
DualVisor: Redundant Hypervisor Execution for
Achieving Hardware Error Resilience in Datacenters

Xin Xu
Department of Electrical and Computer Engineering

George Washington University

Washington, DC, USA

xuxin@gwmail.gwu.edu

H. Howie Huang
Department of Electrical and Computer Engineering

George Washington University

Washington, DC, USA

howie@gwu.edu

Abstract—Virtualization technology as the foundation of cloud
computing provides many benefits in cost, security, and man-
agement, but all of them rely on the reliability of the un-
derlying virtualization software - the hypervisor (or virtual
machine monitor). Cloud data centers are built upon 10Ks
to 100Ks commodity servers. Hardware errors in these large
scale computer systems are not rare events. When hardware
errors occur during the hypervisor execution, they may cause
failures or data corruptions in co-located VMs, undermining the
whole system reliability. In this paper, we propose DualVisor,
that uses a software redundancy based fault tolerance technique
to protect the hypervisor from hardware errors. DualVisor
replicates hypervisor executions and data structures for error
detection and recovery. In this work, we first study the need
for a hardware error-resilient hypervisor. Then, we discuss the
design considerations in detail. We implement a prototype in
the hypervisor to demonstrate the feasibility and evaluate the
performance overhead. Our preliminary results show that the
performance overhead of DualVisor is fairly small (less than
6%) for tested applications.

Index Terms—virtualization; reliability; hardware error; data
center;

I. INTRODUCTION

Cloud data centers typically consist of a large number of

machines. With virtualization technology, each machine can

host tens of virtual machines (VM) running on top of the

abstraction layer of the hypervisor or virtual machine monitor

(VMM). Both hardware and software reliability are major

research challenges in such virtual systems. In this work, we

focus on improving the reliability of the hypervisor against

hardware errors.

Hardware errors may frequently occur in large-scale data

centers. It is well known that various sources (e.g., particle

strikes and packaging impurity) may cause temporary or

permanent faults in CPUs and memory [1], [2], [3], [4], [5],

[6], [7], [8]. A field study on DRAM errors suggests that

the failure rate of the Jaguar system is equal to one failure

for approximately every six hours [2], and multi-bit errors

contribute about 50% of total memory errors. A study on the

ASC Q supercomputer, which consists of 8192 CPUs, has

shown that the average weekly count of CPU failures is 27.7

[9]. As manufacturing technology scales, error rates in future

systems are expected to increase significantly [8].

The increasingly high error rate in CPU and memory poses

a threat to virtual system reliability. In virtualized systems,

a hypervisor, which runs with the highest privilege, manages

the hardware resources and all the VMs. A control VM (or

driver VM) provides device drivers and management interfaces

to other guest VMs. Users may run their own applications

inside of guest VMs. Uncorrected hardware errors may affect

various software components of virtualized systems, including

applications, operating systems, virtual machines, and the

hypervisor.
Particularly, the hypervisor is single pointer of failure in

the virtualized system, and its vulnerability to hardware errors

should not be ignored. Hardware errors can affect the hyper-

visor and cause all-VM failure. They may even propagate to

VM and applications, causing applications failures or silent

data corruptions, which may easily cause incorrect diagnosis

and unsuccessful recovery [10]. Previous work has been con-

ducted to handle hypervisor failures based on the micro-reboot

technique [11]. However, a VM may fail after rebooting the

hypervisor. Also, it cannot handle corruptions that are difficult

to detect (e.g. silent data corruptions).
In this paper, we propose DualVisor which utilizes redun-

dant execution technique to improve the hypervisor reliability

against hardware errors. DualVisor is designed based on soft-

ware redundancy to protect the hypervisor in both executions

and data. It can detect and recover errors within the hypervisor

context before they affect VMs. We discuss the major design

parameters, implement our approach in the hypervisor, and

evaluate the performance overhead to applications. Specifi-

cally, we made two contributions in this paper:

• To our base knowledge, DualVisor is the first software

technique designed for the hypervisor to provide both

hardware error detection and recovery capabilities. Du-

alVisor can detect data corruptions in the replicated

regions (two copies are required), and allows a light-

weight error recovery approach (three copies are required)

instead of rebooting the hypervisor.

• We evaluate various design parameters in detail and

build a system prototype to demonstrate the feasibility

of DualVisor. The hypervisor runs at the lowest software

stack with the highest privilege. Designing redundant

execution is very challenging for the hypervisor. We

conduct thorough evaluation and profiling to understand

2015 15th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing

978-1-4799-8006-2/15 $31.00 © 2015 IEEE

DOI 10.1109/CCGrid.2015.30

485

��� ����	
��	��������� ���
�������� ������	��

���������������	
��	����������������������������

��������������	������

�������	
�����������
���

������������������	
�����������
���

������������������� �����������������	���

����������������
�������� ������	��

 	�!�������������

 	�!����������

Fig. 1: Hypervisor Executions

the hypervisor behaviors, and carefully choose design

parameters. DualVisor selectively replicates executions

and data, covering 87% of the total number of hypervisor

executions with only less than 6% performance overhead.

The paper is organized as below. Section II describes the

vulnerability of the hypervisor to hardware errors. Section

III presents our approach of designing redundancy for the

hypervisor and discusses major design parameters. Section

IV discusses the implementation in detail. Section V shows

evaluation results on the performance overhead of DualVisor.

Section VI discusses related work. Section VII concludes the

paper and discusses the further work.

II. HYPERVISOR BASICS AND ITS VULNERABILITY

The hypervisor is frequently activated to perform high-

privilege operations, making it more vulnerable to both CPU

and memory errors than one would expect. More importantly,

due to the critical role of the hypervisor, errors affecting the

hypervisor may cause severe consequences. In this section, we

first introduce the basics of the hypervisor. Then, we discuss

the hypervisor vulnerability in three areas:

• Vulnerability to CPU errors

• Vulnerability to memory errors

• Consequences if hardware errors affect the hypervisor.

A. Hypervisor Basics

Fig. 1 (the upper part) shows a typical execution flow of the

hypervisor in current systems. After a virtualized system starts,

the hypervisor states are in memory (e.g. memory region X).

