
Performance Analysis of GPU-based Convolutional
Neural Networks

Xiaqing Li†‡§, Guangyan Zhang†‡§, H. Howie Huang¶, Zhufan Wang†‡, Weimin Zheng†‡
†Department of Computer Science and Technology, Tsinghua University
‡Tsinghua National Laboratory for Information Science and Technology

§State Key Lab of Mathematical Engineering and Advanced Computing, Wuxi, China
¶Department of Electrical and Computer Engineering, George Washington University

Email: li-xq14@mails.tsinghua.edu.cn, gyzh@tsinghua.edu.cn, howie@gwu.edu

wang.zhufan1993@gmail.com, zwm-dcs@tsinghua.edu.cn

Abstract—As one of the most important deep learning models,
convolutional neural networks (CNNs) have achieved great suc-
cesses in a number of applications such as image classification,
speech recognition and nature language understanding. Training
CNNs on large data sets is computationally expensive, leading to
a flurry of research and development of open-source parallel
implementations on GPUs. However, few studies have been
performed to evaluate the performance characteristics of those
implementations. In this paper, we conduct a comprehensive com-
parison of these implementations over a wide range of parameter
configurations, investigate potential performance bottlenecks and
point out a number of opportunities for further optimization.

Index Terms—Convolutional neural network, deep learning,
GPU, performance evaluation, parallel computing.

I. INTRODUCTION

Convolutional neural networks (CNNs) are important

deep learning models that have achieved great successes

in large scale image classifications [2], [9], [22], speech

recognitions[3], [4] and nature language understanding [5],

[6], [7]. This can be attributed to the advanced architecture of

CNNs (such as AlexNet, VGGNet, GoogleNet and OverFeat)

[2], [12], [15], [22], large labeled training samples [16] and

powerful computing devices such as GPUs.

The training cost of CNNs is very high for two reasons.

First, CNNs are getting more complicated due to increased

depth and parameters. For example, AlexNet, the winner of

ILSVRC-2012, has 8 layers (5 convolutional layers and 3

fully-connected layers) and more than 60 million parameters.

VGGNet has 19 layers (16 convolutional layers and 3 fully-

connected layers) and over 144 million parameters. Another

recent model, GoogLeNet, is comprised of 22 layers with

about 6.8 million parameters [15]. Training these large-scale

CNNs requires thousands of iterations of forward and back-

ward propagations, and therefore is much time-consuming.

Second, the training samples are getting much larger. One of

the early CNNs, LeNet-5, was trained to recognize handwritten

digits on MNIST data set, which only contains 60,000 images

in the training set and 10,000 images in the testing set [8].

CIFAR-10 [11] dataset consists of 60,000 32×32 color images,

including 50,000 training images and 10,000 testing images.

In contrast, a larger dataset called ImageNet was provided in

2009, including more than 1.2 million high-resolution images.

Driven by industry groups like Google, YouTube, Twitter and

FaceBook, CNNs require to be trained on some very large

datasets (e.g., text, audio and video). Again, training on those

large-scale datasets requires significant runtime, and several

weeks or months is not uncommon.

To address this challenge, using GPUs to accelerate the

training process of CNNs is popular. During CNN training,

the computation is inherently parallel and involves a massive

amount of floating-point operations, e.g., matrix and vector

operations. This computing pattern is well suitable for GPU

computing model. Many of emerging deep learning frame-

works are highly optimized on GPUs with the CUDA program-

ming interface, including cuda-convnet [2], cuda-convnet2

[18], Theano [19], Torch [20], Decaf [21] and Caffe [23].

Most of these frameworks are open source and support one

or multiple GPUs. Moreover, some GPU-optimized libraries

are explored to accelerate CNNs, such as cuDNN [24] and

fbfft [25].

However, few studies have been performed to enable a

comprehensive evaluation on the performance characteristics

of those implementations over a wide range of configurations.

As our experiments and evaluations will show, each implemen-

tation has pros and cons, and there is no single implementation

that performs well in all scenarios. The best performance is

heavily dependent on different configurations.

The goal of this work is to assist practitioners identifying the

implementations that best serve their CNN computation needs

in different scenarios, and provide insights and suggestions

to practitioners and pinpoint aspects for researchers who are

interested in convolution optimization on GPUs. In this paper,

we conduct a head-to-head comparison of their runtime to as-

sist identifying the fastest implementation for a wide range of

scenarios. Furthermore, we also examine their memory usage

and shape limitation during GPU kernel execution. In addi-

tion, developing optimization schemes and implementations

requires an understanding of how efficiently the computing

power of GPUs has been exploited and where the potential

performance bottlenecks of those implementations are. We

thus conduct a performance profiling to study the intrinsic

characteristics of those implementations on GPU over different

typical configurations.

2016 45th International Conference on Parallel Processing

2332-5690/16 $31.00 © 2016 IEEE

DOI 10.1109/ICPP.2016.15

67

2016 45th International Conference on Parallel Processing

2332-5690/16 $31.00 © 2016 IEEE

DOI 10.1109/ICPP.2016.15

67

2016 45th International Conference on Parallel Processing

2332-5690/16 $31.00 © 2016 IEEE

DOI 10.1109/ICPP.2016.15

67

...

.
.
.
.

Input
Convolution

Pooling Convolution

Pooling Full Connection

Output

Feature
Maps

Fig. 1: A simple CNN architecture (LeNet-5).

The rest of this paper is organized as follows. In Section

2, we present an overview of the architecture of CNNs and

three convolution strategies. In Section 3, we describe the

experimental environment and evaluation methodology. In

Section 4, we identify hotspot layers in CNNs and compare

different implementations in the running time over a wide

range of configurations. In Section 5, we analyze hotspot

functions in the hotspot layers and evaluate the performance of

each implementation on GPU. Finally, we conclude this paper

in Section 6.

