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GRAPHONE: A Data Store for Real-time Analytics on Evolving Graphs

Pradeep Kumar H. Howie Huang
The George Washington University

Abstract
There is a growing need to perform real-time analytics on

evolving graphs in order to deliver the values of big data to
users. The key requirement from such applications is to have
a data store to support their diverse data access efficiently,
while concurrently ingesting fine-grained updates at a high
velocity. Unfortunately, current graph systems, either graph
databases or analytics engines, are not designed to achieve
high performance for both operations. To address this chal-
lenge, we have designed and developed GRAPHONE, a graph
data store that combines two complementary graph storage
formats (edge list and adjacency list), and uses dual ver-
sioning to decouple graph computations from updates. Im-
portantly, it presents a new data abstraction, GraphView, to
enable data access at two different granularities with only a
small data duplication. Experimental results show that GRA-
PHONE achieves an ingestion rate of two to three orders of
magnitude higher than graph databases, while delivering al-
gorithmic performance comparable to a static graph system.
GRAPHONE is able to deliver 5.36× higher update rate and
over 3× better analytics performance compared to a state-of-
the-art dynamic graph system.

1 Introduction
We live in a world where information networks have become
an indivisible part of our daily lives. A large body of re-
search has studied the relationships in such networks, e.g.,
biological networks [33], social networks [20, 41, 46], and
web [9, 31]. In these applications, graph queries and ana-
lytics are being used to gain valuable insights from the data,
which can be classified into two broad categories: batch an-
alytics (e.g. PageRank [61], graph traversal [11, 49, 51]) that
analyzes a static snapshot of the data, and stream analytics
(e. g. anomaly detection [8], topic detection [64]) that stud-
ies the incoming data over a time window of interest. Gen-
erally speaking, batch analytics prefers a base (data) store
that can provide indexed access on the non-temporal prop-
erty of the graph such as the source vertex of an edge, and on
the other hand, stream analytics needs a stream (data) store
where data can be stored quickly and can be indexed by their
arrival order for temporal analysis.

Increasingly, one needs to perform batch and stream pro-
cessing together on evolving graphs [78, 68, 10, 69]. The key
requirement here is to sustain a large volume of fine-grained
updates at a high velocity, and simultaneously provide high-

performance real-time analytics and query support.
This trend poses a number of challenges to the underly-

ing storage and data management system. First, batch and
stream analytics perform different kinds of data access, that
is, the former visits the whole graph while the latter focuses
on the data within a time window. Second, each analytic
has a different notion of real time, that is, data is visible to
the analytics at different granularity of data ingestion (up-
dates). For example, an iterative algorithm such as PageR-
ank can run on a graph that is updated at a coarse granularity,
but a graph query to output the latest shortest path requires
data visibility at a much finer granularity. Third, such a sys-
tem should also be able to handle a high arrival rate of up-
dates, and maintain data consistency while running concur-
rent batch and stream processing tasks.

Unfortunately, current graph systems can neither provide
diverse data access nor at the right granularity in the pres-
ence of a high data arrival rate. Many dynamic graph sys-
tems [47, 54] only support batched updates, and a few oth-
ers [21, 70] offer data visibility at fine granularity of updates
but with a weak consistency guarantee, which as a result
may cause an analytic iteration to run on different data ver-
sions and produce undesired results. Relational and graph
databases such as Neo4j [59] can handle fine-grained up-
dates, but suffer from poor ingestion rate for the sake of
strong consistency guarantee [56]. Also, such systems are
not designed to support high-performance streaming data ac-
cess over a time window. On the other hand, graph stream
engines [58, 17, 32, 72, 75, 67] interleave incremental com-
putation with data ingestion, i.e., graph updates are batched
and not applied until the end of an iteration. In short, the ex-
isting systems manage a private data store in a way to favor
their specialized analytics.

In principle, one can utilize these specialized graph sys-
tems side-by-side to provide data management functions for
dynamic graphs and support a wide spectrum of analytics
and queries. However, such an approach would be subop-
timal [78], as it is only as good as the weakest component,
in many cases the graph database with poor performance for
streaming data. Worse, this approach could also lead to ex-
cessive data duplication, as each subsystem would store a
replica of the same underlying data in their own format.

In this work, we have designed GRAPHONE, a unified
graph data store offering diverse data access at various gran-
ularity levels while supporting data ingestion at a high ar-

USENIX Association 17th USENIX Conference on File and Storage Technologies    249



Graph Data 
Updates

Static View

Archiving

Adjacency Store

Stream View

New log Old log

GraphView
Abstraction

Circular Edge Log 

Stream Analytics Batch Analytics

Hybrid 
Representation

Logging Data 
Management

Operations

Data 
Ingestion

Data 
Durability NVMe

Fig. 1: High-level architecture of GRAPHONE. Solid and dotted
arrows show the data management and access flow respectively.

rival rate. Fig. 1 provides a high-level overview. It leverages
a hybrid graph store to combine a small circular edge log
(henceforth edge log) and an adjacency store for their com-
plementary advantages. Specifically, the edge log keeps the
latest updates in the edge list format, and is designed to ac-
celerate data ingestion. At the same time, the adjacency store
holds the snapshots of the older data in the adjacency list
format that is moved periodically from the edge log, and is
optimized for batch and streaming analytics. It is important
to note that the graph data is not duplicated in two formats,
although a small amount of overlapping is allowed to keep
the original composition of the versions intact.

GRAPHONE enforces data ordering using the temporal na-
ture of the edge log, and keeps the per-vertex edge arrival or-
der intact in the adjacency store. A dual versioning technique
then exploits the fine-grained versioning of the edge list for-
mat and the coarse-grained versioning of the adjacency list
format to create real-time versions. Further, GRAPHONE al-
lows independent execution of analytics that run parallel to
data management, and can fetch a new version at the end
of its own incremental computation step. Additionally, we
provide two optimization techniques, cacheline sized mem-
ory allocation and special handling of high degree vertices
of power-law graphs, to reduce the memory requirement of
versioned adjacency store.

GRAPHONE simplifies the diverse data access by present-
ing a new data abstraction, GraphView, on top of the hybrid
store. Two types of GraphView are supported as shown in
Fig. 1 : (1) the static view offers real-time versioning of the
latest data for batch analytics; and (2) the stream view sup-
ports stream analytics with the most recent updates. These
views offers visibility of data updates to analytics at two lev-
els of granularity where the edge log is used to offer it at the
edge level, while the adjacency store provides the same at
coarse granularity of updates. As a result, GRAPHONE pro-
vides high-level applications with the flexibility to trade-off
the granularity of data visibility for a desired performance.
In other words, the edge log can be accessed if fine-grained
data visibility is required, which can be tuned (§7.3).