A hypervisor execution may be activated by VMs or hardware.

The transition between the hypervisor and VMs can be assisted

by hardware (e.g. Intel VMX [12] and AMD SVM [13]). In

Intel VMX, the transition from VM executions to hypervisor

executions is VM Exit, and the transition from hypervisor to

VM is VM Entry. Right after VM exit, the execution context

of the hypervisor will be loaded to CPU (e.g. CPU X), and

the hypervisor execution will start operating on the hypervisor

data in memory. The hypervisor execution follows the paths

that are carefully defined. For example, Intel VMX architecture

defines about 60 reasons that may trigger a VM exit. The

hypervisor has function handlers to perform corresponding

operations [14], [15]. After the hypervisor execution is finished

(VM entry), the CPU context is switched back to VMs.

B. CPU Errors

The vulnerability of the hypervisor to CPU errors comes

from the high frequency of hypervisor activities. The hy-

pervisor instructions are frequently running in CPUs. We

conduct a number of experiments to examine the frequency of

hypervisor executions. The experiments run in a server with

one Xeon E5506 processor with 12GB memory. We measure

the number of hypervisor executions per second when the VMs

are running. The results are shown in Fig. 2.

Fig. 2 (a) shows the box plot of hypervisor frequency when

two VMs are running. The hypervisor is generally activated

more than 5,000/s for CPU and memory intensive benchmarks,

such as mcf and bzip2 [16] and freqmine and canneal [17].

For I/O intensive postmark [18] and mixed-workload x264
[17], the hypervisor is activated at a much higher frequency.

Fig. 2 (b) shows the normalized frequency as the number of

VMs increases. When the number of VMs increases from

one to two, the frequency increases accordingly (upto 1.9x

in canneal).
Not only the frequency is high, but also the utilization can

be also high on physical cores. Research has been proposed

to use dedicated cores to run hypervisor operations to reduce

the overhead to VMs and applications for future virtual sys-

tems [19]. In those systems, one can expect that the hypervisor

may fully utilize the dedicated cores. Such high frequency and

high CPU utilization of dedicated cores greatly increase the

hypervisor vulnerability to CPU errors.

C. Memory Errors

The vulnerability of the hypervisor to memory errors comes

from two aspects. First, the lifetime of hypervisor data can

be longer than VMs, resulting a higher probability of being

affected by memory errors. Hypervisor data are allocated in

memory from the beginning of system start till a reboot or

power-off, and soft errors may occur at any time.

Second, memory operations are frequent in hypervisor ex-

ecutions. We measure the ratio of memory instructions in

the hypervisor activities, using Xen 4.1.2 with two VMs in

Simics, a full system simulator [20]. Our experiments show

that 71.8% of hypervisor instructions are memory related.

This also contributes to the vulnerability of the hypervisor

to memory data.

Note that, handling hypervisor memory errors is more

complicated than VM memory errors. VM memory errors can

be handled with low-cost techniques, such as memory page

486

���� ����	� �
������ ������ �	"�� ������
��

��
��

�
��
�

��

�
��

�
��
��

#���

#���

#���

#�"�

(a) The frequency of hypervisor execution of two VMs

��$�

��

����

����

��%�

��$�

��

��	�
���� 	�������� �������� ��%�� ��������

��
��
��
��
��
	��
�
��
��
��
���
��
��
��
��
� ��� �

��� ��

(b) The increase of frequency as the number of VMs

Fig. 2: VM Exit Frequency

off-line. However, because the hypervisor runs at the lowest

level of the virtual system software stack, errors in hypervisor

data cannot be handled easily.

D. Consequences of Hardware Errors

We conduct fault injection experiments to study the impact

of hardware errors on the hypervisor [21]. We find that errors

in the hypervisor may propagate to various components in

the system, causing system failures, VM failures, application

failures and even data corruptions. although the memory

footprint and the CPU utilization of the hypervisor might be

smaller than the total of all VMs, the vulnerability of the

hypervisor to hardware errors should be minimized in order

to build a reliable cloud-computing ecosystem.

III. DUALVISOR DESIGN

Currently, virtualization provides fault tolerance techniques

at the VM level to handle failures. For example, checkpointing

VMs is a standard technique for improving VM reliability.

While users can selectively protect VMs and change config-

urations such as checkpointing intervals, they often use VM-

checkpoint with little consideration of hardware errors (e.g.

hardware error rate). Therefore, many VM-level techniques,

such as VM checkpointing and replication [22], need to run

constantly or periodically in the lifetime of the protected

VM to ensure the reliability. This reduces the overall system

utilization, as it requires additional computing, storage, and

networking resources.

To tackle the challenge of providing hardware error re-

silience in virtualized systems, we propose an automatic man-

agement framework as illustrated in Fig 3 (in dashed boxes).

The goal of this framework is to automatically monitor the

current vulnerability, adjust the level of protection, and provide

sufficient protection for virtualized systems. This automatic

management module consists of three major components:

• Hardware error reporting module to report the current

system reliability based on modeling and prediction

• Fault tolerance techniques for guest VMs that can be

easily controlled and configured

• Fault tolerance techniques for the hypervisor that can also

be controlled by the administrators.

Previous research has shown that it may be possible to

model or predict errors in CPU and memory [23], [24], [7],

[9], [25]. This can be utilized to construct the first component

- hardware error reporting module, although efforts are still

required for system implementation. VM-level fault tolerance

techniques, such as checkpointing VMs, are already available

in current virtual systems. They can be easily configured by

the hypervisor to construct the second component. However,

the third component in this framework has not been properly

addressed, which is the focus of this work.

�������������	�
�

��������	��

�
�
�
�

��
�
�
�
�

�����������	��

��������

��������� ��������� �	���	�����

����������	�
���
�

���	���������
�
���

�

�����

�������	��

�������	���
�	�����

Fig. 3: Automatic Framework with DualVisor

As a stand-alone fault tolerance technique, DualVisor pro-

tects the hypervisor from hardware errors. As a critical com-

ponent in the automatic management framework (as shown in

Fig. 3), DualVisor can be easily configured by software. The

automatic management module can now configure the level of

protection to both guest VMs and the hypervisor based on the

feedback of current hardware reliability.
In the following, we first describe the overall design of

DualVisor. Then, we discuss each component in detail. Du-

alVisor has many design parameters that should be carefully

chosen to balance the cost (e.g. performance overhead and re-

engineering cost) and the benefits (e.g. protection strength).