II. BACKGROUND

Understanding the architecture of CNNs better is key to

evaluation and optimization of the convolution implementa-

tions. In this section, we present an overview of the architec-

ture of CNNs and discuss different convolution strategies that

are adopted by typical CNN implementations.

A. Convolutional Neural Networks

The training process of CNNs is a typical feed-forward

neural network, which applies BP algorithm to adjust learnable

kernels so as to minimize the cost function. Convolutional

neural network automatically provides some degree of shift

and distortion invariance by three key ideas: local receptive

field, shared weight, and pooling [26].

Convolutional layer is the central part in CNNs. In convo-

lutional layer, each neuron of the same feature map applies

the same weights over input data at all possible positions to

extract the corresponding features. The convolved results are

organized into a set of two dimensional feature maps. All

of neurons in a feature map share the same weights, which

are called shared weights. Each neuron of the current layer

is connected to a local region of the previous layer. This

connectivity with a local region is called a local receptive filed
[26]. Pooling layers are optionally used after convolutional

layers, and it aims to reduce the spatial size of feature map

and to control the over-fitting problem to some extent.

We take Lenet-5 as a typical example to illustrate the

architecture of CNNs. As shown in Figure 1, Lenet-5 is

stacked by convolutional layer, pooling layer and two fully

connected layers. The input image is first fed to input layer,

and then is passed through a stack of convolutional and pooling

layers. Repeat convolutions with the methods of local receptive

field, shared weight and pooling, until the last convolutional

layer holds a set of relatively high-level features. Finally, those

high-level features are mapped to a probability vector over ten

different classes in last two fully-connected layers.

B. Convolution Strategies

Recently, many deep learning frameworks and libraries have

been developed to implement CNN on GPUs, e.g., cuda-

convnet [2], cuda-convnet2 [18], Theano [19], Torch [20],

Decaf [21], Overfeat [22], Caffe [23], cuDNN [24] and fbfft

[25]. Since convolutional layers is the central part of CNNs,

researchers devote most efforts into design and optimization of

convolutional layers. In order to implement CNN, researchers

have explored different kind of convolution strategies. How-

ever, mainstream CNN implementations follow three convolu-

tion strategies: direct convolution, unrolling-based convolution

[32], [24], and FFT(Fast Fourier Transformation)-based con-

volution. These strategies are depicted as follows.

Direct Convolution. This is the traditional way to compute

convolution. During direct convolution, a small window slides

within an input feature map and a dot production between

the filter bank and local patch of the input feature map is

computed. The result of dot production is then passed into a

non-linear activation function, e.g., Sigmoid and Tanh. Out-

come results from this activation function are organized into

a new feature map as output. Repeating the above process for

each filter bank, we can get a set of two-dimensional feature

maps as the output of the convolutional layer. Presentative

implementations of direct convolution include cuda-convnet2

[18], and Theano-legacy [31].

Unrolling Based Convolution. Unrolling-based convolu-

tion is a very efficient method on GPUs according to [32]

[24]. The key idea behind unrolling convolution is to reshape

the input and the filter bank to double large matrices. The

local regions of input image are unrolled into columns and

the filter banks are unrolled into rows using im2col. The

final convolution can be converted into a clean and efficient

matrix-matrix production by using highly-optimized libraries

such as cuBLAS on GPUs [32]. Finally, the results should be

remapped back to the proper dimension using col2im. Many

new frameworks and libraries are developed based on this

strategy, such as Caffe [23], Torch-cunn [20], Theano-CorrMM

[19], and cuDNN [24].

FFT Based Convolution. This strategy is based on the

convolution theorem that a discrete convolution in the spatial

domain can be converted into the product of the Fourier

domain. The performance of FFT-based convolution can be

significantly improved thanks to its lower computation com-

plexity. In general, FFT-based convolution can be implemented

by three main steps. First, inputs and filter banks are trans-

formed from the spatial domain to the Fourier domain with

Fast Fourier Transformation (FFT). Second, those transformed

matrices are multiplied in the Fourier domain. Finally, the

product results are inversed from the Fourier domain to the

spatial domain. This strategy is followed by fbfft [25], and

Theano-fft [19].

686868

III. EXPERIMENTAL METHODOLOGY

A. Experimental Environment

We evaluate CNN implementations on a CPU-GPU hybrid

system. Ubuntu 14.04.1 is installed on a machine with Intel

Xeon E5-2620 2.10 GHz 24 processor, 64GB main memory

and 1TB hard disk. A single K40c GPU card is used in our

experiments. We use openCV 2.4.8 and CUDA Toolkit 7.5.

The K40c GPU card has an excellent computing power

due to its many-core architecture, large device memory, high

memory bandwidth and floating point throughput. The K40c

card consists of 15 Streaming Multiprocessors (SM), each SM

with 192 processing units (a.k.a., CUDA cores). Each CUDA

core can perform 2 floating-point operations per clock rate, and

work at a maximum core clock rate of 745 MHz. Therefore,

all the 2880 (15 × 192) CUDA cores provide a peak single-

precision floating point performance of 4.29 TFLOPS.

Each SM has 256KB register files and 48KB on-chip

memory. The card is also equipped with 12GB device memory

and has 288 GB/s peak memory bandwidth. More details about

CUDA and GPU can refer to [1].

B. Evaluation Methodology

We select Caffe [23], Torch-cunn [20], Theano-CorrMM

[19], Theano-fft [19], cuDNN [24], cuda-convnet2 [18], and

fbfft [25] as representative implementations in our evaluation.

It should be noticed that we evaluate cuDNN-v3 in Caffe, fbfft

in Torch and cuda-convnet2 with a Torch wrapper provided by

convnet-benchmarks [28]. Our evaluation methodology can be

categorized into two groups: high-level workload profiling and

detailed performance profiling.