We have implemented GRAPHONE as an in-memory
graph datastore with a durability guarantee on external non-

volatile memory express solid-state drives (NVMe SSD). For
comparison, we have evaluated it against three types of in-
memory graph systems: Neo4j and SQLite, two graph data
management systems; Stinger [21], a dynamic graph sys-
tem; and Galois [60], a static graph system, as well as GRA-
PHONE itself working with static graphs. The experimental
results show that GRAPHONE can support a high data inges-
tion rate, specifically it achieves two to three orders of mag-
nitude higher ingestion rate than graph databases, and 5.36×
higher ingestion rate than Stinger. In addition, GRAPHONE
outperforms Stinger by more than 3× on different analytics,
and delivers equivalent algorithmic performance compared
to Galois. The stream processing in GRAPHONE runs par-
allel to data ingestion which offers 26.22% higher ingestion
rate compared to the current practice of interleaving the two.

To summarize, GRAPHONE makes three contributions:
• Unifies stream and base stores to manage the graph data

in a dynamic environment;
• Provides batch and stream analytics through dual ver-

sioning, smart data management, and memory opti-
mization techniques;
• Supports diverse data access of various usecases with

GraphView and data visibility abstractions.

The rest of the paper is organized as follows. We present
a usecase in §2, opportunities and GRAPHONE overview in
§3, the hybrid store in §4, data management internals and
optimizations in §5, GraphView data abstraction in §6, eval-
uations in §7, related work in §8, and conclusion in §9.

2 Use Case: Network Analysis
Graph analytics is a natural choice for data analysis on an en-
terprise network. Fig. 2(a) shows a graph representation of a
simple computer network. Such a network can be analyzed
in its entirety by calculating the diameter [48], and between-
ness centrality [13] to identify the articulation points. This
kind of batch analysis is very useful for network infrastruc-
ture management. In the meantime, as the dynamic data flow
within the network captures the real-time behaviors of the
users and machines, the stream analytics is used to identify
security risks, e.g., denial of service, and lateral movement,
which can be expressed in the form of path queries, parallel
paths and tree queries on a streaming graph [38, 18].

Los Alamos Nation Laboratory (LANL) recently released
a comprehensive data set [37] that captures a wide range of
network information, including authentication events, pro-
cess events, DNS lookups, and network flows. The LANL
data covers over 1.5 billion events, 12,000 users, and 17,000
computers, and spans 58 consecutive days. For example, the
network authentication data captures the login information
that a user logs in to a network machine, and also from that
machine to other machines. When the network defense sys-
tem identifies a malicious user and node, it needs to find all
the nodes that may have been infected. Instead of analyzing
every node of the network, one can quickly run a path traver-
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Fig. 2: Graph traversal can locate possible infected nodes using
real-time authentication graph if infected user and node are known

sal query on the real-time authentication graph to identify the
possible infected nodes, that is, find all the nodes whose lo-
gin has originated from the chain of nodes that are logged in
from the first infected machine [38] as shown in Fig. 2(b).

In summary, a high-performance graph store that captures
dynamic data in the network, combined with user, machine
information and network topology, is advantageous in un-
derstanding the health of the network, accelerating network
service, and protecting it against various attacks. This work
presents a graph storage and APIs for such usecases.

3 Opportunities and Overview
A graph can be defined as G = (V, E, W), where V is the
vertex set, and E is the edge set, and W is the set of edge
weights. Each vertex may also have a label. In this section,
graph formats and their traits are described as relevant for
GRAPHONE, and then we present its high-level overview.

3.1 Graph Representation: Opportunities
Fig. 3 shows three most popular data formats for a sample
graph. First, the edge list is a collection of edges, a pair of
vertices, and captures the incoming data in their arrival order.
Second, the compressed sparse row (CSR) groups the edges
of a vertex in an edge array. There is a metadata structure,
vertex array, that contains the index of the first edge of each
vertex. Third, the adjacency list manages the neighbors of
each vertex in separate per-vertex edge arrays, and the vertex
array stores a count (called degree) and pointer to indicate
the length and the location of the corresponding edge arrays
respectively. This format is better than the CSR for ingesting
graph updates as it affects only one edge array at a time.

In the edge list, the neighbors of each vertex are scattered
across, thus is not the optimal choice for many graph queries
and batch analytics who prefer to get the neighboring edges
of a vertex quickly [34, 29, 30, 12] etc . On the other hand,
the adjacency list format loses the temporal ordering as the
incoming updates get scattered over the edge arrays, thus not
suited for stream analytics. Given their advantages and dis-
advantages, neither format is ideally suited for supporting
both batch and stream analytics on its own. We now identify
two opportunities for this work:
Opportunity #1: Utilize both the edge list and the adja-
cency list within a hybrid store. The edge list format pre-
serves the data arrival order and offers a good support for fast
updates as each update is simply appended to the end of the
list. On the other hand, the adjacency list keeps all the neigh-

(a) Example graph
(b) Edge List Format

(d) Adjacency List Format(c) CSR Format
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Fig. 3: Sample graph and its various storage format

bors of a vertex indexed by the source vertex, which pro-
vides efficient data access for graph analytics. Thus it allows
GRAPHONE to achieve high-performance graph computa-
tion while simultaneously supporting fine-grained updates.
Opportunity #2: Fine-grained snapshot creation with the
edge list format. Graph analytics and queries require an
immutable snapshot of the latest data for the duration of their
execution. The edge list format provides a natural support
for fine-grained snapshot creation without creating a physical
snapshot due to its temporal nature, as tracking a snapshot
is just remembering an offset in the edge list. Meanwhile,
the adjacency list format through its coarse-grained snapshot
capability [54, 26] is used to complement the edge list.

3.2 Overview
GRAPHONE utilizes a hybrid graph data store (discussed in
§4) that consists of a small circular edge log and the adja-
cency store. Fig. 4 shows an high-level overview of GRA-
PHONE architecture. The hybrid store is managed in sev-
eral phases (presented in §5). Specifically, during the log-
ging phase, the edge log records the incoming updates in the
edge list format in their arrival order, and supports a high in-
gestion rate. We define non-archived edges as the edges in
the edge log that are yet to be moved to the adjacency store.
When their number crosses the archiving threshold, a par-
allel archiving phase begins, which merges the latest edges
to the adjacency store to create a new adjacency list snap-
shot. This duration is referred to as an epoch. In the durable
phase, the edge log is written to a disk.

To efficiently create and manage immutable versions for
data analytics in presence of the incoming updates, we pro-
vide a set of GraphView APIs (discussed in §6). Specifically,
static view API is for batch processing, while stream view
API is for stream processing. Internally, the views utilize
dual versioning technique where the versioning capability of
both formats are exploited. For example, a real-time static
view can be composed by using the latest coarse-grained ver-
sion of the adjacency store, and the latest fine-grained ver-
sion of non-archived edges.

It is important to note that the GraphView also provides
analytics with the flexibility to trade-off the granularity of
data visibility for better performance, e.g., the analytics that
prefer running only on the latest adjacency list store will
avoid the cost associated with the access of the latest edges
from the non-archived edges.
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4 Hybrid Store
The hybrid store design presented in Fig. 5 consists of a
small circular edge log that is used to record the latest up-
dates in the edge list format. For deletion cases, we use
tombstones, specifically the edge log also adds a new entry
but the most significant bit (MSB) of the source vertex ID of
the edge is set to denote its deletion as shown in Fig 5 for
deleted edge (2,4) at time t7.