We will discuss and evaluate the trade-off, and explain our

considerations for each component.

487

A. Hypervisor Redundant Executions

DualVisor uses redundant execution to protect the hyper-

visor. Replication is done in both execution and data. Note

that while redundancy [26], [27] is not a new idea, this work

focuses on the challenges of designing and implementing

software redundant executions for the hypervisor, especially

how to achieve the redundancy with minimal overhead.

Fig. 1 (the lower half) illustrates the design concept of

DualVisor. Note that this is the high-level design concept, and

we will discuss the design parameters in detail shortly in this

section. In general, we replicate both hypervisor executions

and hypervisor data. This replication can be done for all

hypervisor operations or for just selected ones. Replicas are

periodically synchronized with each other to create redundant

inputs for replicas or to compare states for error checking.

There are three types of synchronizations to enable redun-

dancy.

The first type is initial synchronization. After the hypervisor

is initialized, a redundant copy of hypervisor data should be

created and stored in a different memory region. This synchro-

nization is mainly used to set up the redundant execution data.

Therefore, the initial synchronization is required only once.

The second type is runtime synchronization (create). It

creates the execution context and inputs for the replicated

execution, so that two replicas receive the same context and

inputs (e.g. the VM exit reason). This runtime synchronization

is required on each VM Exit that will be replicated (protected).

Two parameters should be carefully considered for designing

this runtime synchronization. The first parameter is which (or

all) hypervisor activities should be replicated? The second one

is where should we create the redundant execution (in the same

CPU or two different CPUs). We will discuss these parameters

later in this section.

The third type is runtime synchronization (compare). Hyper-

visor executions generate the outputs containing the returned

values to VMs and the modified hypervisor states. This

runtime synchronization (compare) is required to check these

outputs for error detection. It is enabled at the end of the

hypervisor execution. We can replicate all data at once in this

step, or only replicate a portion of hypervisor data depending

on some parameters (e.g. their importance or vulnerability).

We will discuss this design parameter shortly.

When there is no error, the outputs of replicas will be the

same, and the system will continue as normal execution. If

there is an error, two replicas will return difference states

(e.g silent corruptions in data). The runtime synchronization

(compare) can identify this difference and invoke proper

error handling procedures. Errors may cause fatal failures

immediately in one execution before runtime synchronization

(compare), and the hypervisor execution may not continue

to the error handling routines. In this case, fatal failures

will be reported by hardware exceptions (e.g. machine check

exception, MCE). Exception handlers in the hypervisor will

handle this fatal failure immediately (before synchronization).

Therefore, fatal failures can still be correctly handled.

The hypervisor is at the lowest level of the software stack in

virtual systems. This creates difficulties to adopt existing in-

frastructure to carry out this design (e.g., fork and ptrace) [28],

[29]. We need to modify the hypervisor software to enable

redundant executions. We already list several design options

when we explain the overall design above. In the following,

we explain these design parameters in detail. Then, we discuss

our considerations when choosing these parameters. Basically,

we would like to consider following questions:

• What should we replicate?

• Where should we replicate them? (in which CPU con-

text?)

• How should we replicate data?

• How should we replicate executions?

• When should we synchronize the replicated states?

B. The Sphere of Replication

We first examine what hypervisor executions should we

include into the scope of replication. Should we replicate all

hypervisor executions or only a part of them? By replicating

more hypervisor executions, we increase the protection level.

But it requires more efforts in re-engineering the hypervisor

and potentially higher overhead. The trade-off is clear, but

there is no quantitative data that can guide us to make

decisions. To better understand this trade-off, we profile the

hypervisor executions and collect detailed statistics.

We utilize the experimental setup in Section V to measure

the number of VM exits for each VM exit reason. We run the

application inside one VM in the test machine. We also collect

the results when the VM is booted. Fig. 4 shows the profiling

results. Although there are sixty VM exit reasons defined by

Intel VMX, only eight reasons are frequently triggered. These

eight reasons account for 99.6% of total number of VM exits

on average. This is because many VM exit reasons are defined

to handle abnormal behaviors when the system and VMs are

in incorrect state such as crashes. These VM exit reasons are

unlikely used in normal executions. Among these triggered

VM exit reasons, two of them, external interrupt (EXT INT)

and non-maskable interrupt (NMI), are most frequently used,

accounting for 28% and 45% respectively. We further profile

the type of NMI and find that the most frequent NMI is page

fault exception.

Based on this profiling result, we choose to selectively

replicate frequently utilized VM exits rather than replicating

all of them. Specifically, we replicate five VM exit reasons:

NMI (for page fault exception), external interrupt, pending

virtual interrupt, CPUID, and control register access (the

bottom five types shown in Fig. 4). By replicating only these

five VM exits, we cover about 87% of VM exits on average.

We will explain in detail the implementation for each VM exit

in Section IV.

C. Replicating CPU Context

The second design parameter is where to execute redundant

copy (in which CPU context). The redundancy can be either

temporal (in the same CPU) or spacial (in two different CPUs).

488

&'�

(&'�

)&'�

*&'�

+&'�

,&&'�

����� �-��(� ��	�
(*)� ����� ����� 	����� ����

������

�������

�������

����

��.��� !!

��"�#�

����.�����

 $�.����

����

Fig. 4: Distribution of VM exit reasons. NMI: non-maskable in-
terrupt, EXT INT: external interrupts, VIRT INTR, pending virtual
interrupt, CPUID: CPUID instructions, CR ACCESS: control register
access, HLT: HLT instructions, INVLPG: INVLPG instructions,
VMCALL: hypercall.

Fig. 5 illustrates the difference between (a) original executions

without replication, (b) temporal redundancy, and (c) spatial

redundancy.