For high-level workload profiling, we analyze the workload

from two aspects.

• We conduct a hotspot layer analysis for those CNN

implementations by profiling four typical CNN models

(i.e., ImageNet, GoogleNet, VGG, and Overfeat).

• For hotspot layers, we conduct a head-to-head perfor-

mance comparison in forms of speed across those seven

implementations, with varying batch sizes, input sizes,

filter numbers, kernel sizes and strides, and analyze

strengths and weaknesses for those implementations in

shape limitations.

For detailed performance profiling, we conduct four sets of

experiments as follows. The goal is to explore the reasons be-

hind performance differences between those implementations.

• For aforementioned hotspot layers, we identify top ker-

nels that dominate the total runtime.

• We compare peak GPU memory usage for those imple-

mentations over a wide range of configurations.

• With the nvprof tool [14] provided by NVIDIA, we profile

and analyze those top kernels in five important metrics

and two events.

• We evaluate the overheads of data transfers between CPU

and GPU over five typical configurations.

Fig. 2: Runtime breakdown of typical real-life CNN models:

GooleNet, VGG, OverFeat and AlexNet.

IV. HIGH-LEVEL WORKLOAD PROFILING

In this section, we make a high-level workload profiling.

First, we break down four popular CNN models to investi-

gate where hotspot layers are during their training iterations.

Second, we compare the hotspot layers of those CNN imple-

mentations in terms of runtime over a large parameter space.

A. Hotspot Layer Analysis

The hotspot layer analysis can help understanding the flow

of CNN applications and identify hotspot layers that dominate

the total runtime in CNN models. We break down four popular

real-life CNN models, i.e., AlexNet, GoogleNet, OverFeat and

VGG, to collect the runtime of each layer and identify the

hotspot layers for each model. The runtime we collected is

the average runtime of each layer for 10 training iterations.

Each training iteration includes one forward propagation and

one backward propagation.

Results. As shown in Figure 2, those real-life models are

mainly comprised of convolutional layer (Conv Layer), Pool-

ing layer, Relu layer, Fully Connected Layer (FC Layer) and

Concat layer (in GooLeNet). Convolutional layer consumes the

bulk of total runtime (86%, 89%, 90% and 94% respectively

in four CNN models).

Analysis. Convolutional layer involves large amount of

computation-intensive operations and requires substantial

amount of computing resources. Especially for modern ad-

vanced CNN models, the computing cost of convolutional

layers is getting much higher due to the increasingly more

filters and layers, smaller strides and their combinations [17].

Therefore, we primarily focus on evaluating the performance

of convolutional layer in this paper.

B. Runtime Comparison

We run five groups of experiments in terms of runtime that

is averaged over 10 iterations on GPUs, to compare the total

runtime of a single convolutional layer of the seven imple-

mentations (Caffe, cuDNN, cuda-convnet2, Theano-CorrMM,

Theano-fft, Torch-cunn and fbfft) with respect to different

size of mini-batch, input image, filter number, kernel size and

stride. For a better performance comparison, the total runtime

we test here does not include the time of network initialization

and data preparation. We organize those 5 parameters into a

5-tuple (b, i, f, k, s) similar to [35]. In order to investigate

696969

Fig. 3: Runtime comparison for seven convolutional imple-

mentations on GPU with varing configurations.

how each parameter impacts on the overall performance of

convolutional layer, our evaluation is divided into five groups.

Each group only tests one kind of the parameters, and the

other four parameters are fixed. All input images and kernels

are square and we have a basic configuration 5-tuple (64, 128,

64, 11, 1). According to five different parameters, we have five

groups of 5-tuples: (b, 128, 64, 11, 1), (64, i, 64, 11, 1), (64,

128, f , 11, 1), (64, 128, 64, k, 1) and (64, 128, 64, 11, s).

Taking the first tuple for example, we test a changeable mini-

batch by fixing the other four parameters. In addition, we also

observe the shape limitations for each implementation during

the runtime comparison.

Results. Figure 3(a and b) shows the speed of the seven

implementations in different mini-batch size and input size,

which ranges from 32 to 512 and 32 to 256 with multiple

of 32 and 16 respectively. The runtime clearly presents the

advantage of fbfft over other implementations (from 1.4× to

9.7×) in all given mini-batch and input sizes, while Theano-fft

results in the slowest speed. For unrolling-based convolution,

cuDNN has consistent superior performance in all given mini-

batch and input sizes. The performance of cuda-convnet2 is

not stable with different mini-batch sizes. It performs well only

for those cases when mini-batch size is a multiple of 128.
In Figure 3(c), filter number ranges from 32 to 512 with

multiple of 16. In this configuration space, fbfft is con-

sistently faster than other implementations (from 1.19× to

5.1×), while Theano-fft still results in the worst performance.

Cuda-convnet2 cannot support all given filter numbers in our

experiment and thus its runtime on GPU is reported with

dots in Figure 3(c). For unrolling-based convolution, Theano-

CorrMM slightly outperforms its counterparts with large filter

numbers (greater than 160 in our experiment).
In Figure 3(d), for small kernel size (smaller than 7 in

our experiment) cuDNN and Theano-CorrMM result in better

performance than others. For example, the speed advantage

of cuDNN over fbfft is from 1.21× to 2.62×. But with the

increasing of the kernel size (greater than 7), the runtime

of fbfft tends to be a constant value and the performance

advantage is becoming increasingly obvious. For example,

fbfft is becoming increasingly faster than cuDNN (from 1.15×
to 19×). In addition, the performances of cuda-convnet2 and

cuDNN are very close with all given kernel sizes.
In Figure 3(e), fbfft outperforms other implementations

when stride is size of 1. Because fbfft and Theano −
conv2d fft only support stride size of 1, their runtime is

denoted as an spot in the figure. For greater stride (greater

than 1), cuDNN results in the best performance.
Analysis. The speed of each implementation varies with

different configurations and there is no single implementation

that is the fastest for all given scenarios in our experiments. We

summarize the main observations from runtime comparison as

follows:

• fbfft is the overall fastest convolutional implementation

and cuDNN performs the second best in most scenarios.