The adjacency store keeps the older data in the adjacency
list format. The adjacency store is composed of vertex array,
per-vertex edge arrays, and multi-versioned degree array.
The vertex array contains a per-vertex flag and pointers to
the first and last block of the edge arrays. Addition of a new
vertex is done by setting a special bit in the per-vertex flag.
Vertex deletion sets another bit in the same flag, and adds all
of its edges as deleted edges to the edge log. These bits help
GRAPHONE in garbage collecting the deleted vertex ID.

The edge array contains per-vertex edges of the adjacency
list. It may contain many small edge blocks, each of which
contains a count of the edges in the block and a memory
pointer to the next block. The connection of edge blocks are
referred to as chaining. An edge addition always happens
at the end of the edge array of each vertex, which may re-
quire the allocation of a new edge block and linked to the
last block. Fig. 5 shows chained edge arrays for the vertices
with ID 1 to 4 for data updates that arrive in between t4 to
t7. The adjacency list treats an edge deletion as an addition
but the deleted edge entry in the edge array keeps the nega-
tive position of the original edge, while the actual data is not
modified at all, as shown for edge (2,4). As a result, deletion
never breaks the convergence of a previous computation as it
does not modify the dataset of the computation.

The degree array contains the count of neighboring edges
of each vertex. Thus, a degree array from an older adjacency
store snapshot can identify the edges to be accessed even
from the latest edge arrays due to the latter’s append-only
property. Hence, the degree array in GRAPHONE is multi-
versioned to support adjacency store snapshots. It keeps the
total added and deleted edge counts of each vertex. Both
counts help in efficiently getting the valid neighboring edges,
as a client can do the exact memory allocation (refer to the
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Fig. 5: The hybrid store for the data arrived from time t0 to t9:
The vertex array contains pointers to the first and the last block of
each edge array, while degree array contains deleted and added edge
counts. However, only the pointer to the first block in the vertex
array, and total count in the degree array are shown for brevity.

get-nebrs-*() API in Table 2). When an edge is added or
deleted for a vertex, a new entry is added for this vertex in
the degree array in each epoch. Two different versions S0
and S1 of the degree array are shown in Fig. 5 for two epochs
t0− t3 and t4− t7.

One can note that degree nodes are shared across epochs
if there is no later activity in a vertex. For example, the same
degree nodes for vertices with ID 5 and 6 are valid for both
epochs in Fig. 5. The degree array nodes of an older ver-
sions may be garbage collected when the corresponding ad-
jacency store snapshot retires, i.e., not being used actively by
any analytics, and is tracked using reference counting mech-
anism through the global snapshot list, which will be dis-
cussed shortly. For example, if snapshot S0 is retired, then
the degree nodes of snapshot S0 for vertices with ID 1− 4
can be reused by later snapshots (e.g. S2).

The global snapshot list is a linked list of snapshot ob-
jects to manage the relationship between the edge log and
adjacency store at each epoch. Each node contains an abso-
lute offset to the edge log where the adjacency list snapshot
is created, and a reference count to capture the number of
views using this adjacency list snapshot. A new entry in the
global snapshot list is created after each epoch, and it implies
that the edge log data of the last epoch has been moved to the
adjacency store atomically, and is now visible to the world.
Weighted Graphs. Edge weights are generally embedded in
the edge arrays along with the destination vertex ID. Some
graphs have static weights, e.g., an edge weight in an enter-
prise network can represent the network speed between the
two nodes. A weight change is then treated internally as an
edge deletion followed by an edge addition. On the other
hand, if edge weights are dynamic, such as network data
flow, then such weights are suited for various analytics if
kept for a configurable time window, e.g., anomaly detection
in the network flow. In this case GRAPHONE is configured
to treat weight changes as a new edge to aid such analytics.
Dual Versioning and Data Overlap GRAPHONE uses dual
versioning to create the instantaneous read-only graph views
(snapshot isolation) for data analytics. It exploits both the
fine-grained versioning property of the edge log, and the
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coarse-grained versioning capability of the adjacency list
format. It should be noted that the adjacency list provides
one version per epoch, while the edge log supports multiple
versions per epoch, as many as the number of edges arrived
during the epoch. So the dual versioning provides many ver-
sions within an epoch which is the basis for static views, and
should not be confused with the adjacency list snapshots. In
Fig. 5, static view at the time t6 would be adjacency list snap-
shot S0 plus the edges from t4− t6.

A small amount of data overlap between the two stores
keeps the composition of the view intact. This makes the
view accessible even when the edge log data is moved to the
adjacency store to create a new adjacency list version. Thus
both stores have the copy of a few epochs of the same data.
For one or more long running iterative analytics, we may
use the durable edge log or a private copy of non-archived
edges to provide data overlap, so that analytics can avoid
interfering with data management operations of the edge log.

5 Data Management and Optimizations
Data management faces the key issues of minimizing the size
of non-archived edges, providing atomic updates, data order-
ing, and cleaning of older snapshots. Addition and deletion
of vertices and edges, and edge weight modification are all
considered as an atomic update.

5.1 Data Management Phases
Fig. 4 depicts the internals of the data management opera-
tions. It consists of four phases: logging, archiving, durable
and compaction. Client threads send updates, and the log-
ging to the edge log happens in the same thread context syn-
chronously. The archiving phase moves the non-archived
edges to the adjacency store using many worker threads, and
one of them assumes the role of the master, called the archive
thread. The durable phase happens in a separate thread,
while compaction is multi-threaded but happens much later.

A client thread wakes up the archive thread and durable
thread to start the archiving and durable phases when the
number of non-archived edges crosses a threshold, called
archiving threshold. The logging phase continues as usual in
parallel to them. Also, the archive thread and durable thread
check if any non-archived edges are there at the end of each
phase to repeat their process, or wait for work with a timeout.

The edge log has a distinct offset or marker, head, for log-
ging, which is incremented every time an edge is ingested
as shown in Fig. 6. For archiving, GRAPHONE manages a
pair of markers, i.e. the archiving operation happens from
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vertex  range [v0, v1)
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Fig. 7: Edge sharding separates the non-archived edges into many
buffers based on their source vertex ID, so that the per-vertex edge
arrays can keep the edge log arrival order, and enables non-atomic
archiving.

the tail archive marker to the head archive marker, because
the head will keep moving due to new updates. The durable
phase also has a pair of markers to work with. Markers are
always incremented and used with the modulo operator.

5.1.1 Logging Phase
The incoming update is converted to numerical identifiers,
and acquires an edge list format. The mapping between ver-
tex label to vertex ID and vice-versa manages this transla-
tion. Then a unique spot is claimed within the edge log by
the atomic increment of the head, and the edge is written to
a spot calculated using the modulo operation on the head,
that also stores the operator (§4), addition or deletion, along
with the edges. The atomicity of updates is ensured by the
atomic increment of the head. The edge log is automatically
reused in the logging phase due to its circular nature, and
thus is overwritten by newer updates. Hence the logging may
get blocked occasionally if the whole buffer is filled as the
archiving or durable phases may not be able to catch up. We
keep sufficiently large edge log to avoid frequent blocking.
In case of blocked client threads, they are woken up when
the archiving or durable phases complete.