Spacial redundancy (Fig. 5 (c)) can be achieved by using

another physical core for redundant execution. In this way,

two copies can be executed in parallel. Hypervisor executions

that have a relatively longer execution time may benefit from

this approach. However, this approach requires setting up

the context in another CPU core. The CPU context of the

hypervisor executions includes the VM exit reason and guest

VM data structures, such as guest VCPU registers and domain

information. This information should be replicated among two

redundant executions. Setting up this context will cause extra

delay. Also, executing the redundant copy requires an idle

CPU. We can pre-allocate idle CPUs solely for redundancy, or

we can identify them at system runtime. In a server with light

workload, it might be easy to identify the idle CPU. But it

may be difficult to identify idle CPUs in highly consolidated

servers. Because DualVisor can be easily managed by soft-

ware, we can leave this problem to the automatic management

framework for further optimization.

Temporal redundancy (Fig. 5 (b)) can be achieved by exe-

cuting the redundant copy in the same physical CPU core right

after the original execution. The results from two copies can

be synchronized at the end of the execution of the redundant

copy. Two copies will share the same CPU context. Note that

our fault model is single bit flip error in CPU. A soft error

may occur any one of the two copies. In this case, the error

can be detected. If an error occurs in the non-replicated region,

the error may not be detected.

It is important to understand the execution time of various

steps in both spacial and temporal redundancy in detail to

make the trade-off. Towards this goal, we implement both

techniques and measure the latency of each step involved in

both techniques. For temporal redundancy, we need to create

memory space for replicated data. We create this space on

the function stack (allocation on stack). After that, we copy

the original data to the newly created space (memcpy), and

then carry out the redundant execution. Then, we compare

������� ������	����
�������

������� ��	�	����
������� ���������
�������

�������

�������

��	�	����
�������

���������
������������
��������

��������
��������

�� �

�� �

�� �

Fig. 5: Spatial and Temporal Redundancy. (a) Original execution
without redundancy; (b) Temporal redunancy; (c) Spatial redundancy

TABLE I: Detailed Latency Measurement

Operation Temporal Spatial
(ns) (ns)

Allocation on stack 28 28

Memcmp 1326 1326

Memcpy 31 31

Set context N/A 750

Restore context N/A 142

Send IPI N/A 1900

Total 1385 4177

data for error checking (memcmp). For spacial redundancy,

other than these operations, we need to activate the redundant

execution in another CPU core. We implement this using inter-

processor interrupt (IPI). In this newly activated core, we save

the previous context and set up the new context. Then, the

redundant execution starts. After the execution is done, we

restore the previous context.

We measure the time of each operation on a Intel Xeon

5506 processor, except for the execution itself because its

time may vary depending on VM exit reasons. The side-

by-side comparison is shown in Table I. The results show

that the spacial redundancy has significant higher overhead

(about 2x higher). Sending IPI takes a relatively long time

(almost half of the total time in spatial redundancy). The actual

impact on performance overhead depends on the length of

original VM exits. Based on the numbers in Table I, it is

possible to use different techniques for different VM exits,

depending on the execution time of original VM exits. In our

implementation, we use temporal redundancy for all VM exits

that we select to protect. Note that the numbers here cannot

be directly transferred to the impact on application execution

time, because the hypervisor is only activated periodically

when applications are running.

D. Replicating Data

The third design parameter is how to replicate data for

redundant executions. We need to create a shadow copy of

original data, so that they can be used by the replicated

hypervisor execution. There are several potential solutions for

creating these shadow data: creating a contiguous memory

space for entire hypervisor memory data, using a page table,

or selectively replicating a critical portion of hypervisor data.

489

We can allocate a contiguous memory region and copy

over all original data. We need to ensure that two regions

have the exact same layout, so that the address of any data

structure in the shadow regions will differ from the original

data by a constant offset. The replicas can be referenced

using this offset and the original data addresses. Of course

this approach requires significant efforts to re-engineer the

hypervisor software (e.g. through compiler techniques or by

re-writing the hypervisor software).

Another potential method is replicating memory data by

adding a page-table mechanism, which allows the hypervisor

to manage its own data. We can add a very thin layer

under the original hypervisor, and create a page table to

manage original and replicated data. This method does not

require a contiguous memory region, but still requires many

efforts to modify the hypervisor software. Note that the nested

virtualization technique [14] may be leveraged to implement

this, but it requires careful modifications to make the extra

layer extremely thin. Otherwise, the extra virtualization layer

becomes a new single-point of failure.

Both methods are based on the notion of replicating all

hypervisor memory data. However, data are not equally impor-

tant. The data that are more frequently used by the hypervisor

execution can be more critical than those are rarely used.

For example, the guest VM CPU context can be a critical

data structure because it is the input for most of hypervi-

sor executions. In contrast, some local data that are only

used when handling errors will unlikely be used in normal

executions. Comparatively, the former can be more critical

than the latter. We can selectively replicate these critical data

structure that are frequently used in hypervisor executions.

This method potentially reduces the re-engineering cost and

the performance overhead, since it only replicates selected

data. But we need to carefully select the data structures to

provide sufficient protection.

The hypervisor data structures can be classified into three

types: global data structures that are shared by all VM exits,

VM related data structures that are only shared by VM exits

from the same VM, and local temporary data that are private

to each VM exit or function (temporary pointers to global

data are not included). In general, the critical data structures

that we replicated are local data and VM related data (e.g.

guest VM CPU context, guest VCPU information). We do not

replicate the global data structures as they are shared among

all VMs, and can cause non-deterministic problems (explained

in Section III-E). To replicate VM related data (e.g. guest

VCPU), we allocate extra memory for these data structure.

The memory allocation is usually done once when a VM is

created (initial synchronization in Fig. 1). During the execution

of VM exit, a redundant copy will be created by copying

the original data to the pre-allocated memory region (runtime

synchronization for creation in 1). An example is shown in

Listing 1. For some local variables requiring small memory

space, we allocate memory space on the function stack during

the hypervisor execution. An example is shown in Listing 2.