• For small kernels (smaller than 7 in our experiment),

cuDNN outperforms fbfft. Otherwise, fbfft is faster than

cuDNN.

• For unrolling-based convolution, cuDNN is the over-

all fastest implementation. But for large filter numbers

(greater than 160 in our experiment), Theano-CorrMM

slightly outperforms cuDNN.

• cuda-convnet2 performs well only for certain cases, such

as for mini-batch sizes of multiple of 128.

In most scenarios, the speed of fbfft is much faster due to

its low arithmetic complexity compared with unrolling-based

convolution and direct convolution. cuDNN is much slower

than fbfft when computing convolution with a large kernel size

(large than 7 in our experiment). But for a small kernel size

(smaller than 7 in our experiment), fbfft is a bit slower than

cuDNN. In essence, this arises from the differences between

their convolution strategies. fbfft can benefit significantly from

dramatic reduction of arithmetic complexity when running on

a large kernel size. But for a small kernel, the computational

cost of fbfft is higher than other counterparts, which leads

to a lower speed. It is important to note that fbfft and

Theano-fft share the similar convolution strategy, but they

present a clear difference in performance. Because of different

707070

implementation techniques, fbfft is much faster than Theano-

fft. Cuda-convnet2 was optimized for mini-batch sizes of a

multiple of 128, and thus performs well only in those cases.

Summary. From the perspective of speed, fbfft is the fastest

implementation to train a CNN model with large kernels. For

small kernels, cuDNN would be a good choice. Moreover, for

a model with small kernel and large filter number, Theano-

CorrMM slightly outperforms other implementations.

From the perspective of shape restrict, unrolling-based im-

plementations are most flexible in configuration selection as

they support any possible shapes. Cuda-convnet2 only supports

square input images and square kernels, its mini-batch size

must be a multiple of 32 and its filter number must be a

multiple of 16. FFT-based convolutions (i.e., fbfft and Theano-

fft) are applicable to any configuration shapes except that their

stride must be 1.

V. DETAILED PERFORMANCE PROFILING

In this section, we primarily focus on the performance pro-

filing of convolutional layer in each implementation. First step,

we conduct a detailed hotspot kernel analysis to look more

closely at the inside of each convolutional implementation.

Secondly, we evaluate the memory usage for each convolution

implementation. Thirdly, we report a comprehensive profiling

and analysis of the GPU performance for those convolution

implementations. Finally, we evaluate the data transfer over-

head between CPU and GPU.

A. Hotspot Kernels in Convolutional Layer

A convolutional layer in each implementation consists of

multiple kernels and it is worthwhile to figure out which

kernel determines the overall performance of convolutional

layers. The analysis of hotspot kernels helps understanding

and identifying which kernels dominate the total runtime in

convolutional layer.

For different configurations, the convolutional layer in the

same implementation shows the similar hotspot kernel results.

We thus choose one set of configuration (64, 128, 64, 11,

1), which indicates that a square input of size 128, 64 mini-

batch size, 64 filters, square kernel of size 11 and stride of

size 1, as the representative to analyze hotspot kernels. Based

on the profiling results, we group the similar kernels who

have the same functionalities into one. Take GEMM (General

Matrix to Matrix Multiplication) as an example, all different

kernels that are responsible for matrix-matrix or matrix-vector

multiplications are classified into GEMM.

Results. Figure 4 shows the hotspot kernels developed

for convolutional layer of each implementation in terms of

percentages. As we can see, different convolution strategies

result in totally different hotspot kernel results. Even for the

same convolution strategy, the kernels can be clearly different

due to different implementation methods. According to Figure

4(a,b,c), for unrolling-based convolution, Caffe, Torch-cunn

and Theano-CorrMM have similar hotspot kernel results, in

which GEMM operations take up 87%,83%,80% of their total

runtime respectively. But the hotspot kernel results of cuDNN

Fig. 4: Runtime breakdowns of convolutional layers in differ-

ent implementations.

are totally different with its counterparts (Caffe, Torch-cunn

and Theano-CorrMM) due to its different kernel implemen-

tations. As shown in Figure 4(d), wgrad alg0 engine and

cuDNN gemm dominate the runtime of cuDNN. cuda-

convnet2 computes for convolutional layers directly, which

is mainly achieved by three kernels: filterActs Y xX olor,

im acts color and conv weight acts c preload.

Analysis. We summarize some observations as follows:

• GEMM operations are the essence of convolutional lay-

ers. Especially in unrolling-based convolution, GEMMs

are dominant of the total runtime, followed by unrolling

operations.

• For FFT-based convolution, GEMM, FFT transform, FFT

inverse and data transposition account for most of the

717171

runtime in fbfft. On the contrary, most of the runtime is

spent on data preparation and data transfer between CPU

and GPU in Theano-fft.

For unrolling-based convolution, in Caffe, Torch-

cunn and Theano-CorrMM, im2col gpu kernel and

col2im gpu kernel mainly take up the rest of the runtime.

im2col gpu kernel is used to unroll the input data and

filters to double large matrixes and then the traditional

convolution can be converted into a clean matrix-matrix

multiplication by using highly-optimized GEMM libraries.

The col2im gpu kernel is used to convert the multiplication

result back to the right format, the same as the format

before unrolling. In cuDNN, the unrolling operations and

matrix-matrix multiplications are optimized by using shared

memory and tiled matrix multiplication [24], which is mainly

achieved by wgrad alg0 engine and cuDNN gemm
kernels.

For FFT-based convolution, the computation of convolu-

tional layers is mainly achieved by three steps in fbfft.