5.1.2 Archiving Phase
This phase moves the non-archived edges from the edge log
to the adjacency store. A naive multi-threaded archiving,
where each worker can directly work on a portion of non-
archived edges, may not keep the data ordering intact. If a
deletion comes after the addition of an edge within the same
epoch, the edge may become alive or dead in the edge arrays
depending on the archiving order of the two data points.

An edge sharding stage in the archiving phase (Fig. 7)
maintains per-vertex edges as per the edge log arrival to ad-
dress the ordering problem. It shards the non-archived edges
to multiple local buffers based on the range of their source
vertex ID. For undirected graphs, the total edge count in
the local buffer is twice of the non-archived edge count, as
the ordering of reverse edges is also managed. For directed
edges, both directions have their own local buffers.

The edges in each local buffer are then archived in par-
allel without using any atomic instructions. A heuristic is
required for workload distribution, as the equal division is
not possible among threads, thereby the last thread may get
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more work assigned. To handle the workload imbalance
among worker threads, we create a larger number of local
buffers with smaller vertex range than the available threads,
and assign different numbers of local buffers to each thread
so that each gets an approximately equal number of edges to
archive. The idea here is to assign slightly more than equal
work to each thread, so that all the threads are balanced while
the last thread is either balanced or lightly loaded.

This stage allocates new degree nodes or can reuse the
same from the older degree array versions if they are not
being used by any analytics. We follow these rules for
reusing the degree array from older versions. We track the
degree array usage by analytics using reference counting
per epoch [40], and can be reused if all static views cre-
ated within that epoch have expired, i.e., the references are
dropped to zero (not being used by any running analytics). It
also ensures that a newly created view uses the latest adja-
cency list snapshot that should never be freed.

The stage then populates the degree array, and allocates
memory for edge blocks that are chained before filling those
blocks. We then create a new snapshot object, fill it up with
relevant details, and add it atomically to the global snapshot
list. At the end of the archiving phase, the archive thread sets
the tail archive marker atomically to the value of the head
archive marker, and wakes up any the blocked client threads.

5.1.3 Durable Phase and Recovery
The edge log data is periodically appended to a durable file in
a separate thread context instead of logging immediately to
the disk to avoid the overhead of IO system calls during each
edge arrival. Also this will not guarantee durability unless
fsync() is called. The logging uses buffered sequential write,
and allows the buffer cache to work as spillover buffer for the
access of non-archived edges if the edge log is over-written.

The durable edge log is a prefix of the whole ingested
data, so GRAPHONE may lose some recent data in the case
of an unplanned shutdown. The recovery depends on up-
stream backup that keep the latest data for some time, such as
kafka [42], and replays it for the lost data, and creates the ad-
jacency list on the whole data. Recovery is faster than build-
ing the data structures at an edge level, as only the archiving
phase is involved working on bulk of data. Alternatively,
persistent memory may be used for the edge log to provide
durability at each update [45].

The durable phase also performs an incremental check-
pointing of the adjacency store data from an old time-
window, and frees the memory associated with it. This is
useful for streaming data such as LANL network flow, where
the old adjacency data can be checkpointed in disk, as the
in-memory adjacency store within the latest time window is
sufficient for stream analytics. By default, it is not enabled.
During checkpointing the adjacency store, the vertex ID and
length of the edge array are persisted along with edge arrays
so that data can be read easily later, if required.

5.1.4 Compaction Phase
The compaction of the edge arrays removes deleted data
from per-vertex edge array blocks up to the latest retired
snapshot identified via the reference counting scheme dis-
cussed in §5.1.2. The compaction needs a similar reference
counting for the private static views (§6.1). For each vertex,
it allocates new edge array block and copies valid data up
to the latest retired snapshot from the edge arrays, and cre-
ates a link to the rest of the original edge array blocks. The
newly created edge array block is then atomically replaced
in the vertex array, while freeing happens later to ensure that
cached references of the older data are dropped. This phase
is generally clubbed with archiving phase where the degree
array is updated to reflect the new combination.

5.2 Memory Overhead and Optimizations
The edge log and degree array are responsible for version-
ing. The edge log size is relatively small as it contains only
the latest updates which moves quickly to the base store, e.g,
the archiving threshold of 216 edges translates to only 1MB
for a plain graph assuming 8 byte vertex ID. Thus the edge
log is only several MBs. The memory in degree arrays are
also reused ( §5.1.2). This leaves us to memory analysis of
edge arrays which may consume a lot of memory due to ex-
cessive chaining in their edge blocks. For example, GRA-
PHONE runs archiving phase for 216 times for Kron-28 graph
if the archiving threshold is 216. In this case, the edge arrays
would consume 148.73GB memory and have average 29.18
chain per-vertex. We will discuss the graph datasets used
in this paper shortly. If all the edges were to be ingested in
one archiving phase, this static system needs only an aver-
age 0.45 chain and 33.80GB memory. The chain count is
less than one as 55% vertices do not have any neighbor.

GRAPHONE uses two memory allocation techniques, as
we discuss next, to reduce the level of chaining to make the
memory overhead of edge arrays modest compared to a static
engine. The techniques work proactively, and do not affect
the adjacency list versioning. Compaction further reduces
the memory overhead to bring GRAPHONE at par with static
analytics engine, but is performed less frequently.
Optimization #1: Cacheline Sized Memory Allocation.
Multiples of cacheline sized memory is allocated for the edge
blocks. One cacheline (64 bytes) can store up to 12 neigh-
bors for the plain graph of 32bit type, leaving the rest of the
space for storing a count to track space usage in the block and
a link to the next block. In this allocation method, the ma-

Table 1: Impact of two optimizations on the chain count and mem-
ory consumption on the kronecker graph.

Optimizations Chain Count Memory
Average Maximum Needed (GB)

Baseline System 29.18 65,536 148.73
+Cacheline memory 2.96 65,536 47.42
+Hub Vertex Handling 2.47 3,998 45.79
Static System 0.45 1 33.81
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Table 2: Basic GraphView APIs