Listing 1: Data Replication Example 1: VM Data

1 struct vcpu ∗alloc vcpu (...){
2 /∗ create original VCPU data ∗/
3 ...
4 v = alloc vcpu struct();
5 ...
6 /∗ Allocate on heap for replication ∗/
7 v−>shadow for regsiter =
8 xmalloc(struct cpu user regs);
9 v−>shadow for trap =

10 xmalloc(struct hvm trap);
11 v−>shadow for vcpu = alloc vcpu struct();
12 ...
13 }

Listing 2: Data Replication Example 2: Local Data

1 /∗ Define original local data ∗/
2 unsigned long cr; /∗ control register number ∗/
3 unsigned long gp; /∗ general purpose register ∗/
4 ...
5 /∗ Allocate replications on stack∗/
6 unsigned long shadow for cr;
7 unsigned long shadow for gp;
8 ...
9 }

In hardware assisted virtualization, there is a special data

structure, virtual machine control structure (VMCS). VMCS

is a critical data structure containing information about the

guest VM current VM exit, such as the VM exit reason and the

VM exit qualification. The hypervisor uses special instructions

(e.g. vmread and vmwrite in Intel VMX) to access VMCS.

We use these instructions as a hint for replication. That is,

we replicate data after reading from VMCS (vmread), and

compare data before writing to VMCS (vmwrite). This can

also be done automatically using compiler techniques. In our

current implementation, we manually identify these data and

create replications.

E. Replicating Executions

During VM exits, we replicate the hypervisor executions.

Original and redundant executions access and update their own

data. We compare the replicated data at the end of the VM

exit. We classify executions into two types: with side effects

or without side effects. Some executions may trigger interrupts

in guest VMs or modifying the global data and VM related

data. We consider these executions have side effects. We

cannot replicate these operations because that will affect the

correctness of the hypervisor or VM state. We only replicate

the executions without side effects (e.g. only reading from the

global data and VM related data or writing to local data). We

compare the outputs of replicated executions before these side

effects occur. We call such executions (executions without side

effects) that we replicate as Sphere of Replication (SoR).

Fig. 6 illustrates two types of VM exits requiring different

implementations of SoR. Some VM exit reasons have side

effects in various places during their executions. Such a VM

exit will be split into several regions without side effects, and

490

each of them is a SoR, as shown in Fig. 6 (a). For example, for

the VM exit reason of pending virtual interrupt, injecting the

virtual interrupt to guest VM will cause side effects. Therefore,

the actual injection is only done once. We replicate and verify

the operation of obtaining the virtual interrupt information

(e.g. modifying local data that are read from VMCS). Some

only have side effects at the end of the execution. For these

VM exits, we can simply replicate the entire execution without

affect the system correctness. For those cases, the SoR can be

larger, sometimes are from the beginning to the end of the

hypervisor execution. Figure 6 (b) illustrates this case. The

VM exit reason CPUID falls into this category, and we will

explain it in detail in IV.

����

�����	
��

�����	������	�

�����	
��

�����!����	�

��	�

���������������
	�����

�
����������	�

"�#��	����������	�� "�#������������	��

����

����

����

Fig. 6: Two examples of replicating executions

There might be a concern about the deterministic execution

between two replicated SoRs. Hypervisor executions are in-

herently multi-threaded. One of the redundant SoR may be

preempted by another VM exit, and these two hypervisor

executions may modify a shared data structure. This may cause

discrepancy between two copies of preempted the hypervisor

execution. Fig. 7 illustrates this scenario. D is the original

data, and D’ is its replica. Both VM exits A and B will

access D during their executions. A’ and B’ are their replicated

executions respectively accessing D’. In one execution, VM

exit A accesses D before VM exit B. In the replicated

execution, VM exit A’ accesses D after VM exit B’. Because

the order of executions are different, D and D’ will not be the

same even if there is no error.

This non-deterministic problem may only occur when two

different VM exits are interleaved and try to access shared

data structures. Therefore, the solution can be either preventing

interleaved hypervisor executions or preventing shared data

structures between interleaved hypervisor executions.

One approach to preventing interleaved hypervisor execu-

tions is using a global lock for the hypervisor, we called it

hypervisor lock, so that hypervisor executions will not be

interleaved. However, this implementation will cause perfor-

mance overhead because it essentially serializes the hypervisor

execution. In fact, a similar hypervisor lock is implemented

in [30] for each VM, so that only one VM exit per VM is

allowed at a time. But it may still allow multiple VM exits

����������� ��	
����������

����������
����

����������
������

���������
������

���������
����

������

������

������ ������

������

������

Fig. 7: Non-deterministic executions

from different VMs.

Another solution is allowing interleaved VM exits, as long

as they are not accessing shared data structures. In fact, in our

current implementation, this approach is more feasible and

potentially incurs smaller overhead than the hypervisor lock.

As we discussed in Section III-D, the hypervisor data struc-

tures can be classified into three types: global data structure,

local temporary data, and VM related data structures. Local

temporary data will not be shared by VM exits. Therefore, the

non-deterministic problem will not occur in those data. Only

global data and VM related data may cause non-deterministic

problems. However, our design for replicating executions can

prevent this problem.

We have two approaches for replicating executions (Fig. 6)

for hypervisor executions with or without side effects. For

those hypervisor operations without any side effects, such

as CPUID, they will not commit any changes into global

shared data structure before the results from two copies are

compared (they only read from shared data structures). The

deterministic execution can be achieved between these copies

without requiring additional techniques. For those hypervisor

operations with side effects, we only replicate the data and op-

erations before these side effects occur. That is, we essentially

replicating local variables in SoRs that are not shared among

hypervisor executions. Therefore, the deterministic results can

also be guaranteed. Therefore, our approach will not cause any

non-deterministic problems in shared data.

F. Synchronization

The synchronization can be done in all hypervisor data

structures (e.g. guest VM context, VMCS and global data).

We can further optimize this process by comparing only the

field that should be modified for the specific VM exit reasons.

This selective comparison may speedup the synchronization.

If we selectively compare a portion of data, it is possible that

the errors cause incorrect states in the regions that are not

compared. These errors can be detected when corrupted states

are used for later hypervisor executions. If corrupted states are

never used, they will not affect system correctness.