Firstly, the kernel decimateInFrequency uses DIF algo-

rithm to transform input and weight data from spatial do-

main to frequency domain. Secondly, the Transpose ker-

nel is used to convert the BDHW layout into HWBD
and then conducts Cgemm matrix multiplications. Thirdly,

the Transpose kernel converts the Cgemm results back

to BDHW layout and performs an inverse FFT by using

decimateInFrequencyInverse [25].

Summary. GEMM is the essence of convolutional layers in

unrolling-based implementations, which indicates that kernels

responsible for GEMM computing are the first-order modules

to be optimized. So are FFT and Cgemm in fbfft.

B. Memory Usage

For most applications at present, memory is not the primary

limitations, and while the fastest algorithm is considered as the

best algorithm. As a result, a common way to rank order algo-

rithms is using their computing speeds as a criterion. However,

GPU cannot afford a large memory-consuming application due

to its limit device memory. Thus memory usage also should

be considered as a significant portion on GPUs.

Results. We use nvidia-smi to monitor memory usage on

GPU for each implementation. Figure 5 shows the peak mem-

ory consumption of the seven convolutional implementations

by varying different parameters that are similar to runtime

comparison. In all given scenarios of our experiments, cuda-

convnet2 have the lowest consumption of GPU memory (from

125 MB to 2076 MB), followed closely by Torch-cunn (from

170 MB to 2093 MB). While the other three unrolling-based

implementations, cuDNN, Caffe and Theano-CorrMM, are of

a relatively higher consumption (from 155MB to 3810MB,

from 136MB to 3809MB and from 130MB to 3709MB

respectively). On the contrary, FFT-based convolution have

the highest consumption of GPU memory. Taking fbfft as

an example, it consumes a large amount of GPU memory,

from 1632 MB to 10866 MB in our experiments. There are

also several abnormal memory consumptions in FFT-based

Fig. 5: Memory usage comparison for seven convolutional

implementations on GPU with varing configurations.

implementations. Figure 5 (b) shows that there are dramatic

fluctuations in memory usage of fbfft over certain input size.

The same fluctuation also can be observed in fbfft and Theano-

fft in Figure 5 (d). Such abnormal memory usage can lead to

program crush which we will investigate as part of future work.

Analysis. We summarize main observations from the above

results as follows:

• cuda-convnet2 is the most memory efficient one in all

scenarios given in our experiment.

• Torch-cunn is the overall most memory efficient im-

plementation in unrolling-based convolution, while with

the increase of kernel size, cuDNN becomes the most

memory efficient implementation.

• fbfft requires the most memory, followed by Theano-fft.

Cuda-convnet2 computes the convolution directly and thus

does not need temporary memory to keep intermediate data.

Compared with cuda-convnet2, Caffe, Theano-CorrMM and

Torch-cunn require extra memory to store the unrolled matri-

ces using, but there are still slight differences of memory usage

due to different data layouts and programming techniques

between them. Although cuDNN does not need extra memory

727272

TABLE I: Convolution configurations for benchmarking

Layers Configuration (b,i,f,k,s)
Conv1 (128,128,96,11,1)
Conv2 (128,128,96,3,1)
Conv3 (128,32,128,9,1)
Conv4 (128,16,128,7,1)
Conv5 (128,13,384,3,1)

for unrolling, it consumes more memory than other unrolling-

based implementations to achieve a better performance.

On the contrary, low computational complexity of FFT-

based implementations and highly optimized CUDA codes

bring an excellent speed to fbfft, however, at the expense of

an unreasonable memory consumption. The main reason is

that FFT-based implementations require substantial amounts

of temporary memories to keep the intermediate data such

as input and filter data of the Fourier domain, and they also

need extra memory for zero-padding to extend filter bank

to be the same size of input. Therefore, when choosing a

CNN implementation, a trade-off between speed and memory

consumption needs to be considered.

Summary. Cuda-convnet2 is well suitable for cases when

the memory is limited. Otherwise, fbfft is a great choice to

compute for convolutional layer. If a good balance between

memory, speed and flexibility is needed, cuDNN is most likely

the best choice.

C. GPU Performance Evaluation

In this subsection, we conduct a detailed runtime profiling

study based on nvprof CUDA tool. Metrics and events are

collected by using nvprof to analyze kernel performance during

kernel execution. An event collects hardware counter values

during kernel execution and a metric is computed based on one

or more event values to identify characteristics of an CUDA

application [14]. To investigate the performance differences

among seven different convolution implementations, we use

the following metrics to profile GPU performance [14]:

• achieved occupancy is the ratio of the average active

warps per active cycle to the maximum number of warps

supported on a SM.

• ipc is the instructions executed per cycle.

• warp execution efficiency is the Ratio of the average

active threads per warp to the maximum number of

threads per warp supported on a multiprocessor expressed

as percentage.

• gld efficiency and gst efficiency is the ratio of requested

global memory load/store throughput to required global

memory load/store throughput.

• shared efficiency is the ratio of requested shared memory

throughput to required shared memory throughput.

Five representative convolutional configurations that are

commonly used for benchmarking of convnet in [27] are

used in our performance profiling to capture various behaviors

and performance characteristics. But in order to result in a

performance difference, we select a new configuration as the

second layer in our evaluation, which has a large input and a

Fig. 6: GPU performance profiling. From bottom to top

are runtime (ms), achieved occupancy (%), warp execution

efficiency (%), global store/load efficiency (%), IPC and shared

memory efficiency (%), respetively.

small kernel. As shown in Table I, the five configurations, to

a certain extent, can represent the configurations of real-life

CNNs. For example, in the first two configurations in Table

I, the kernel size are quite small compared to the input size,

which is common in the first few layers of a real-life CNN

models. The last few layers of real-life CNN models often

have more filters and large kernel size relative to input image

[2], [24].