Static View APIs
snap-handle create-static-view(global-data, simple, private, stale)
status delete-static-view(snap-handle)
count get-nebr-length-{in/out}(snap-handle, vertex-id)
count get-nebrs-{in/out}(snap-handle, vertex-id, ptr)
count get-nebrs-archived-{in/out}(snap-handle, vertex-id, ptr)
count get-non-archived-edges(snap-handle, ptr)
Stateless Stream View APIs
stream-handle reg-stream-view(global-data, window-sz, batch-sz)
status update-stream-view(stream-handle)
status unreg-stream-view(stream-handle)
count get-new-edges-length(stream-handle)
count get-new-edges(stream-handle, ptr)
Stateful Stream View APIs
sstream-handle reg-sstream-view(global-data, window-sz,

v-or-e-centric, simple, private, stale)
status update-sstream-view(sstream-handle)
status unreg-sstream-view(sstream-handle)
bool has-vertex-changed(sstream-handle, vertex-id)
count get-nebr-length-{in/out}(sstream-handle, vertex-id)
count get-nebrs-{in/out}(sstream-handle, vertex-id, ptr)
count get-nebrs-archived-{in/out}(sstream-handle, vertex-id, ptr)
count get-non-archived-edges(sstream-handle, ptr)
Historic View APIs
count get-prior-edges(global-data, start, end, ptr)

jority of the vertices will need only a few levels of chaining.
For example, in a Twitter graph, 88.43% of the vertices will
need at most 3 cachelines only, and so do 92.49% for Kron-
28 graph. This optimization reduces the average chain count
by 9.88×, and memory consumption by 3.14× in compari-
son to a baseline system as shown in Table 1. The baseline
system uses a dynamic block size which is equivalent to the
number of edges arrived during each epoch for each vertex.
Optimization #2: Hub Vertex Handling. A few vertices,
called hub-vertices, have very high degree in a graph that fol-
lows power-law distribution [22]. They are very common in
real-life graphs, such as for the twitter follower graph whose
degree distribution we analyze. Such vertices are likely to
participate in each archiving phase. Hence they will have a
lot of chaining in their edge arrays, and the aforementioned
memory management technique alone is not enough. In this
case, we allocate in multiples of 4KB page-aligned memory
for vertices that already have 8,192 edges or if the number of
neighbors in any archiving phase crosses 256. The average
chain count is further reduced to 2.47, leading to reduction in
memory utilization by 1.63GB as listed in Table 1. One can
vary the threshold to identify a hub vertex but performance
remains similar to the cacheline sized memory (Fig. 15).

6 GraphView Abstraction
GraphView data abstraction hides the complexity of the hy-
brid store by providing simple data access APIs as shown
in Table 2. The static view is suited for batch analytics and
queries, while the stream view for stream processing. Both
offer diverse data access at two granularities of data visibil-
ity of updates. At any time, a number of views may co-exist
without incurring much memory overhead, as the view data
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Fig. 8: GRAPHONE hybrid store illustrating various views with two
adjacency store versions, S0 and S1, with a small edge log

is composed of the same adjacency store and non-archived
edges as shown in Fig. 8. The access of non-archived edges
provides data visibility at the edge level granularity.

Due to the cost of indexing the non-archived edges,
GraphView provides an option to trade-off the granularity
of data visibility to gain performance. Further, one can use
vertex-centric compute model [73] on the adjacency list plus
edge-centric compute model [81, 43, 66] on non-archived
edges, so there is no need to index the latter as plotted later
to find its optimal minimum size (Fig. 13).

6.1 Static View
Batch analytics and queries prefer snapshots for computa-
tion, which can be created in real-time using create-static-
view() API. It is represented by an opaque handle that iden-
tifies the view composition, i.e., the non-archived edges and
the latest adjacency list snapshot, and serves as input to other
static view APIs. A created handle should be destroyed using
delete-static-view(). Based on the input supplied to create-
static-view() API, many types of static view are defined.
Basic Static View. This view is very useful for advanced
users and higher level library development which prefer
more control and performance. The main low-level API are:
get-nebrs-archived-*() that returns the reference to the per-
vertex edge array; and get-non-archived-edges() that returns
the non-archived edges. On the other hand, it also provides
a high-level API, get-nebrs-*(), that returns the neighbor list
of a vertex by combining the adjacency store and the non-
archived edges in a user supplied memory buffer. It may be
preferable by queries with high selectivity that only need to
scan the non-archived edges for one or a few vertex, e.g. 1-
hop query, and is not apt for long running analytics.

The implementation of get-nebrs() for the non-deletion
case is a simple two step process: copy the per-vertex edge
array to the user supplied buffer, followed by a scan of the
non-archived edges to find and add the rest of the edges of
the vertex to the buffer. For the deletion case, both the steps
track the deleted positions in the edge arrays, and the last
few edges from edge arrays and/or non-archived edge log
are copied into those indexes of the buffer.
Private Static View. For long running analytics, keeping
basic static views accessible have some undesirable impacts:
(1) all the static views may have to use the durable edge log
if the corresponding non-archived edges in the edge log has
been overwritten; (2) the degree array cannot be reused in
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Algorithm 1 Traditional BFS using static view APIs
1: handle← create-static-view(global-data, private=true, simple=true)
2: level = 1; active-vertex = 1; status-array[root-vertex] = level;
3: while active-vertex do
4: active-vertex = 0;
5: for vertex-type v = 0; v < vertex-count; v++ do
6: if status-array[v] == level then
7: degree← get-nebrs-out(handle, v, nebr-list);
8: for j=0; j < degree; j++ do
9: w← nebr-list[j];

10: if status-array[w] == 0 then
11: status-array[w]← level + 1; ++active-vertex;
12: ++level;
13: delete-static-view(handle)

the archiving phase as it is still in use. To solve this, one can
create a private static view by passing private=true in the
create-static-view() API. In this case, a private copy of the
non-archived edges and the degree array are kept inside the
view handle with their global references dropped to make it
independent from archiving. One can pass simple=true in
the create-static-view() to create a temporary in-memory ad-
jacency list from the non-archived edges for optimizing get-
nebr-*() API, as shown in Algorithm 1 for a simplified BFS
(push model) implementation. This approach is more flex-
ible than static analytics engine which converts the whole
data, or dynamic graph system that disallows the user to
choose fine-grained control on snapshot creation.

Creation to many private static views may introduce mem-
ory overhead. To avoid this, a reference of the private degree
array is kept in the snapshot object and is shared by other
static views created within that epoch, and are locally refer-
ence counted for freeing. Thus, creating many private views
within an epoch has overhead of just one degree array. How-
ever, creating many private static views across epochs may
still cause the memory overhead, if older views are still be-
ing accessed by long running analytics. This also means that
the machine is overloaded with computations, and they are
not real-time in nature. In such a case, a user may prefer to
copy the data to another machine to execute them.
Stale Static View. Many analytics are fine with data visi-
bility at coarse-grained ingestions, thus some stale but con-
sistent view of the data may be better for their performance.
In this case, passing stale=true returns the snapshot of the
latest adjacency list only. This view can be combined with
private static view where degree array will be copied.

6.2 Stream View
Stream computations follow a pull method in GRAPHONE,
i.e., the analytics pulls new data at the end of incremental
compute to perform the next phase of incremental compute.
The stream view APIs around the handle simplify the data
access and its granularity in presence of the data ingestion.
Also, checkpointing the computation results and the associ-
ated data offset is the responsibility of the stream engine, so
that the long running computation can be resumed from that
point onwards in case of a fault.