491

IV. IMPLEMENTATION

In the following, we explain the details of replicated data

and executions in these selected five VM exits.

Non-maskable interrupt. Most of NMIs are used to signal

abnormal events, such as errors and failures, which are not

triggered in normal executions. Based on our profiling results,

most of NMIs are because of page fault during normal

execution. Therefore, our replication is only done for handling

page fault. In the case of page fault, the hypervisor first needs

to read the faulting address and error code from VMCS. Then,

the hypervisor checks if this page fault is a real page fault

that should injected into the guest VM. We replicate the page

fault information (local data), such as exception type, faulting

address and error code, after the hypervisor obtain them from

VMCS, and replicate the operations on those information.

However, because injecting the page fault into the guest VM

will cause side effects, we do not replicate this.

External interrupt. The hypervisor reads the interrupt vector

from VMCS and injects it into the guest VM CPU registers.

We replicate the interrupt vector (local data) and its operations

before interrupt injection. The hypervisor will also handle

the interrupt and deliver an event through the event channel.

Because this operation has side effect, we did not replicate it.

Pending virtual interrupt. The hypervisor checks if there

is a pending virtual interrupt, and modify the corresponding

guest VM states. We replicate the interrupt information (local

data) and its operations before modifying the guest VM state.

CPUID. CPUID VM exit takes inputs from guest VM

CPU registers, retrieves corresponding CPU information, and

writes it back to guest VM CPU registers. Retrieving CPU

information does not have side effects, and can be replicated

as a whole. In this case, we replicate the guest VM CPU

registers (VM data) and guest VM information (VM data) at

the beginning, and then replicated this hypervisor execution.

At the end of the VM exit, we compare the guest VM CPU

registers to make sure two copies have the same value.

Control register access. Depending on the type of access,

the hypervisor will either modify the control register (write

access) or modify a general purpose register based on control

register value (read access). We replicate the input values

(local data) and related operations before modification.

V. PERFORMANCE OVERHEAD

Redundancy incurs runtime performance overhead, which

affects all VMs. A very high overhead may prevent the practi-

cal use of DualVisor. Therefore, we conduct a study to evaluate

the overhead based on temporal redundancy implementation.

Note that the runtime cost of DualVisor can be further opti-

mized within the automatic management framework described

in Fig. 3. We evaluate overhead in three aspects:

• The overhead of redundant executions to the VM exit

execution time

• The overhead of redundant executions to the application

execution time.

• The increase of the overhead as the number of VMs

increase

The experiment is done in a server with one Xeon E5506

CPU and 12GB memory. Each Hardware-assisted VM is

assigned with 1 VCPU and 2GB memory.

Replication may have different impact on different VM exits

due to the variation of data sizes and replicated executions.

To understand the detailed impact of redundant execution on

VM exit executions, we measure the execution time of the

VM exit handler in the Xen hypervisor when DualVisor is

enabled or disabled. We collect these results when a VM is

being booted or running a application. As shown in Fig. 8,

redundancy executions have various impact on the execution

time of VM exits. Four VM exits show small overhead (less

than 7%), and the virtual interrupt has almost no overhead. The

virtual interrupt is relatively short with a few of operations, and

we only replicate the data and executions related to the virtual

interrupt numbers before injecting them to VMs. Therefore,

the overhead is not noticeable. Comparatively, CPUID has the

highest relative overhead (116%). This is because the SoR

of CPUID is relatively large (the entire execution) and the

original execution is relatively short. As a results, the overhead

of replication is even higher than the original execution.

Therefore, the overhead is higher than 100%. Note that these

results are measured for VM exits rather than applications. The

overhead on applications (shown in the next figure) is smaller,

as the hypervisor executions are only activated periodically

during VM executions.

�/�

�/�

��/�

��/�

��/�

 ��� �������� ��	������
����
	��

����

�
��
�
��
��
��
��
��
��
��

��
��
�
��

�����

Fig. 8: Overhead to VM Exit Handler Execution Time

The other type of overhead is measured by the execution

time of applications inside of VMs. The results are collected

when one VM or two VMs (with the same application)

are running. Experiments are repeated by 10 times for each

application. The average overheads caused by redundancy are

shown in Fig. 9. The numbers are normalized to the average

execution times when the original Xen hypervisor is running.

All six benchmarks show very small overhead, less than 1%

when one VM is running and less than 6% when two VMs

are running. The performance overhead is slightly higher for

I/O intensive applications, postmark. Overall, we consider this

overhead is reasonable for redundant execution. The reason

why we can achieve such low overhead is selective replication.

We only replicate five VM exits (but covering 87% of the total

number of VM exits), and only replicate critical data structures

492

!/�

�/�

!/�

�/�

�/�

�/�

 /�

���� ����	� �
���
� �	��� ��������� �����
���

�
��
�

��
��
��
��
��
��

��
��
�
��

���� 	���

Fig. 9: Overhead to Application Execution Time

and their related executions. Note that we choose selective

replication to trade off the cost and the protection level. It

is possible to provide stronger protection by replicating more

VM exits and more data, with a higher cost accordingly.

To better understand the scalability of our approach, we

measure the performance overhead in terms of execution time

when the number of VMs increases. Fig. 10 shows the results.

All VMs are running mcf (CPU and memory intensive) at

the same time. We do not use I/O intensive application here

because running four I/O intensive VMs will cause significant

interference. As we can see from the figure, the overhead

increases to 3.8% when there are two VMs running. But it does

not increase further when there are four VMs. This happens

because DualVisor incurs relatively small overhead, compared

to the performance interface from co-located VMs.

���

���

���

���

���

���

�	
� �	
� �	
�

�
�

��
��
��
��
��
��
��

��
��

��

Fig. 10: Overhead as the number of VMs increases (mcf)

VI. RELATED WORK

Redundancy can be done in hardware [26], [27] or software

[28], [29] for applications [28], [29] or VMs [22], [31]. This

work is different from previous research as we focus on

the detailed analysis, design and implementation of software

redundancy in the context of the hypervisor.