As shown in Figure 4, there are multiple kernels in each im-

plementation and each kernel performs different functionalities

737373

of convolutional layer. In order to evaluate an overall perfor-

mance of each implementation on GPU, we prefer to profile

metrics and events for top kernels of each implementation and

then take a weighted average of those top kernels to get the

final estimate of performance metrics for that implementation.

The weight of each kernel is determined by the percentage of

its runtime in the whole implementation.

All seven convolutional implementations in our experiments

are based on three convolution strategies. Each strategy adopts

different methodology and thus has different computational

complexity. For a fair comparison, we analyze the performance

metrics according to three convolution strategies. Figure 6

presents the performance profiling results in terms of speed

and five metrics for top kernels of each convolutional imple-

mentation by running over five convolution configurations in

Table I.

The runtime part in Figure 6 shows that cuDNN is the

fastest implementation in unrolling-based convolution and fbfft

is the fastest one in FFT-based convolution. As expected, their

better performance can be supported by their better metric

values. For unrolling-based implementation, the metrics (ipc,
achieved occupancy and shared efficiency) of cuDNN

are overall better than the metrics of its counterparts (Caffe,

Torch-cuNN and Theano-CorMM). For FFT-based convolu-

tion, the metrics of fbfft are much better than the metrics of

Theano-fft. Cuda-convnet2 also has efficient metric profiling

results.

1) Observation in achieved occupancy: As shown in

achieved occupancy part in Figure 6, most implementations

have relatively low achieved occupancy (less than 30%).

Especially, the achieved occupancy in cuda-convnet2 is lower

than the average level, from 14% to 22%.

Analysis. As shown in Figure 6, cuDNN has an overall

better performance and is somehow related to its higher

percentages (from 29% to 37%) of achieved occupancy com-

pared with other unrolling implementations. However, a higher

occupancy does not mean a better performance. For FFT-

based convolution, Theano-fft has higher percentages (39%

to 59%) but worse performance. The achieved occupancy in

cuda-convnet2 is low, from 14% to 22%, which indicated that

top kernels in cuda-convnet2 does not generate enough threads

to hide potential latency.

The essence of GPU performance lies in whether the

problem can be computed in a high degree of parallel and

whether the limited resources on GPUs are allocated reason-

ably. Threads on GPUs are grouped into warps (32 threads

per warp on Tesla K40c) and these warps execute in parallel

on GPUs. The context of each warp can be switched almost

zero-overhead by GPU hardware scheduler. Long access la-

tencies can be hidden by this zero-overhead context switching

when there are enough parallel threads running on GPUs.

The resources (e.g., registers and shared memories) are very

limited on each SM of GPUs. Reasonable use of those fast

memory resources can significantly improve the performance.

But using them too much can reduce the total active warps

on GPU, which can leads to low occupancy and performance

degradation.

To investigate the reason behind low occupancy, we profile

the usage of register and shared memory for each implemen-

tation as reported in Table II. cuda-convnet2 has the overall

lowest percentages of achieved occupancy, which is mainly

correlated to its bad usage of register and shared memory.

Tesla K40c provides 65536 registers of the maximum amount

per SM, while 116 registers are used in cuda-convnet2 by

each thread. As a result, the theoretical active threads are only

564 (17 active warps), which is far less than device maximum

active threads 2048(64 active warps) per SM and thus leads to

a low achieved occupancy. Similarly, too much use of shared

memory can also lead to low occupancy. On the contrary, little

use of register and shared memory may contribute to a high

achieved occupancy, which can also bring in bad performance

due to long access latency from global memory. As shown

in Figure 6, although the occupancy of Theano-fft is higher

than that of fbfft, its performance is far worse than that of

fbfft. One of the main reason to explain that is the little use

of register and shared memory.

Summary. Occupancy is limited by three potential factors:

register usage, shared memory usage and block size. It is

important that GPU-based CNN implementations carefully

balance these factors to improve the overall performance.

2) Observation in global memory access efficiency: As

shown in Figure 6, most of implementations have relatively

low percentages of global load and store efficiency, less than

20% for global load efficiency and less than 60% for global

store efficiency.

Analysis. Global memory is the largest memory space on

GPUs and most data is firstly initialized on it. It also has the

highest access latency. The metric gld and gst efficiency
can be measured to evaluate how efficient the threads within a

kernel write or read on global memory. When global load or

store efficiency is less than 100%, it indicates that there exists

request replays in global memory access due to inappropriate

access pattern, such as unaligned or non-coalesced memory

access.

As we can see from Figure 6, Caffe, Torch-cunn, Theano-

CorrMM and Theano-fft have very low global memory load

efficiencies, especially for Theano-CorrMM (from 11.64% to

15.79%), mainly because of non-coalesced accesses during

their kernel executions. In cuDNN, for some top kernels that

are responsible for the operations of unrolling and matrix

multiplication use little global memory. Instead, most of the

computation for convolutional layers in cuDNN is conducted

on shared memory only. Therefore, the global access efficiency

of those top kernels is 0%. However, for other top kernels

that pre-compute for convolution in cuDNN are conducted

on global memory and result in low global load and store

efficiencies, which mainly contributes to the overall low global

access efficiency of cuDNN in Figure 6. Similarly, low global

memory access efficiencies of fbfft is also due to little use of

global memory by certain top efficient kernels.

747474

TABLE II: Register numbers per thread and shared memory

usage per block of different implementations.

Implementation Registers Shared Memory(KB)
Caffe 86 8.5

cuDNN 80 8.4
Torch-cunn 84 8.1

Theano-CorrMM 72 7
cuda-convnet2 116 16

fbfft 106 10
Theano-fft 2 4.5

Summary. It is desirable to use on-chip memory as much

as possible, combined with aligned and coalesced access,

to improve the efficiency of global memory access. Further

optimization for different GPU-based CNN is required in this

area.