Algorithm 2 A stateless stream compute skeleton
1: handle← reg-stream-view(global-data, batch-sz=10s)
2: init-stream-compute(handle) . Application specific
3: while true do . Or application specific criteria
4: if update-stream-view(handle) then
5: count = get-new-edges(handle, new-edges)
6: for j=0; j < count; j++ do
7: do-stream-compute(handle, new-edges[j]) . Or any method
8: unreg-sstream-view(handle)

Stateless Stream Processing. A stateless computation, e.g.
counting incoming edges (aggregation), only needs a batch
of new edges. It can be registered using the reg-stream-
view() API, and the returned handle contains the batch of
new edges. Algorithm 2 shows how one can use the API to
do stateless stream computation. The handle also allows a
pointer to point to analytics results to be maintained by the
stream compute implementation. The implementation also
needs to checkpoint only the edge log offset and the compu-
tation results as GRAPHONE keeps the edge log durable.

An extension of the model is to process on a data window
instead on the whole arrived data. For sliding window im-
plementation, GRAPHONE manages a cached batch of edge
data around the start marker of the data window in addition to
the batch of new edges. The old cached data can be accessed
by the analytics for updating the compute results, e.g., sub-
tracting the value in aggregation over the data window. The
cached data is fetched from the durable edge log, and shows
sequential read due to the sliding nature of the window. A
tumbling window implementation is also possible where the
batch size of new edges is equal to the window size, and
hence does not require older data to be cached. Additional
checkpointing of the starting edge offset is required along
with the edge log offset and computation results.

Stateful Stream Processing. A complex computation, such
as graph coloring [67], is stateful that needs the streaming
data and complete base store to access the computational
state of the neighbors of each vertex. A variant of static view
is better suited for it because its per-vertex neighbor informa-
tion eases the access of the computational state of neighbors.
It is registered using reg-sstream-view(), and returns sstream-
handle. For edge-centric computation, the handle also con-
tains a batch of edges to identify the changed edges. For
vertex-centric computation, the handle contains per-vertex
one-bit status to denote the vertex with edge updates that can
be identifies using the has-vertex-changed() API. This is up-
dated during update-sstream-view() call that also updates the
degree array. Algorithm 3 shows an example code snippet.

As the degree array plays an important role for a stateful
computation due to its association with the static view, us-
ing an additional degree array at the start marker of the data
window eases the access of the data within the window from
the adjacency store. The sstream-handle manages the degree
array on behalf of the stream engine, and internally keeps a
batch of cached edges around the start marker of the window
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Algorithm 3 A stateful stream compute (vertex-centric) skeleton
1: handle← reg-sstream-view(global-data, v-centric, stale=true)
2: init-sstream-compute(handle) . Application specific
3: while true do . Or application specific criteria
4: if update-sstream-view(handle) then
5: for v=0; v < vertex-count; v++ do
6: if has-vertex-changed(handle, v) then
7: do-sstream-compute(handle, v) . Application specific
8: unreg-sstream-view(handle)

to update the old degree array. The get-nebrs-*() function
returns the required neighbors only. Checkpointing the com-
putational results, the edge log offset at the point of compu-
tation, and window information is sufficient for recovery.

6.3 Historic Views
GRAPHONE provides many views from recent past, but it
is not designed for getting arbitrary historic views from the
adjacency store. However, durable edge log can provide
the same using get-prior-edges() API in edge list format
as it keeps deleted data, behaving similar to existing data
stores [14, 23]. Moreover, in case of no deletion, one can
create a degree array at a durable edge log offset by scanning
the durable edge log, and the degree array will serve older
static or stream view from the adjacency store to gain in-
sights from the historical data. For data access from a histor-
ical time-window in this case, one need to build two degrees
arrays at both the offsets of the durable edge log.

7 Evaluations
GRAPHONE is implemented in around 16,000 lines of C++
code including various analytics. It supports plain graphs
and weighted graphs with either 4 byte or 8 byte vertex sizes.
We store the fixed weights along with the edges, variable
length weights in a separate weight store using indirection.
Any type of value can be stored in place of weight such
as integers, float/double, timestamps, edge-id or any custom
weight as the code is written using C++ templates. So one
can write a small plug-in describing the weight structures and
other functions, and GRAPHONE would be ready to serve a
custom weight. All experiments are run on a machine with 2
Intel Xeon CPU E5-2683 sockets, each having 14 cores with
hyper-threading enabled. It has 512GB memory, Samsung
NVMe 950 Pro 512GB, and CentOS 7.2. Prior results have
also been performed on the same machine.

We choose data ingestion, BFS, PageRank and 1-Hop
query to simulate the various real-time usecases to demon-
strate the impact of GRAPHONE on analytics. BFS and
PageRank are selected because many real-time analytics are
iterative in nature, e.g. shortest path, and many prior graph
systems readily implement them for comparison. 1-Hop
query accesses the edges of random 512 non-zero degree
vertices and sums them up to make sure we access them all.
1-Hop query simulates many small query usecases, such as
listing one’s friends, or triangle completion to get friend sug-
gestions in a social graph, etc. During the ingestion, vertex

name to vertex ID conversion was not needed as we directly
used the vertex ID supplied with these datasets as followed
by other graph systems. All the edges will be stored twice
in the adjacency list: in-edges and out-edges for directed
graphs, and symmetric edges for undirected graphs. No com-
paction was running in any experiments unless mentioned.
Datasets. Table 3 lists the graph datasets. Twitter [3],
Friendster [1] and Subdomain [4] are real-world graphs,
while Kron-28 and Kron-21 are synthetic kronecker graphs
generated using graph500 generator [25], all with 4 byte
vertex size and without any weights. LANL network flow
dataset [74] is a weighted graph where vertex and weight
sizes are 4 bytes and 32 bytes respectively, and weight
changes are treated as new streaming data. We run ex-
periment on first 10 days of data. We test deletions on a
weighted RMAT graph [15] generated with [56] where ver-
tex and weight sizes are 8 bytes. It contains 4 million ver-
tices, and 64 million edges, and a update file containing 40
million edges out of which 2,501,937 edges are for deletions.

7.1 Data Ingestion Performance
Logging and Archiving Rate. Logging to edge log is nat-
urally faster, while archiving rate depends upon the archiv-
ing threshold. Table 3 lists the logging rate of a thread, and
archiving rate at the archiving threshold of 216 edges for our
graph dataset. A thread can log close to 80 million edges per
second, while archiving rate is only around 45 million edges
second at the archiving threshold for most of the graphs.
Both the rates are lower for LANL graph, as the weight size
is 32 bytes, while others have no weights.
Ingestion Rate. It is defined as single threaded ingestion to
the edge log at one edge at a time, and leaving the archive
thread and durable phase to automatically change with the
arrival rate. The number is reported when all the data are
in the adjacency store, and persisted in the NVMe ext4 file.
GRAPHONE achieves an ingestion rate of more than 45 mil-
lion edges per second, except LANL graph. The ingestion
rate is higher than archiving rate (at the archiving threshold)
except in Kron-21, as edges more than the archiving thresh-
old are archived in each epoch due to higher logging rate.
This indicates that GRAPHONE can support a higher arrival
rate as archiving rate can dynamically boost with increased
arrival velocity. The Kron-21 graph is very small graph, and
the thread communication cost affects the ingestion rate.
Compaction Rate. We run compaction as a separate bench-
mark after all the data has been ingested. The graph com-
paction rate is 345.53 million edges per second for the
RMAT graph which has more than 2.5 million deleted edges
out of total 104 million edges. Results for other graphs are
shown in Table 3. The poor rate for LANL graph is due
to long tail for compacting edge arrays of few vertices. As
shown later in Fig. 12, the compaction improves the analytics
performance where the static GRAPHONE serves compacted
adjacency list as it had no link in its edge arrays.
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Table 3: Graph datasets showing vertex and edge counts in millions (M), and different rates in millions edges/s (M/s). The results show that
the ingestion rate would be upper and lower bounded by the logging and archiving rate. D = Directed, U = Undirected. For deletions see §7.2.