Hardware redundancy has been proposed for CPU errors in

[26], [27], leveraging simultaneous multi-threading or multi-

core processors. Hardware DMR can achieve nearly 100%

coverage to CPU errors at the cost of area, performance and

energy. Due to its high cost, hardware redundancy are not

available in medium and low-end computer systems, which

are the majority of cloud computing data centers. Hardware

redundancy is unlikely incorporated into these commodity

systems in the near future.

Software redundancy has been used to improve the reli-

ability of applications. Redundancy can be achieved using

compiler techniques [32] or operating system supports [28],

[29]. Our method also uses software redundancy. Hypervisor

runs at the lowest level at the software stack in the system.

This unique role creates many difficulties for implementing

software redundancy. For example, operating system supports

(e.g. ptrace and fork) for software redundancy are not avail-

able for hypervisor. Compiler techniques may be possible

for automatically creating redundant copies. In our current

implementation, we manually modify the code. But some

information (such as vmwrite and vmread) can be leveraged

as a hint for automatically inserting software code. We plan

to further investigate this approach in our future work.

Redundancy can also be applied at virtual machine level.

Remus [22] leverages live migration techniques to replicate

VM states to a remote physical host. If failures occur in

any replication, the other one can continue correctly. Since

Remus is implemented at the VM level, it does not require

modifications to applications. But Remus has high perfor-

mance overhead, so it is more suitable to selectively protect

user applications. Our method aims at improving hypervisor

reliability, which can be beneficial to all VMs. It helps improve

the overall virtual system reliability. Therefore, it is orthogonal

to the these VM-level techniques.

The hardware error problem has been studied in virtualized

systems [25], [21], [10], [11]. In [25], a VM power model

and a VM failure model are designed to manage the cost

of power and failures when dynamic voltage and frequency

scaling (DVFS) is utilized in virtualized systems. The models

use DVFS states to estimate VM power and reliability. It

can be leveraged to strengthen our automatic management

framework (Fig. 3 to provide feedback information from

hardware. In [21], a fault injection framework is designed to

study error propagation behaviors. The results in that paper

suggest soft errors affecting the hypervisor may cause various

types of failures, suggesting new approaches are required for

correct diagnosis and recovery. In [10], a soft error detection

framework, Xentry, is designed and implemented. Xentry

prevents the error propagation from the hypervisor to VMs

by detecting them with very short latency. In [11], a recov-

ery techniques is designed to recover the hypervisor failure,

preserving running VM states. Our works is different from

previous works by integrating both detection and recovery

capabilities using redundant executions. DualVisor can detect

silent data corruptions which are difficult to detect in current

systems. DualVisor recovers errors while the hypervisor is

running instead of rebooting the whole hypervisor, minimizing

the impact to running VMs. Also, its protection strength can

be adjusted (by adjusting the number of redundant copies)

according to the system reliability requirements.

493

VII. DISCUSSION AND CONCLUSION

In this paper, we demonstrate the need for a hardware-error-

resilient hypervisor. We describe the design of DualVisor, a

fault-tolerance technique that is designed specifically for the

hypervisor. We discuss various design parameters in detail,

and implement DualVisor in the hypervisor software. Our

experimental results show that the performance overhead of

software redundancy is small for CPU and memory inten-

sive applications. The discussion and results in this paper

demonstrate the benefits and feasibility of an error resilient

hypervisor. For our future work, we would like to extend our

early effort in designing the automatic management framework

[33], and integrate DualVisor into this framework. Our current

implementation of redundancy is done with detailed inspection

of the hypervisor code. We would also like to investigate

intelligent and automated methods to deploy redundancy in

the hypervisor.

Note that the framework that implements DualVisor is not

replicated, and therefore is vulnerable to hardware errors. To

protect the framework from fatal failures, we can leverage

existing hardware supports, such as MCE. Errors may not

cause fatal failures of the framework, but cause incorrect

detection, e.g., identifying a correct execution as incorrect.

We consider this is a benign case because an error does

occur and is reported. We assume there is only one error

in the system because two errors occur at the same time is

very unlikely. Therefore, when an error affects the hypervisor

execution, the framework will function correctly. In our current

implementation, because we selectively replicate data and

execution, the non-replicated portion of the hypervisor will

still be vulnerable. As a part of our future work, we plan

to investigate the vulnerability of non-replicated portion, and

increase the sphere of replication where it is necessary.

ACKNOWLEDGMENT

This work is supported by National Science Foundation

grant CNS-1350766.

REFERENCES

[1] T. J. O’Gorman, J. M. Ross, A. H. Taber, J. F. Ziegler, H. P. Muhlfeld,
C. J. Montrose, H. W. Curtis, and J. L. Walsh, “Field testing for cosmic
ray soft errors in semiconductor memories,” IBM Journal of Research
and Development, vol. 40, pp. 41 –50, jan. 1996.

[2] V. Sridharan and D. Liberty, “A study of dram failures in the
field,” in Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis, ser. SC
’12. Los Alamitos, CA, USA: IEEE Computer Society Press, 2012,
pp. 76:1–76:11. [Online]. Available: http://dl.acm.org/citation.cfm?id=
2388996.2389100

[3] ——, “A study of DRAM failures in the field,” in Proceedings of the
International Conference on High Performance Computing, Networking,
Storage and Analysis, ser. SC, 2012, pp. 76:1–76:11.

[4] B. Schroeder, E. Pinheiro, and W.-D. Weber, “DRAM Errors in the Wild:
A Large-Scale Field Study,” in Proceedings of the eleventh international
joint conference on Measurement and modeling of computer systems, ser.
SIGMETRICS, 2009.

[5] X. Li, M. C. Huang, K. Shen, and L. Chu, “A realistic evaluation
of memory hardware errors and software system susceptibility,” in
Proceedings of the USENIX conference on USENIX annual technical
conference, ser. USENIXATC, 2010.

[6] X. Li, K. Shen, and M. C. Huang, “A memory soft error measurement
on production systems,” in In USENIX Annual Technical Conf, 2007.

[7] A. A. Hwang, I. A. Stefanovici, and B. Schroeder, “Cosmic rays
don’t strike twice: Understanding the nature of dram errors and the
implications for system design,” in Proceedings of the Seventeenth
International Conference on Architectural Support for Programming
Languages and Operating Systems, ser. ASPLOS XVII. New York,
NY, USA: ACM, 2012, pp. 111–122.

