is 
close to 8 MB/s. Because Storage@desk provides an 
abstraction of local hard drive, the operating system is 
able to apply local cache to improve the performance, 
which subsequently allows the bandwidth to exceed the 
theoretical maximum value allowed by the 100 Mb/s 
network. For these small files, CIFS has a read 
bandwidth of 8 MB/s. For files of 1 GB and 2 GB, both 
have a read bandwidth of around 7.3 MB/s. 
Storage@desk writes faster than CIFS for small files, 
too. For files smaller than 64 MB, Storage@desk 
achieves a read bandwidth above 10 MB/s, compared 
to 8MB/s for CIFS. Although Storage@desk lags 
behind CIFS for 128 MB to 512 MB files, it has a 
slight better write bandwidth for large files like 1 and 2 
GB files. In short, Storage@desk holds advantages 
over CIFS when reading and writing small files, and 
has a similar performance as CIFS for large files. 

 

 
Fig. 7. Bandwidth comparison between 
Storage@desk and CIFS. 

 
4.2 Performance control  
 

In this section, we evaluate the effectiveness of the 
controller under three settings: when a client 
sequentially writes a 20 GB file, when a client 
sequentially reads a 20 GB file, and when a client reads 
and writes to random locations in a 2 GB file. Fig. 8, 9, 
and 10 present the changes in bandwidth for every ten 
seconds for the three settings, respectively. The total 
runtime is 1,800 seconds for each setting and is divided 
into three regions of 600 seconds. For the first 600 
seconds (region I), there is no control over client 
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requests. The controller comes in effect for the rest of 
the time, where the reference bandwidth is 3 MB/s for 
the second 600 seconds (region II) and 4 MB/s for the 
third and last 600 seconds (region III). For each time 
interval of ten seconds, the sensor measures the service, 
and the controller computes a new output and feeds to 
the actuator.  

The client presents a very bursty behaviour when 
writing a file. This can be seen as the frequent, wide 
oscillations in bandwidth from 2 to 9 MB/s in region I 
of Fig. 8. In region II, the controller brings the 
bandwidth close to 3 MB/s in five time intervals. When 
the reference value changes to 4 MB/s in region III, the 
controller is able to lift the service performance to a 
higher range. Due to dynamics in workloads, the 
controlled bandwidth swings but with a much smaller 
window of 1 MB/s compared to 7 MB/s for 
uncontrolled service in region I.  

When reading a file, the client seems to place a 
rather consistent workload on the server. In Fig. 9, this 
appears as a stable bandwidth that moving around 7.3 
MB/s in region I. This access pattern of reads makes 
possible for the controller to do a better job here. In 
region II and III, once the reference value is reached in 
four time intervals, the controller is able to maintain the 
bandwidth at the desired level with small oscillations. 

  

 
Fig. 8. Bandwidth changes for every ten seconds 
when a client writes a file. 

 
Fig. 9. Bandwidth changes for every ten seconds 
when a client reads a file. 

We create a mix of workloads by repeatedly writing 
and reading a file. There are two clients, client A and B, 
in this case. Instead of sequentially reading and writing, 
each client will read and write to random locations of a 
file in its volume. In region I where there is no control, 
client A and B are free to compete for the available 
bandwidth that is about 6 or 7 MB/s in total. As a 
result, in the first region, their bandwidth numbers are 
more or less random and very unpredictable. Say in 
region II, client A is running more important tasks than 
client B. We set a reference value of 4 MB/s for client 
A and 2 MB/s for client B. As a result, compared to the 
first region where for most of times client A gets a 
bandwidth lower than 4 MB/s, it is getting a better 
bandwidth in the second region. On the other hand, 
client B is getting a smaller bandwidth now. Say in 
region III, client A finishes the tasks and client B’s 
computation becomes more important. We can reset the 
reference values, and the situation is reversed.  Here 
client B obtains the performance of around 4 MB/s, 
where the oscillating numbers can be attributed to the 
dominant write requests. 
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(b) Client B 

Fig. 10. Bandwidth changes for every ten seconds 
for two clients. 

 

In conclusion, the controller performs well in three 
different workloads. It can quickly bring the bandwidth 
close to the reference value, and maintain it within the 
desired range. The controller can make appropriate 
adjustments when the reference is changed.   
 

5 Related work 
 

Extensive research has been conducted in the areas 
of distributed/parallel file storage systems, notably 
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FARSITE [3, 10] and FreeLoader [17]. Storage@desk 
complements those systems with a specific focus on 
fault tolerance and performance control. Both 
FARSITE and FreeLoader utilize free available storage 
on desktop machines to provide a best-effort storage 
service. Because FARSITE provides an NTFS-like file 
interface, it has to employ a number of different access 
leases in order to deal with directory namespace and 
file data. FreeLoader focuses on remote data caching, 
but neither fault tolerance nor data consistency.  

Previous work on storage QoS focuses primarily on 
disk arrays. Minerva [18] and Hippodrome [19] are 
resource provision tools that are able to design the 
storage system automatically, avoiding over-
provisioning and under-performing. The iterative 
design process takes into account a QoS specification 
from users, workload descriptions, and hardware 
characteristics. Façade [20] and Stonehenge [21] create 
a layer of storage virtualization above the physical 
storage devices that can satisfy QoS guarantees with 
real-time disk scheduling algorithms. Stonehenge 
proposes a multi-dimension QoS model, focusing 
especially on bandwidth and delay. In contrast, 
Storage@desk handles the workload on the software 
level and employs a feedback controller for bandwidth 
control.   
 

6 Conclusion 
 

In this paper, we present a new virtual distributed 
storage system called Storage@desk that aggregates 
available storage resources on distributed machines to 
create an extremely large storage pool. Storage@desk 
provides high available and reliable data access 
through the use of replication. In particular, we 
incorporate the support of performance control into 
Storage@desk to provide predictable storage services. 
We have experimentally demonstrated that the 
feedback control can automatically throttle workload 
based on reference bandwidth values. As a future 
research topic, we plan to add additional parameters to 
system models, e.g. latency and throughput. 
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