Graph Vertex Edge Individual Phases (M/s) In-Memory Rate (M/s) Ext-Memory Rate (M/s) Compaction
Name Type Count (M) Count (M) Logging Archiving Ingestion Recovery Ingestion Recovery Rate (M)
LANL D 0.16 1,521.19 35.98 28.91 26.99 30.23 25.26 29.48 41.85
Twitter D 52.58 1,963.26 82.62 47.98 66.39 71.28 61.13 71.87 541.71

Friendster D 68.35 2,586.15 82.85 49.32 60.40 95.78 58.35 95.44 520.65
Subdomain D 101.72 2,043.20 82.86 43.43 68.25 180.75 61.54 151.96 444.84

Kron-28 U 256 4,096 79.23 43.68 52.39 116.18 49.70 107.61 798.91
Kron-21 U 2 32 78.91 78.40 58.31 90.44 57.02 66.66 1011.68

Durability. The durable phase has less than 10% impact on
the ingestion rate. Table 3 shows the in-memory ingestion
rate and can be compared against that of GRAPHONE, which
uses NVMe SSD for durability. This is because durable
phase runs in a separate thread context, and exhibits only se-
quential write. The NVMe SSD can support up to 1500MB/s
sequential write and that is sufficient for GRAPHONE as it
only needs smaller write IO throughput, as shown in Fig. 9
for Friendster graph. This indicates that a higher logging rate
can easily be supported by using a NVMe SSD.
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Fig. 9: Write throughput for friendster in GRAPHONE comparing
against average requirement and maximum available in an NVMe

Recovery. Recovery only needs to perform archiving phase
at bulk of data. As we will show later in Fig. 13, the archiving
is fastest when around 227–231 edges are cleaned together.
Hence we take the minimum of this size as recovery thresh-
old to minimize the memory requirement of IO buffer and
the recovery time, and also gets an opportunity to pipeline
the IO read time of the data with recovery. Table 3 shows the
total recovery time, including data read from NVMe SSD af-
ter dropping the buffer cache. Clearly, GRAPHONE hides the
IO time when compared against in-memory recovery. The
recovery rate varies a lot for different graph due to different
distribution of the batch of graph data that has profound im-
pact on parallelism and hence locality access of edge arrays.

7.2 Graph Systems Performance
We choose different classes of graph systems to compare
against GRAPHONE. Stinger is a dynamic graph system,
Neo4j and SQLite are graph databases, and Galois and static
version of GRAPHONE are static graph systems. Except
stream computations, all the analytics in this section are per-
formed on private static view containing no non-archived
edges as it is created at the end of the ingestion.
Dynamic Graph System. Stinger is an in-memory graph
system that uses atomic instructions to support fine-grained
updates. So it cannot provide semantically correct analytics

if updates and computations are scheduled at the same time,
as different iteration of the analytics will run on the differ-
ent versions of the data. We used the benchmark developed
in [56] to compare the results on the RMAT graph.

Stinger is able to support 3.49 million updates/sec on the
same weighted RMAT graph, whereas GRAPHONE ingests
18.67 million edges/sec, achieving 5.36× higher ingestion
rate. Part of the reason for poor update rate of Stinger is that
unlike GRAPHONE, it directly updates the adjacency store
using atomic constructs. We have implemented PageRank
and BFS in a similar approach as Stinger. The compari-
son is plotted in Fig. 10. Clearly, GRAPHONE is able to
provide a better support for BFS and PageRank achieving
12.76× and 3.18× speedup respectively. The reason behind
the speedup is explicit optimization to reduce the chaining
which removes a lot of pointer chasing, and better cache ac-
cess locality due to cacheline sized edge blocks.
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Fig. 10: Comparison against Stinger for in-memory setup

Databases. We compare against SQLite 3.7.15.2, a rela-
tional database, Neo4j 3.2.3, a graph database for ingestion
test. SQLite and Neo4j support ACID transaction, and do
not provide native support for graph analytics. It is known
that higher update rate is possible by trading off the strict se-
rializability of databases, however to measure the magnitude
of improvement, it is necessary to conduct experiment.

The in-memory configuration of SQLite can ingest
12.46K edges per second, while GRAPHONE is able to sup-
port 18.67 million edges per second in the same configura-
tion for above dataset. Neo4j could not finish the benchmark
after more than 12 hours, which is along the same line as
observed in [56]. Hence we have tested on a smaller graph
with 32K vertices, 256K edges, and 100K updates. Neo4j
is configured to use disk to make it durable. Neo4j and
GRAPHONE both use the buffer cache while persisting the
graph data. Neo4j can ingest only 14.81K edges per second,
whereas GRAPHONE ingests at 3.63M edges per second.
Static Graph System. We compare against Galois, a rep-
resentative in-memory static graph engine based on CSR
format. It does not provide the data management capabil-
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Fig. 11: Speedup comparison of GRAPHONE with Galois (pre-
processing cost not included).

ity, so the whole graph is constructed in one time, called
pre-processing time, which takes a significant amount of
time [55]. In contrast, GRAPHONE can start the analytics
without any pre-processing. Fig. 11 shows the speed up
of GRAPHONE for PageRank and BFS over Galois (with-
out pre-processing cost) for all the graphs except Kron-28 as
Galois had a memory error. The PageRank results are almost
same as it is compute intensive, thus effect of chaining is not
observed. For Kron-21-16 which is very small, the perfor-
mance of Galois is bad. We suspect that the cost of manual
workload division in Galois for small graphs affects its per-
formance, while we use dynamic scheduling of OpenMP.

For BFS, GRAPHONE performs better than Galois with an
exception in the Subdomain graph. Both systems have same
BFS implementation (direction-optimized BFS [11]) with a
minor implementation difference. Our BFS is implemented
using the status array metadata where the level of each ver-
tex is maintained as one byte word, and tracking the active
vertices requires revisiting whole status array. Galois uses
the frontier queue where active vertices are kept in a sep-
arate work queue. Based on our experience with graph sys-
tems, status array implementation is faster for small diameter
graphs, otherwise frontier queue approach is better. The Sub-
domain graph has 140 BFS levels (the highest of all graphs)
hence we perform poorly, but Kron-21 has only 7 levels (the
least of all the graphs) so the speedup is the highest.
Static GRAPHONE. GRAPHONE is expected to perform
slightly worse than the static graph engine without including
the pre-processing cost, but much better if including. There-
fore to demonstrate the performance overhead of data man-
agement and chaining without any specific algorithm differ-
ences, we compare GRAPHONE against the static configura-
tion of itself where maximum chain count is just one.