[8] M. Snir, R. Wisniewski, J. Abraham, S. Adve, S. Bagchi, P. Balaji,
J. Belak, P. Bose, F. Cappello, B. Carlson et al., “Addressing failures in
exascale computing,” Argonne National Laboratory (ANL), Tech. Rep.,
2013.

[9] S. Michalak, K. Harris, N. Hengartner, B. Takala, and S. Wender,
“Predicting the number of fatal soft errors in los alamos national
laboratory’s asc q supercomputer,” Device and Materials Reliability,
IEEE Transactions on, vol. 5, pp. 329–335, 2005.

[10] X. Xu, R. Chiang, and H. H. Huang, “Xentry: Hypervisor-level soft error
detection,” in The 43rd International Conference on Parallel Processing
(ICPP14), Minneapolis, MN, Sep. 2014.

[11] M. Le and Y. Tamir, “Rehype: enabling vm survival across hypervisor
failures,” in Proceedings of the 7th ACM SIGPLAN/SIGOPS Interna-
tional Conference on Virtual Execution Environments, ser. VEE, 2011,
pp. 63–74.

[12] Intel, “VT (Virtualization Techology),” http://www.intel.com/
technology/virtualization/.

[13] “AMD-V,” http://sites.amd.com/us/business/it-solutions/virtualization/
Pages/amd-v.aspx.

[14] “KVM,” http://www.linux-kvm.org/.
[15] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,

R. Neugebauer, I. Pratt, and A. Warfield, “Xen and the art
of virtualization,” SIGOPS Oper. Syst. Rev., vol. 37, pp. 164–
177, 2003. [Online]. Available: http://portal.acm.org/citation.cfm?id=
1165389.945462

[16] Standard Performance Evaluation Corporation, “SPEC Benchmarks,”
http://www.spec.org, 2006.

[17] C. Bienia, S. Kumar, J. Singh, and K. Li, “The PARSEC Benchmark
Suite: Characterization and Architectural Implications,” Princeton Uni-
versity Technical Report TR-811-08, January 2008.

[18] J. Katcher, “Postmark: A new file system benchmark,” 1997.
[19] A. Landau, M. Ben-Yehuda, and A. Gordon, “Splitx: split guest/hyper-

visor execution on multi-core,” in WIOV. USENIX, 2011.
[20] Virtutech. (2006) Simics Full System Simulator. [Online]. Available:

http://www.simics.net
[21] X. Xu and H. H. Huang, “Understanding reliability implication of

hardware error in virtualization infrastructure,” in 10th Workshop on
Hot Topics in System Dependability (HotDep 14). Broomfield, CO:
USENIX Association, Oct. 2014.

[22] B. Cully, G. Lefebvre, D. Meyer, M. Feeley, N. Hutchinson, and
A. Warfield, “Remus: high availability via asynchronous virtual ma-
chine replication,” in Proceedings of the 5th USENIX Symposium on
Networked Systems Design and Implementation, ser. NSDI’08, 2008,
pp. 161–174.

[23] J. C. Smolens, B. T. Gold, J. Kim, B. Falsafi, J. C. Hoe, and A. G.
Nowatzyk, “Fingerprinting: bounding soft-error detection latency and
bandwidth,” in Proceedings of the 11th International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems,
ser. ASPLOS, 2004.

[24] J. Srinivasan, S. V. Adve, P. Bose, and J. A. Rivers, “The case for
lifetime reliability-aware microprocessors,” in Proceedings of the 31st
Annual International Symposium on Computer Architecture, ser. ISCA,
2004.

[25] X. Xu, K. Teramoto, A. Morales, and H. H. Huang, “Dual: Reliability-
aware power management in data centers,” Cluster Computing and the
Grid, IEEE International Symposium on, vol. 0, pp. 530–537, 2013.

[26] S. K. Reinhardt and S. S. Mukherjee, “Transient fault detection via
simultaneous multithreading,” in Proceedings of the 27th Annual Inter-
national Symposium on Computer Architecture, ser. ISCA, 2000, pp.
25–36.

[27] S. S. Mukherjee, M. Kontz, and S. K. Reinhardt, “Detailed design and
evaluation of redundant multithreading alternatives,” in Proceedings of
the 29th Annual International Symposium on Computer Architecture,
ser. ISCA. Washington, DC, USA: IEEE Computer Society, 2002, pp.
99–110.

[28] Y. Zhang, S. Ghosh, J. Huang, J. W. Lee, S. A. Mahlke, and D. I.
August, “Runtime asynchronous fault tolerance via speculation,” in
Proceedings of the Tenth International Symposium on Code Generation
and Optimization, ser. CGO, 2012, pp. 145–154.

[29] A. Shye, T. Moseley, V. J. Reddi, J. Blomstedt, and D. A. Connors,
“Using process-level redundancy to exploit multiple cores for transient
fault tolerance,” in Dependable Systems and Networks (DSN), 2007 37th
Annual IEEE/IFIP International Conference on, 2007, pp. 297–306.

[30] G. W. Dunlap, D. G. Lucchetti, M. A. Fetterman, and P. M. Chen,
“Execution replay of multiprocessor virtual machines,” in Proceedings of
the fourth ACM SIGPLAN/SIGOPS international conference on Virtual
execution environments. ACM, 2008, pp. 121–130.

[31] T. C. Bressoud and F. B. Schneider, “Hypervisor-based fault tolerance,”
in Proceedings of the fifteenth ACM symposium on Operating systems
principles, ser. SOSP ’95, 1995.

[32] Y. Zhang, J. W. Lee, N. P. Johnson, and D. I. August, “DAFT: decou-
pled acyclic fault tolerance,” in Proceedings of the 19th International
Conference on Parallel Architectures and Compilation Techniques, ser.
PACT. ACM, 2010, pp. 87–98.

[33] X. Xu and H. Huang, “Towards virtualized systems with hardware error
tolerance (poster),” in 5th Asia-Pacific Workshop on Systems (APSys),
2014.

494