3) Observation in shared memory efficiency: As shown in

Figure 6, Theano-fft have the lowest percentages (from 8.16%

to 20%) of shared efficiency, while other implementations have

relatively higher percentages.

Analysis. Shared memory is divided into banks on GPUs

and bank conflict (or broadcast) occurs when multiple threads

in a warp simultaneously access the same bank. When a bank

conflict occurs, the accesses to the same bank are serialized

by shared memory system, which leads to a significant per-

formance decrease. A low shared efficiency implies that there

are bank conflicts during kernel execution.

Observed from the runtime part in Figure 6, Theano-fft is

much slower than its counterpart (fbfft), which can be sup-

ported by the evidence of their shared efficiencies. As shown

in Figure 6, the shared efficiency of Theano-fft is much lower

than that of fbfft, which indicates that there are many bank

conflicts during its kernel execution and thus leads to a worse

performance. For unrolling based implementations, cuDNN

has the overall highest percentages of shared efficiency (over

130% in most cases). The shared efficiency in Caffe, Torch-

cunn and Theano-CorrMM is still excellent because most of

their GEMM operations are computed by using cuBlas that is

highly optimized on shared memory and thus they are of a

relatively higher shared memory efficiency.

Summary. Shared memory is a particularly important re-

source to optimize GPU kernels. Bank conflicts are the primary

concern to improve the performance of Theano-fft. One should

carefully design kernels so as to avoid multiple threads in the

same warp access the same bank. Moreover, memory padding

is another way to avoid bank conflict for some access patterns.

4) Observation in warp execution efficiency (WEE): Most

of the implementations achieve an excellent WEE (over 97%),

while Theano-fft has a much lower WEE.

Analysis. The metric of WEE is used to measure how

efficient the threads execute in a warp. The maximum number

of threads per warp in K40c is 32. All the 32 threads in a

warp execute the same instructions. If the threads in a warp

take different control paths, it is assumed to be divergent.

Figure 6 shows that the WEE is quite low for Theano-fft on

different configurations (from 66% to 81%), which indicates

Fig. 7: Data transfer overheads of different implementations

over five configurations.

that there are warp divergent branches and the kernels in

Theano-fft suffer from diminished SIMD efficiency caused by

serialized execution of divergent branches.

Summary. The metric of WEE provides a thread-level in-

sights of GPU performance. For Theano-fft, control divergence

can be reduced by redesigning its kernel codes to avoid the

use of control flow statement (e.g., if-else) as little as possible

or converting the control statement into non-control statement.

Otherwise, we have to rearrange the data access patterns of

Theano-fft to increase WEE.

D. Overhead of Data Transfer Between CPU and GPU

The data transfer overhead between CPU and GPU can be

crucial to the performance if that takes up too much of total

runtime. Therefore, programmers must be conscious of the

overhead of data transfer in CPU-GPU hybrid system.

Results. Figure 7 provides quantitative analysis of the rela-

tive time spent on data transfer of each convolution implemen-

tation across five typical different convolutional configurations.

As shown, cuDNN, Caffe and fbfft have the lowest percentage

(almost 0%) of data transfer time, while Torch-cunn, cuda-

convnet2 and Theano-fft have relatively higher percentage

(from 1% to 15%). Interestingly, Theano-CorrMM in the

second configuration (Conv2) has a significant data transfer

overhead (more than 60% of its total runtime).

Analysis. The difference in data transfer overhead is not

fixed, but changes with the different configurations. Even with

the same convolution strategy, the overhead of data transfer is

not identical at all due to different program techniques. Take

Caffe as example, before starting to compute convolution, a

data prefetching thread is used to hide the latency from CPU-

GPU data transfer.

Summary. A big overhead of data transfer between CPU

and GPU can lead to an overall performance degradation. To

improve that, one can reduce the transfer overhead by the

following methods.

• Using pinned memory to improve the bandwidth.

• Using asynchronous transfer to hide the latency from

CPU-GPU data transfer.

757575

• Lowing the transfer frequency by organizing many small

data transfers to a large data transfer.

VI. CONCLUSION

Training CNNs on large data sets is computation intensive,

leading to a flurry of research and development of open-

source parallel implementations on GPUs. The goal of this

work is to assist practitioners identifying the most appropriate

CNN implementations for different scenarios, and provide

insights and suggestions to practitioners and pinpoint aspects

for researchers who are interested in convolution optimization

on GPU.

In this paper, we compare the performance of seven popular

CNN implementations by running them over a wide range

of parameter space on Tesla K40c. We investigate the merits

and shortcomings for those implementations in terms of speed,

memory and shape limitation. No single implementation is the

best for all scenarios and we have to make trade-offs between

speed and memory usage in these implementations.

We present a detailed performance analysis for those im-

plementations and explore potential bottlenecks and acceler-

ation opportunities. We can conclude that no single metric

can determine the performance and we have to tune several

metrics to achieve the best performance. Moreover, a deep

understanding of the algorithm and hardware characteristic is

extremely important to accelerate these implementations.

ACKNOWLEDGMENT

This work was supported by the National Natural Science

Foundation of China under Grants 61170008 and 61272055,

the National Grand Fundamental Research 973 Program of

China under Grant No. 2014CB340402, and the Open Project

Program of the State Key Laboratory of Mathematical Engi-

neering and Advanced Computing.

REFERENCES

[1] NVIDIA, CUDA C Programming Guide, 2015.
[2] Krizhevsky, A., Sutskever, I., and Hinton, G. E. ImageNet classification

with deep convolutional neural networks.In NIPS, pp. 1106-1114, 2012.
[3] Sainath, T., Mohamed, A.-R., Kingsbury, B. & Ramabhadran, B. Deep

convolutional neural networks for LVCSR. In Proc. Acoustics, Speech
and Signal Processing 8614-8618, 2013.