Fig. 12 shows this performance drop (without including
pre-processing cost), specifically trading off just 17% av-
erage performance for real-world graphs (26% for all the
graphs plotted) from the static system, one can support high
arrival velocity of fine-grained updates. However, the per-
formance drop is only temporary as the compaction process
will remove the chaining in the background. Moreover, when
adding the pre-processing cost to the static system, GRA-
PHONE is able to perform better. For example, the pre-
processing cost for Kron-28 graph is 32.73s, one or multiple
orders of magnitude longer than the runtime of these algo-
rithms, e.g. 34.12× more than the run-time of BFS.
Stream Graph Engines. The logging and archiving opera-
tions are examples of different categories of stream analyt-
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Fig. 12: Graph analytics performance in GRAPHONE compared to
its static version that have no chaining requirement.

ics: logging is a proxy to continuous stateless stream ana-
lytics, while archiving is same to the discrete stateful stream
analytics. Thus, Table 3 is also an indication of their per-
formance. We have also implemented a streaming weakly
connected components using ideas from COST [57] using
stateless stream view APIs and it can process 33.60 million
stream edges/s on Kron-28 graph.

GRAPHONE runs stream computation and data ingestion
concurrently, while prior stream processing systems inter-
leave them that results into lower ingestion rate. To demon-
strate the advantage of this design decision, we have im-
plemented a streaming PageRank using stateful stream view
APIs that runs in parallel to data ingestion in GRAPHONE.
To simulate the prior stream processing we interleave the
two. The execution shows that GRAPHONE improves the
data ingestion by 26.22% for Kron-28 graph. We leave the
comparison against other stream processing engine as future
work as the focus of this work is on graph data-store.

7.3 System Design Parameters
Performance Trade-off in Hybrid Store. We first charac-
terize the behavior of the hybrid store for different number
of non-archived edges. Fig. 13 shows the performance vari-
ation of archiving rate, BFS, PageRank, and 1-hop query for
Kron-28 graph when the non-archived edge counts are in-
creased, while the rest of the edges are kept in the adjacency
store for Kron-28. The figure shows that up to 217 non-
archived edges in the edge log brings negligible drop in the
analytics performance. Hence, we recommend the value of
archiving threshold as 216 edges as the logging overlaps with
the archiving. GRAPHONE is able to sustain an archiving
rate 43.68 million edges per second at this threshold. The 1-
Hop query latency of all 512 queries together is only 53.766
ms, i.e. 0.105 ms for each query.

The archiving threshold of 216 edges is not unexpected as
it is small compared to total edge count (233) in Kron-28, and
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Fig. 13: Algorithmic performance and archiving rate variation for
different non-archived edge count
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the analytics on non-archived edges are parallelized. Further,
the parallelization cost dominates when the number of non-
archived edges are small (210). Thus the analytics cost drops
only when the number of non-archived edges becomes large.

Fig. 13 also shows that higher archiving threshold leads to
better archiving rate, e.g., a archiving threshold of 1,048,576
(220) edges can sustain a archiving rate of 56.99 million
edges/second. The drawback is that the analytics perfor-
mance will be reduced as it will find more number of non-
archived edges. On the contrary, archiving works contin-
uously and tries to minimize the number of non-archived
edges, so a smaller arrival rate will lead to frequent archiv-
ing, and thus fewer non-archived edges will be observed at
any time. The drop in archiving rate at the tail is due to the
impact of large working set size that leads to more last-level-
cache transactions and misses while filling the edge arrays.
Scalability. The edge sharding stage removes the need
of atomic instruction or locks completely in the archiving
phase, which results into better scaling of archiving rate with
increasing number of threads as plotted in Fig. 14. There is
some super-linear behavior when thread count is increased
from 16 to 32. This is due to the second socket coming
into picture with its own hardware caches, and non-atomic
behavior makes it to scale super-linear. This observation is
confirmed by running the archiving using 16 threads spread
equally across two sockets, and achieves higher archiving
rate compared to the case when the majority of threads be-
long to one socket.
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Fig. 15: Caheline sized memory allocation brings huge perfor-
mance gain, while hub vertex handling on top of cacheline size
memory allocation improves the query performance only.

Memory Allocation. Fig. 15 shows that the cacheline sized
memory allocation and special handling of hub-vertices im-
prove the performance of the archiving and analytics. The
cacheline sized memory optimization improves the archiving
rate at the archiving threshold by 2.20× for Kron-28 graph,
while speeding up BFS, PageRank and 1-Hop query perfor-
mance by 1.37×, 3.11× and 8.82×. Hub vertices handling
additionally improves the query performance (by 7.5%).
Edge Log Size. Fig. 16 shows the effect of edge log size on
overall ingestion rate on Kron-28 graph. Clearly, an edge log
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Fig. 16: Showing Ingestion rate when edge log size increases.

size greater than 4 million edges (32 MB) does not have any
impact on overall ingestion rate.

8 Related Work
Static graph analytics systems [66, 50, 43, 60, 52, 79, 16,
36, 53, 65, 27, 44, 81, 28, 76, 7, 80] support only batch ana-
lytics where pre-processing consumes much more time than
the computation itself [55]. Grapchi [47] and other snap-
shot based systems [35, 54, 62, 39, 26] support bulk up-
dates only. Naiad [58], a timely dataflow framework, sup-
ports iterative and incremental compute but does not offer
the data window on the graph data. Other stream analyt-
ics systems [17, 32, 58, 72] support stream processing and
snapshot creation, some offering data window but all at bulk
updates only. Stream databases [5, 6] provide only stream
processing. TIDE [77] introduces probabilistic edge decay
that samples data from base store.

Prior works [24, 69] follow integrated graph system model
that manage online updates and queries in the database, and
replicate data in an offline analytics engines for long run-
ning graph analytics tasks. As we have identified in §1, they
suffers from excessive data duplication and weakest compo-
nent problem. Zhang et al [78] also argue that such com-
posite design is not optimal. GraPU [71] proposes to pre-
processes the buffered updates instead of making them avail-
able to compute as in GRAPHONE. Trading-off granularity
of data visibility is similar to Lazybase [19], but we addition-
ally tune the access of non-archived edges to reduce perfor-
mance drop in our setup and offer diverse data views.

The in-memory adjacency list in Neo4j [59] is optimized
for read-only workloads, and new updates generally require
invalidating and rebuilding those structures [63]. Titan [2],
an open source graph analytics framework, is built on top of
other storage engines such as HBase and BerkeleyDB, and
thus does not offer adjacency list at the storage layer.

9 Conclusion
We have presented GRAPHONE, a unified graph data store
abstraction that offers diverse data access at different gran-
ularity for various real-time analytics and queries at high-
performance, while simultaneously supporting high arrival
velocity of fine-grained updates.
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