[4] Dario Amodei, Rishita Anubhai, Eric Battenberg, Carl Case, Jared
Casper, Bryan Catanzaro, Jingdong Chen, Mike Chrzanowski, Adam
Coates, Greg Diamos, Erich Elsen, et al. Deep Speech 2:End-to-End
Speech Recognition in English and Mandarin. arXiv:1512.02595, 2015.

[5] Zhang, X., Zhao, J., LeCun, Y. Character-level Convolutional Networks
for Text Classification, arXiv: 1509.01626, 2015.

[6] Daojian Zeng, Kang Liu, Siwei Lai, Guangyou Zhou, and Jun Zhao.
Relation classification via convolutional via convolutional deep neural
network. In Proceedings of COLING 2014, pages 2335-2344, August
2014.

[7] Nguyen, T. H., Grishman, R. Relation Extraction: Perspective from
Convolutional Neural Networks. Workshop on Vector Modeling for NLP,
pp. 39-48, 2015.

[8] Y. LeCun and C. Cortes. MNIST Handwritten Digit Database,
http://yann.lecun.com/exdb/mnist, August 2009.

[9] Zeiler, M. D. and Fergus, R. Visualizing and understanding convolutional
networks. CoRR, abs/1311.2901, 2013. Published in Proc. ECCV, pp.
818-833, 2014.

[10] Simonyan, Karen, and Andrew Zisserman. ”Two-stream convolutional
networks for action recognition in videos.” In Advances in Neural
Information Processing Systems, pp. 568-576. 2014.

[11] A. Krizhevsky, V. Nair, and G. Hinton. CIFAR-10 Dataset.
https://www.cs.toronto.edu/ kriz/cifar.html.

[12] Simonyan, Karen, and Andrew Zisserman. ”Very deep convolu-
tional networks for large-scale image recognition.” arXiv preprint
arXiv:1409.1556, 2014.

[13] NVIDIA. https://developer.nvidia.com/cuda-zone.
[14] Docs Nvidia 2015 Profiler User Programming Guide CUDA Toolkit

documentation.
[15] Szegedy, Christian, et al. ”Going deeper with convolutions.” Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 1-9, 2015.

[16] Deng, Jia, et al. ”Imagenet: A large-scale hierarchical image database.”
Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE
Conference on. IEEE, 2009.

[17] He, Kaiming, and Jian Sun. ”Convolutional neural networks at con-
strained time cost.” Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 5353-5360, 2015.

[18] Krizhevsky, A. One weird trick for parallelizing convolutional neural
networks. CoRR, abs/1404.5997, 2014.

[19] James Bergstra, Olivier Breuleux, Frederic Bastien, Pascal Lamblin,
Razvan Pascanu, Guillaume Desjardins, Joseph Turian, DavidWarde-
Farley, and Yoshua Bengio. Theano: a cpu and gpu math expression
compiler. In SciPy, volume 4, page 3, 2010.

[20] Ronan Collobert, Koray Kavukcuoglu, and Clement Farabet. Torch:
A matlab-like environment for machine learning. In BigLearn, NIPS
Workshop, 2011.

[21] J. Donahue, Y. Jia, O. Vinyals, J. Homan, N. Zhang, E. Tzeng, and
T. Darrell. Decaf: A deep convolutional activation feature for generic
visual recognition. CoRR, abs/1310.1531, 2013.

[22] Sermanet, Pierre, et al. ”Overfeat: Integrated recognition, localiza-
tion and detection using convolutional networks.” arXiv preprint
arXiv:1312.6229, 2013.

[23] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan
Long, Ross Girshick,Sergio Guadarrama, and Trevor Darrell. Caffe:
Convolutional architecture for fast featureembedding. arXiv preprint
arXiv:1408.5093, 2014

[24] Chetlur, Sharan, et al. ”cudnn: Efficient primitives for deep learning.”
arXiv preprint arXiv:1410.0759, 2014.

[25] Nicolas Vasilache, Jeff Johnson, Michael Mathieu, Soumith Chintala,
Serkan Piantino, Yann LeCun. FAST CONVOLUTIONAL NETS WITH
fbfft : A GPU PERFORMANCE EVALUATION. arXiv: 1412.7580.
2015.

[26] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning.
Nature, 521:436-444, 2015.

[27] convnet-benchmarks. https://github.com/soumith/convnet-benchmarks,
2014.

[28] cuda-convnet2.torch. https://github.com/soumith/cuda-convnet2.torch,
2014.

[29] NVidia, C. U. D. A. ”CUDA Profiler Users Guide (Version 6.5):
NVIDIA.” Santa Clara, CA, USA, 2014.

[30] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-Based Learn-
ing Applied to Document Recognition, in Proc. of the IEEE, vol. 86,
no. 11, 1998, pp. 2278-2324.

[31] http://deeplearning.net/software/theano/index.html
[32] Kumar Chellapilla, Sidd Puri, Patrice Simard, et al. High performance

convolutional neural networks for document processing. In Workshop
on Frontiers in Handwriting Recognition, 2006.

[33] Ronan Collobert, Koray Kavukcuoglu, and Clement Farabet. Torch:
A matlab-like environment for machine learning. In BigLearn, NIPS
Workshop, 2011.

[34] James Bergstra, Olivier Breuleux, Frederic Bastien, Pascal Lamblin,
Razvan Pascanu, Guillaume Desjardins, Joseph Turian, DavidWarde-
Farley, and Yoshua Bengio. Theano: a cpu and gpu math expression
compiler. In SciPy, volume 4, page 3, 2010.

[35] Michael Mathieu, Mikael Henaff, and Yann LeCun. Fast training of
convolutional networks through ffts. arXiv preprint arXiv:1312.5851,
2013.

767676

